|
Phosphorylation of Rictor at Thr1135 impairs the Rictor/Cullin-1 complex to ubiquitinate SGK1
Daming Gao, Lixin Wan, Wenyi Wei
Protein & Cell. 2010, 1 (10): 881-885.
https://doi.org/10.1007/s13238-010-0123-x
The Rictor/mTOR complex plays a pivotal role in a variety of cellular functions including cellular metabolism, cell proliferation and survival by phosphorylating Akt at Ser473 to fully activate the Akt kinase. However, its upstream regulatory pathways as well as whether it has additional function(s) remain largely unknown. We recently reported that Rictor contains a novel ubiquitin E3 ligase activity by forming a novel complex with Cullin-1, but not with other Cullin family members. Furthermore, we identified SGK1 as its downstream target. Interestingly, Rictor, but not Raptor or mTOR, promotes SGK1 ubiquitination. As a result, SGK1 expression is elevated in Rictor--/-- MEFs. We further defined that as a feedback mechanism, Rictor can be phosphorylated by multiple AGC family kinases including Akt, S6K and SGK1. Phosphorylation of Rictor at the Thr1135 site did not affect its kinase activity towards phosphorylating its conventional substrates including Akt and SGK1. On the other hand, it disrupted the interaction between Rictor and Cullin-1. Consequently, T1135E Rictor was defective in promoting SGK1 ubiquitination and destruction. This finding further expands our knowledge of Rictor’s function. Furthermore, our work also illustrates that Rictor E3 ligase activity could be governed by specific signaling kinase cascades, and that misregulation of this process might contribute to SGK overexpression which is frequently observed in various types of cancers.
图表 |
参考文献 |
相关文章 |
多维度评价
|
|
The late stage of autophagy: cellular events and molecular regulation
Jingjing Tong, Xianghua Yan, Li Yu
Protein & Cell. 2010, 1 (10): 907-915.
https://doi.org/10.1007/s13238-010-0121-z
Autophagy is an intracellular degradation system that delivers cytoplasmic contents to the lysosome for degradation. It is a “self-eating” process and plays a “house-cleaner” role in cells. The complex process consists of several sequential steps—induction, autophagosome formation, fusion of lysosome and autophagosome, degradation, efflux transportation of degradation products, and autophagic lysosome reformation. In this review, the cellular and molecular regulations of late stage of autophagy, including cellular events after fusion step, are summarized.
参考文献 |
相关文章 |
多维度评价
|
|
Trafficking abnormality and ER stress underlie functional deficiency of hearing impairment-associated connexin-31 mutants
Kun Xia, Hong Ma, Hui Xiong, Qian Pan, Liangqun Huang, Danling Wang, Zhuohua Zhang
Protein & Cell. 2010, 1 (10): 935-943.
https://doi.org/10.1007/s13238-010-0118-7
Hearing impairment (HI) affects 1/1000 children and over 2% of the aged population. We have previously reported that mutations in the gene encoding gap junction protein connexin-31 (Cx31) are associated with HI. The pathological mechanism of the disease mutations remains unknown. Here, we show that expression of Cx31 in the mouse inner ear is developmentally regulated with a high level in adult inner hair cells and spiral ganglion neurons that are critical for the hearing process. In transfected cells, wild type Cx31 protein (Cx31wt) forms functional gap junction at cell-cell-contacts. In contrast, two HI-associated Cx31 mutants, Cx31R180X and Cx31E183K resided primarily in the ER and Golgi-like intracellular punctate structures, respectively, and failed to mediate lucifer yellow transfer. Expression of Cx31 mutants but not Cx31wt leads to upregulation of and increased association with the ER chaperone BiP indicating ER stress induction. Together, the HI-associated Cx31 mutants are impaired in trafficking, promote ER stress, and hence lose the ability to assemble functional gap junctions. The study reveals a potential pathological mechanism of HI-associated Cx31 mutations.
图表 |
参考文献 |
相关文章 |
多维度评价
|
|
Interaction of Hsp40 with influenza virus M2 protein: implications for PKR signaling pathway
Zhenhong Guan, Di Liu, Shuofu Mi, Jie Zhang, Qinong Ye, Ming Wang, George F. Gao, Jinghua Yan
Protein & Cell. 2010, 1 (10): 944-955.
https://doi.org/10.1007/s13238-010-0115-x
Influenza virus contains three integral membrane proteins: haemagglutinin, neuraminidase, and matrix protein (M1 and M2). Among them, M2 protein functions as an ion channel, important for virus uncoating in endosomes of virus-infected cells and essential for virus replication. In an effort to explore potential new functions of M2 in the virus life cycle, we used yeast two-hybrid system to search for M2-associated cellular proteins. One of the positive clones was identified as human Hsp40/Hdj1, a DnaJ/Hsp40 family protein. Here, we report that both BM2 (M2 of influenza B virus) and A/M2 (M2 of influenza A virus) interacted with Hsp40 in vitro and in vivo. The region of M2-Hsp40 interaction has been mapped to the CTD1 domain of Hsp40. Hsp40 has been reported to be a regulator of PKR signaling pathway by interacting with p58IPK that is a cellular inhibitor of PKR. PKR is a crucial component of the host defense response against virus infection. We therefore attempted to understand the relationship among M2, Hsp40 and p58IPK by further experimentation. The results demonstrated that both A/M2 and BM2 are able to bind to p58IPKin vitro and in vivo and enhance PKR autophosphorylation probably via forming a stable complex with Hsp40 and P58IPK, and consequently induce cell death. These results suggest that influenza virus M2 protein is involved in p58IPK-mediated PKR regulation during influenza virus infection, therefore affecting infected-cell life cycle and virus replication.
图表 |
参考文献 |
相关文章 |
多维度评价
|
11篇文章
|