Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2020, Vol. 14 Issue (2) : 554-568    https://doi.org/10.1007/s11709-020-0613-8
RESEARCH ARTICLE
Seismic retrofitting of severely damaged RC connections made with recycled concrete using CFRP sheets
Yasmin MURAD(), Wassel AL BODOUR, Ahmed ASHTEYAT
Civil Engineering Department, The University of Jordan, Amman 11942, Jordan
 Download: PDF(3149 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An experimental and numerical program is carried out in this research to investigate the influence of CFRP sheets on the cyclic behavior of unconfined connections made with recycled concrete. Cement is partially replaced by silica fume, iron filling and pulverised fuel ash using two different percentages: 15% and 20%. Each specimen is partially loaded at the first stage and then specimens are repaired using CFRP sheets. The repaired specimens are then laterally loaded until failure. In addition, a finite element model is built in ABAQUS and verified using the experimental results. The experimental results have shown that the repaired specimens have regained almost double the capacity of the un-repaired specimens and hence the adopted repair configuration is recommended for retrofitting seismically vulnerable RC connections. Increasing cement replacement percentage by silica fume, fuel ash or iron filling from 15% to 20% has reduced joint carrying capacity and weakened the joint. It is recommended using 15% pulverised fuel ash or silica fume as cement partial replacement to enhance the strength and ultimate drift of beam-column joints under cyclic loading. Iron filling concrete is also recommended but the enhancement is relatively less than that found with pulverised fuel ash concrete and silica fume concrete.

Keywords retrofitting      CFRP sheets      recycled concrete      pulverised fuel ash      silica fume      cyclic      beam-column connections     
Corresponding Author(s): Yasmin MURAD   
Just Accepted Date: 19 March 2020   Online First Date: 27 April 2020    Issue Date: 08 May 2020
 Cite this article:   
Yasmin MURAD,Wassel AL BODOUR,Ahmed ASHTEYAT. Seismic retrofitting of severely damaged RC connections made with recycled concrete using CFRP sheets[J]. Front. Struct. Civ. Eng., 2020, 14(2): 554-568.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-020-0613-8
https://academic.hep.com.cn/fsce/EN/Y2020/V14/I2/554
oxides pulverised fuel ash (%) silica fume (%) iron filings (%)
H2O 0.06 0.46
SiO2 62.52? 92.98?
Al2O3 24.65? 0.49
Fe2O3 4.79 1.49
TiO2 1.16
CaO 2.23 0.32
MgO 1.19 0.57
SO3 0.31 0.57
K2O 0.51
Na2O 0.47
CI 0.04
LOI 1.80
LOI on 500°C 0.69
LOI on 750°C 0.88
LOI on 950°C 0.91
C 3.53
Si 2.67
Mg 0.05
S 0.01
P 0.03
Mn 0.31
Fe 93.4??
+ 45 Micron Sieve analysis 19.60?
residual coarse particle (+ 0.045 in diameter 0.1 max) 0.94
Tab.1  Chemical composition of the implemented materials.
Fig.1  Test specimen details.
Fig.2  The adopted repair configuration.
Fig.3  (a) Specimens constraints; (b) lateral load pattern.
Fig.4  Test setup.
Fig.5  Retrofit application.
specimen cement partial replacement (%) concrete compressive strength, fc' (MPa) strain at maximum compressive strength ultimate compressive strain
P-1 0 15 0.0100 0.0160
P-2 0 15 0.0100 0.0160
S-15 15 24 0.0075 0.0216
S-20 20 17 0.0015 0.0080
A-15 15 31 0.0050 0.0360
A-20 20 22 0.0060 0.0320
I-15 15 20 0.0075 0.0120
I-20 20 14 0.0075 0.0240
Tab.2  Specimens’ compressive behavior
specimen cement partial replacement (%) concrete tensile strength, ft (MPa) strain at maximum tensile strength ultimate tensile strain
P-1 0 1.45 0.00028 0.00165
P-2 0 1.45 0.00028 0.00165
S-15 15 2.35 0.00035 0.00220
S-20 20 1.67 0.00012 0.00081
A-15 15 3.00 0.00060 0.00360
A-20 20 2.22 0.00050 0.00315
I-15 15 2.00 0.00020 0.00123
I-20 20 1.45 0.00050 0.00245
Tab.3  Specimens’ tensile behavior
Fig.6  Applied lateral load. (a) Applied lateral load on specimen P-1; (b) applied lateral load on all other specimens.
Fig.7  Displacement transducers location.
specimen concrete compressive strength, fc' (MPa) repaired experimental lateral load capacity (kN) ultimate drift ratio (%) absolute ultimate shear strain (rad)
P-1 15 140 4.4 0.016
P-2 15 110 3.7 0.012
S-15 24 130 4.9 0.035
S-20 17 110 4?? 0.012
A-15 31 130 4.2 0.031
A-20 22 110 4?? 0.011
I-15 20 100 2.5 0.012
I-20 14 ?90 3.2 0.028
Tab.4  Test results
Fig.8  Typical finite element mesh of RC beam-column connection.
Fig.9  Concrete response to uniaxial loading in (a) compression and (b) tension [24].
compressive stress proposed compressive damage parameter (dc) tensile stress proposed tensile damage parameter (dt)
cracking stress (σc0) 0 ultimate stress(σt0) 0
ultimate stress (σcu) 0.130 0.5 ultimate stress (0.5σt0) 0.55
0.8 ultimate stress (0.8σcu) 0.50 0.2 ultimate stress (0.2σt0) 0.8
residual stress (fr) 0.714 0.1 ultimate stress (0.1σt0) 0.9
Tab.5  Proposed empirical damage parameters
Fig.10  The experimental and the numerical response of test specimens. (a) Specimen P-1; (b) specimen P-2; (c) specimen A-15; (d) specimen A-20; (e) specimen I-15; (f) specimen I-20; (g) specimen S-15; (h) specimen S-20.
Fig.11  The experimental and numerical crack pattern. (a) Specimen P-1 (experimental); (b) specimen P-1 (numerical); (c) specimen P-2 (experimental); (d) specimen P-2 (numerical); (e) specimen A-15 (experimental); (f) specimen A-15 (numerical); (g) specimen A-20 (experimental); (h) specimen A-20 (numerical); (i) specimen I-15 (experimental); (j) specimen I-15 (numerical); (k) specimen I-20 (experimental); (l) specimen I-20 (numerical); (m) specimen S-15 (experimental); (n) specimen S-15 (numerical); (o) specimen S-20 (experimental); (p) specimen S-20 (numerical).
Fig.12  The experimental and numerical envelope curves. (a) Specimen P-1; (b) specimen P-2; (c) specimen A-15; (d) specimen A-20; (e) specimen I-15; (f) specimen I-20; (g) specimen S-15; (h) specimen S-20.
1 Y Z Murad. Analytical and numerical assessment of seismically vulnerable corner connections under bidirectional loading in RC framed structures. Dissertation for the Doctoral Degree. London: Imperial College London, 2016
2 C G Karayannis, G M Sirkelis. Strengthening and rehabilitation of RC beam-column joints using carbon-FRP jacketing and epoxy resin injection. Earthquake Engineering & Structural Dynamics, 2008, 37(5): 769–790
https://doi.org/10.1002/eqe.785
3 G I Kalogeropoulos, A D G Tsonos, D Konstandinidis, S Tsetines. Pre-earthquake and post-earthquake retrofitting of poorly detailed exterior RC beam-to-column joints. Engineering Structures, 2016, 109: 1–15
https://doi.org/10.1016/j.engstruct.2015.11.009
4 F Faleschini, J Gonzalez-Libreros, M A Zanini, L Hofer, L Sneed, C Pellegrino. Repair of severely-damaged RC exterior beam-column joints with FRP and FRCM composites. Composite Structures, 2019, 207: 352–363
https://doi.org/10.1016/j.compstruct.2018.09.059
5 K Le-Trung, K Lee, J Lee, D H Lee, S Woo. Experimental study of RC beam–column joints strengthened using CFRP composites. Composites. Part B, Engineering, 2010, 41(1): 76–85
https://doi.org/10.1016/j.compositesb.2009.06.005
6 R Garcia, I Hajirasouliha, K Pilakoutas. Seismic behaviour of deficient RC frames strengthened with CFRP composites. Engineering Structures, 2010, 32(10): 3075–3085
https://doi.org/10.1016/j.engstruct.2010.05.026
7 S Sasmal, K Ramanjaneyulu, B Novák, V Srinivas, K Saravana Kumar, C Korkowski, C Roehm, N Lakshmanan, N R Iyer. Seismic retrofitting of nonductile beam-column sub-assemblage using FRP wrapping and steel plate jacketing. Construction & Building Materials, 2011, 25(1): 175–182
https://doi.org/10.1016/j.conbuildmat.2010.06.041
8 R Sharma, P P Bansal. Behavior of RC exterior beam column joint retrofitted using UHP-HFRC. Construction & Building Materials, 2019, 195: 376–389
https://doi.org/10.1016/j.conbuildmat.2018.11.052
9 E Z Beydokhty, H Shariatmadar. Behavior of damaged exterior RC beam-column joints strengthened by CFRP composites. Latin American Journal of Solids and Structures, 2016, 13(5): 880–896
https://doi.org/10.1590/1679-78252258
10 Y T Obaidat, G A F R Abu-Farsakh, A M Ashteyat. Retrofitting of partially damaged reinforced concrete beam-column joints using various plate-configurations of CFRP under cyclic loading. Construction & Building Materials, 2019, 198: 313–322
https://doi.org/10.1016/j.conbuildmat.2018.11.267
11 Y B Abu Tahnat, M M S Dwaikat, M A Samaaneh. Effect of using CFRP wraps on the strength and ductility behaviors of exterior reinforced concrete joint. Composite Structures, 2018, 201: 721–739
https://doi.org/10.1016/j.compstruct.2018.06.082
12 C A Rodopoulos, K, Pilakoutas Gdoutos E E. Failure Analysis of Industrial Composite Materials. McGraw-Hill Professional Engineering, 2000
13 Y Murad. An experimental study on flexural strengthening of RC beams using CFRP sheets. International Journal of Engineering & Technology, 2018, 7(4): 2075–2080
https://doi.org/10.14419/ijet.v7i4.16546
14 Y Murad. The influence of CFRP orientation angle on the shear strength of RC beams. The Open Construction & Building Technology Journal, 2018, 12: 269–281
15 I A Bukhari, R L Vollum, S Ahmad, J Sagaseta. Shear strengthening of reinforced concrete beams with CFRP. Magazine of Concrete Research, 2010, 62(1): 65–77
https://doi.org/10.1680/macr.2008.62.1.65
16 T Norris, H Saadatmanesh, M R Ehsani. Shear and flexural strengthening of R/C beams with carbon fiber sheets. Journal of Structural Engineering, 1997, 123(7): 903–911
https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(903)
17 K M G, Noori H H Ibrahim. Mechanical properties of concrete using iron waste as a partial replacement of sand. Eurasian Journal of Science & Engineering, 2018, 3(3): 75–82
18 Z Zhang, C T T Hsu. Shear strengthening of reinforced concrete beams using carbon-fiber-reinforced polymer laminates. Journal of Composites for Construction, 2005, 9(2): 158–169
https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(158)
19 S A Khedr, M N Abou-Zeid. Characteristics of silica-fume concrete. Journal of Materials in Civil Engineering, 1994, 6(3): 357–375
https://doi.org/10.1061/(ASCE)0899-1561(1994)6:3(357)
20 R K Dhir, J Munday, L T. Ong Investigations of the engineering properties of OPC/pulverised fuel ash concrete: Strength development and maturity. Proceedings of the Institution of Civil Engineers, 1984, 77: 239–254
21 Y Murad, Y Abu-Haniyi, A Alkaraki, Z. Hamadeh An experimental study on cyclic behaviour of RC connections using waste materials as cement partial replacement. Canadian Journal of Civil Engineering, 2019, 46(6): 522–533
22 Y Murad, W AL-Bodour, H Abu-Hajar. Cyclic behavior of RC beam-column joints made with sustainable concrete. International Review of Civil Engineering (IRECE), 2019, 10(6): 301
https://doi.org/10.15866/irece.v10i6.17193
23 M Smith. ABAQUS/Standard User’s Manual, Version 6.9. Providence, RI: Dassault Systèmes Simulia Corp, 2009
24 J Lubliner, J Oliver, S Oller, E Oñate. A plastic-damage model for concrete. International Journal of Solids and Structures, 1989, 25(3): 299–326
https://doi.org/10.1016/0020-7683(89)90050-4
25 J Lee, G L Fenves. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 1998, 124(8): 892–900
https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
26 T Rabczuk, G Zi, S Bordas, H Nguyen-Xuan. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455
https://doi.org/10.1016/j.cma.2010.03.031
27 T Rabczuk, T Belytschko. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799
https://doi.org/10.1016/j.cma.2006.06.020
28 T Rabczuk, T Belytschko. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
https://doi.org/10.1002/nme.1151
29 T Rabczuk, G Zi, S Bordas, H Nguyen-Xuan. A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758
https://doi.org/10.1016/j.engfracmech.2008.06.019
30 N Vu-Bac, T Lahmer, X Zhuang, T Nguyen-Thoi, T Rabczuk. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
https://doi.org/10.1016/j.advengsoft.2016.06.005
31 K M Hamdia, M Silani, X Zhuang, P He, T Rabczuk. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, 206(2): 215–227
https://doi.org/10.1007/s10704-017-0210-6
32 K M Hamdia, M A Msekh, M Silani, T Q Thai, P R Budarapu, T Rabczuk. Assessment of computational fracture models using Bayesian method. Engineering Fracture Mechanics, 2019, 205: 387–398
https://doi.org/10.1016/j.engfracmech.2018.09.019
33 Y, Sümer M. Aktaş Defining parameters for concrete damage plasticity model. Challenge Journal of Structural Mechanics, 2015, 1(3): 149–155
34 B Alfarah, F López-Almansa, S Oller. New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures. Engineering Structures, 2017, 132: 70–86
https://doi.org/10.1016/j.engstruct.2016.11.022
[1] Mohammad Reza AZADI KAKAVAND, Ertugrul TACIROGLU. An enhanced damage plasticity model for predicting the cyclic behavior of plain concrete under multiaxial loading conditions[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1531-1544.
[2] Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong Wan HU. Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using soft computing techniques[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1379-1392.
[3] Asghar AMANI DASHLEJEH. Isogeometric analysis of coupled thermo-elastodynamic problems under cyclic thermal shock[J]. Front. Struct. Civ. Eng., 2019, 13(2): 397-405.
[4] T. Chandra Sekhara REDDY. Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network[J]. Front. Struct. Civ. Eng., 2018, 12(4): 490-503.
[5] Saleh YAGHOOBI, Ahmad SHOOSHTARI. Joint slip investigation based on finite element modelling verified by experimental results on wind turbine lattice towers[J]. Front. Struct. Civ. Eng., 2018, 12(3): 341-351.
[6] Osama Ahmed MOHAMED, Omar Fawwaz NAJM. Compressive strength and stability of sustainable self-consolidating concrete containing fly ash, silica fume, and GGBS[J]. Front. Struct. Civ. Eng., 2017, 11(4): 406-411.
[7] Chunyan QUAN,Wei WANG,Jian ZHOU,Rong WANG. Cyclic behavior of stiffened joints between concrete-filled steel tubular column and steel beam with narrow outer diaphragm and partial joint penetration welds[J]. Front. Struct. Civ. Eng., 2016, 10(3): 333-344.
[8] Kui XIAO,Qilin ZHANG,Bin JIA. Cyclic behavior of prefabricated reinforced concrete frame with infill slit shear walls[J]. Front. Struct. Civ. Eng., 2016, 10(1): 63-71.
[9] Zhiqiang WANG,Jiping GE,Hongyi WEI. Seismic performance of precast hollow bridge piers with different construction details[J]. Front. Struct. Civ. Eng., 2014, 8(4): 399-413.
[10] Liang-Jiu JIA, Tsuyoshi KOYAMA, Hitoshi KUWAMURA. Prediction of cyclic large plasticity for prestrained structural steel using only tensile coupon tests[J]. Front Struc Civil Eng, 2013, 7(4): 466-476.
[11] Iman TABAEYE IZADI, Abdolrasoul RANJBARAN. Investigation on a mitigation scheme to resist the progressive collapse of reinforced concrete buildings[J]. Front Struc Civil Eng, 2012, 6(4): 421-430.
[12] Youngji JIN, Xiaohua BAO, Yoshimitsu KONDO, Feng ZHANG, . Numerical evaluation of group-pile foundation subjected to cyclic horizontal load[J]. Front. Struct. Civ. Eng., 2010, 4(2): 196-207.
[13] XUE Weichen, LIU Zhenyong, JIANG Dongsheng. Analysis on shear capacity of prestressed concrete spatial connections[J]. Front. Struct. Civ. Eng., 2008, 2(4): 309-317.
[14] SUN Yuedong, XIAO Jianzhuang, ZHOU Deyuan. Experimental research on seismic behavior of recycled concrete frame under varying cyclic loading[J]. Front. Struct. Civ. Eng., 2008, 2(4): 302-308.
[15] CHEN Yunmin, CHEN Yingping, HUANG Bo. Experimental investigation of the influence on static and cyclic deformation of structural soft clay of stress level[J]. Front. Struct. Civ. Eng., 2007, 1(4): 422-429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed