Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2010, Vol. 1 Issue (9) : 795-801    https://doi.org/10.1007/s13238-010-0107-x      PMID: 21113408
MINI-REVIEW
Apoptotic regulation and tRNA
Yide Mei1, Aaron Stonestrom1, Ya-Ming Hou2, Xiaolu Yang1()
1. Department of Cancer Biology and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; 2. Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
 Download: PDF(182 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Apoptotic regulation is critical to organismal homeostasis and protection against many human disease processes such as cancer. Significant research efforts over the past several decades have illuminated many signaling molecules and effecter proteins responsible for this form of programmed cell death. Recent evidence suggests that transfer RNA (tRNA) regulates apoptotic sensitivity at the level of cytochrome c-mediated apoptosome formation. This finding unexpectedly places tRNA at the nexus of cellular biosynthesis and survival. Here we review the current understanding of both the apoptotic machinery and tRNA biology. We describe the evidence linking tRNA and cytochrome c in depth, and speculate on the implications of this link in cell biology.

Keywords apoptotic regulation      tRNA      cytochrome c     
Corresponding Author(s): Yang Xiaolu,Email:xyang@mail.med.upenn.edu   
Issue Date: 01 September 2010
 Cite this article:   
Yide Mei,Aaron Stonestrom,Ya-Ming Hou, et al. Apoptotic regulation and tRNA[J]. Prot Cell, 2010, 1(9): 795-801.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-010-0107-x
https://academic.hep.com.cn/pac/EN/Y2010/V1/I9/795
Fig.1  Sequence and structure of tRNA: (left) the cloverleaf secondary structure and (right) the L-shaped tertiary structure.
Fig.1  Sequence and structure of tRNA: (left) the cloverleaf secondary structure and (right) the L-shaped tertiary structure.
Fig.2  Cytochrome c-mediated caspase activation.
Intracellular apoptotic stimuli provoke the release of cytochrome (cyt. ) from mitochondria to the cytosol (A), where it binds to Apaf-1 (B) promoting the assembly of Apaf-1 into the heptameric apoptosome (C). The apoptosome recruits and oligomerizes the precursors of caspase-9 (Casp9), leading to its auto-proteolytic processing (D). Mature caspase-9 then activates procaspase-3 (pro-Casp3) through trans-cleavage (E). tRNA binds to cytochrome and prevents its interaction with Apaf-1.
Fig.2  Cytochrome c-mediated caspase activation.
Intracellular apoptotic stimuli provoke the release of cytochrome (cyt. ) from mitochondria to the cytosol (A), where it binds to Apaf-1 (B) promoting the assembly of Apaf-1 into the heptameric apoptosome (C). The apoptosome recruits and oligomerizes the precursors of caspase-9 (Casp9), leading to its auto-proteolytic processing (D). Mature caspase-9 then activates procaspase-3 (pro-Casp3) through trans-cleavage (E). tRNA binds to cytochrome and prevents its interaction with Apaf-1.
1 Acehan, D., Jiang, X., Morgan, D.G., Heuser, J.E., Wang, X., and Akey, C.W. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9, 423-432 .
doi: 10.1016/S1097-2765(02)00442-2
2 Adams, J.M., and Cory, S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322-1326 .
doi: 10.1126/science.281.5381.1322
3 Ashkenazi, A., and Dixit, V.M. (1998). Death receptors: signaling and modulation. Science 281, 1305-1308 .
doi: 10.1126/science.281.5381.1305
4 Bao, Q., Lu, W., Rabinowitz, J.D., and Shi, Y. (2007). Calcium blocks formation of apoptosome by preventing nucleotide exchange in Apaf-1. Mol Cell 25, 181-192 .
doi: 10.1016/j.molcel.2006.12.013
5 Beere, H.M., Wolf, B.B., Cain, K., Mosser, D.D., Mahboubi, A., Kuwana, T., Tailor, P., Morimoto, R.I., Cohen, G.M., and Green, D.R. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2, 469-475 .
6 Boatright, K.M., Renatus, M., Scott, F.L., Sperandio, S., Shin, H., Pedersen, I.M., Ricci, J.E., Edris, W.A., Sutherlin, D.P., Green, D.R., . (2003). A unified model for apical caspase activation. Mol Cell 11, 529-541 .
7 Bruey, J.M., Ducasse, C., Bonniaud, P., Ravagnan, L., Susin, S.A., Diaz-Latoud, C., Gurbuxani, S., Arrigo, A.P., Kroemer, G., Solary, E., . (2000). Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2, 645-652 .
doi: 10.1038/35023595
8 Cain, K., Langlais, C., Sun, X.M., Brown, D.G., and Cohen, G.M. (2001). Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J Biol Chem 276, 41985-41990 .
doi: 10.1074/jbc.M107419200
9 Chandra, D., Bratton, S.B., Person, M.D., Tian, Y., Martin, A.G., Ayres, M., Fearnhead, H.O., Gandhi, V., and Tang, D.G. (2006). Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome C and inhibiting apoptosome. Cell 125, 1333-1346 .
10 Chang, D.W., Xing, Z., Capacio, V.L., Peter, M.E., and Yang, X. (2003). Interdimer processing mechanism of procaspase-8 activation. EMBO J 22, 4132-4142 .
doi: 10.1093/emboj/cdg414
11 Chang, H.Y., and Yang, X. (2000). Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev 64, 821-846 .
doi: 10.1128/MMBR.64.4.821-846.2000
12 Chipuk, J.E., and Green, D.R. (2008). How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18, 157-164 .
doi: 10.1016/j.tcb.2008.01.007
13 Cole, C., Sobala, A., Lu, C., Thatcher, S.R., Bowman, A., Brown, J.W., Green, P.J., Barton, G.J., and Hutvagner, G. (2009). Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15, 2147-2160 .
14 Costanzi, J., Sidransky, D., Navon, A., and Goldsweig, H. (2005). Ribonucleases as a novel pro-apoptotic anticancer strategy: review of the preclinical and clinical data for ranpirnase. Cancer Invest 23, 643-650 .
doi: 10.1080/07357900500283143
15 Crighton, D., Woiwode, A., Zhang, C., Mandavia, N., Morton, J.P., Warnock, L.J., Milner, J., White, R.J., and Johnson, D.L. (2003). p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J 22, 2810-2820 .
doi: 10.1093/emboj/cdg265
16 Datta, S.R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., and Greenberg, M.E. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241 .
17 de Bruijn, M.H., and Klug, A. (1983). A model for the tertiary structure of mammalian mitochondrial transfer RNAs lacking the entire ‘dihydrouridine’ loop and stem. EMBO J 2, 1309-1321 .
18 Elbarbary, R.A., Takaku, H., Uchiumi, N., Tamiya, H., Abe, M., Nishida, H., and Nashimoto, M. (2009a). Human cytosolic tRNase ZL can downregulate gene expression through miRNA. FEBS Lett 583, 3241-3246 .
doi: 10.1016/j.febslet.2009.09.015
19 Elbarbary, R.A., Takaku, H., Uchiumi, N., Tamiya, H., Abe, M., Takahashi, M., Nishida, H., Nashimoto, M., and Randau, L. (2009b). Modulation of gene expression by human cytosolic tRNase Z(L) through 5'-half-tRNA. PLoS ONE 4, e5908.
doi: 10.1371/journal.pone.0005908
20 Gomez-Roman, N., Felton-Edkins, Z.A., Kenneth, N.S., Goodfellow, S.J., Athineos, D., Zhang, J., Ramsbottom, B.A., Innes, F., Kantidakis, T., Kerr, E.R., . (2006). Activation by c-Myc of transcription by RNA polymerases I, II and III. Biochem Soc Symp , 141-154 .
21 Hinnebusch, A.G. (2005). Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59, 407-450 .
doi: 10.1146/annurev.micro.59.031805.133833
22 Huang, D.C., and Strasser, A. (2000). BH3-Only proteins-essential initiators of apoptotic cell death. [In Process Citation] Cell 103, 839-842 .
23 Iordanov, M.S., Ryabinina, O.P., Wong, J., Dinh, T.H., Newton, D.L., Rybak, S.M., and Magun, B.E. (2000). Molecular determinants of apoptosis induced by the cytotoxic ribonuclease onconase: evidence for cytotoxic mechanisms different from inhibition of protein synthesis. Cancer Res 60, 1983-1994 .
24 Jiang, X., Kim, H.E., Shu, H., Zhao, Y., Zhang, H., Kofron, J., Donnelly, J., Burns, D., Ng, S.C., Rosenberg, S., . (2003). Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 299, 223-226 .
doi: 10.1126/science.1076807
25 Kamhi, E., Raitskin, O., Sperling, R., and Sperling, J. (2010). A potential role for initiator-tRNA in pre-mRNA splicing regulation. Proc Natl Acad Sci U S A 107, 11319-11324 .
doi: 10.1073/pnas.0911561107
26 Kim, H.E., Du, F., Fang, M., and Wang, X. (2005). Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc Natl Acad Sci U S A 102, 17545-17550 .
doi: 10.1073/pnas.0507900102
27 Kim, H.E., Jiang, X., Du, F., and Wang, X. (2008). PHAPI, CAS, and Hsp70 promote apoptosome formation by preventing Apaf-1 aggregation and enhancing nucleotide exchange on Apaf-1. Mol Cell 30, 239-247 .
doi: 10.1016/j.molcel.2008.03.014
28 Kleiman, L., Jones, C.P., and Musier-Forsyth, K. (2010). Formation of the tRNALys packaging complex in HIV-1. FEBS Lett 584, 359-365 .
doi: 10.1016/j.febslet.2009.11.038
29 Larminie, C.G., Sutcliffe, J.E., Tosh, K., Winter, A.G., Felton-Edkins, Z.A., and White, R.J. (1999). Activation of RNA polymerase III transcription in cells transformed by simian virus 40. Mol Cell Biol 19, 4927-4934 .
30 Lee, Y.S., Shibata, Y., Malhotra, A., and Dutta, A. (2009). A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23, 2639-2649 .
doi: 10.1101/gad.1837609
31 Li, J., and Yuan, J. (2008). Caspases in apoptosis and beyond. Oncogene 27, 6194-6206 .
doi: 10.1038/onc.2008.297
32 Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157 .
33 Lowe, T.M., and Eddy, S.R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25, 955-964 .
doi: 10.1093/nar/25.5.955
34 Marshall, L., Kenneth, N.S., and White, R.J. (2008). Elevated tRNA(iMet) synthesis can drive cell proliferation and oncogenic transformation. Cell 133, 78-89 .
35 Martin, A.G., and Fearnhead, H.O. (2002). Apocytochrome c blocks caspase-9 activation and Bax-induced apoptosis. J Biol Chem 277, 50834-50841 .
doi: 10.1074/jbc.M209369200
36 Mei, Y., Yong, J., Liu, H., Shi, Y., Meinkoth, J., Dreyfuss, G., and Yang, X. (2010). tRNA binds to cytochrome c and inhibits caspase activation. Mol Cell 37, 668-678 .
doi: 10.1016/j.molcel.2010.01.023
37 Mesner, P.W. Jr, Bible, K.C., Martins, L.M., Kottke, T.J., Srinivasula, S.M., Svingen, P.A., Chilcote, T.J., Basi, G.S., Tung, J.S., Krajewski, S., . (1999). Characterization of caspase processing and activation in HL-60 cell cytosol under cell-free conditions. Nucleotide requirement and inhibitor profile. J Biol Chem 274, 22635-22645 .
38 Pandey, P., Saleh, A., Nakazawa, A., Kumar, S., Srinivasula, S.M., Kumar, V., Weichselbaum, R., Nalin, C., Alnemri, E.S., Kufe, D., . (2000). Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 19, 4934-4322 .
doi: 10.1093/emboj/19.16.4310
39 Pavon-Eternod, M., Gomes, S., Geslain, R., Dai, Q., Rosner, M.R., and Pan, T. (2009). tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res 37, 7268-7280 .
doi: 10.1093/nar/gkp787
40 Riedl, S.J., and Salvesen, G.S. (2007). The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8, 405-413 .
doi: 10.1038/nrm2153
41 Ruggero, D., and Pandolfi, P.P. (2003). Does the ribosome translate cancer? Nat Rev Cancer 3, 179-192 .
doi: 10.1038/nrc1015
42 Saleh, A., Srinivasula, S.M., Balkir, L., Robbins, P.D., and Alnemri, E.S. (2000). Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2, 476-483 .
43 Salvesen, G.S., and Duckett, C.S. (2002). IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3, 401-410 .
doi: 10.1038/nrm830
44 Saxena, S.K., Sirdeshmukh, R., Ardelt, W., Mikulski, S.M., Shogen, K., and Youle, R.J. (2002). Entry into cells and selective degradation of tRNAs by a cytotoxic member of the RNase A family. J Biol Chem 277, 15142-15146 .
doi: 10.1074/jbc.M108115200
45 Schwickart, M., Huang, X., Lill, J.R., Liu, J., Ferrando, R., French, D.M., Maecker, H., O’Rourke, K., Bazan, F., Eastham-Anderson, J., . (2010). Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 463, 103-107 .
doi: 10.1038/nature08646
46 Shaheen, H.H., Horetsky, R.L., Kimball, S.R., Murthi, A., Jefferson, L.S., and Hopper, A.K. (2007). Retrograde nuclear accumulation of cytoplasmic tRNA in rat hepatoma cells in response to amino acid deprivation. Proc Natl Acad Sci U S A 104, 8845-8850 .
47 Soengas, M.S., Capodieci, P., Polsky, D., Mora, J., Esteller, M., Opitz-Araya, X., McCombie, R., Herman, J.G., Gerald, W.L., Lazebnik, Y.A., . (2001). Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207-211 .
doi: 10.1038/35051606
48 Suhasini, A.N., and Sirdeshmukh, R. (2006). Transfer RNA cleavages by onconase reveal unusual cleavage sites. J Biol Chem 281, 12201-12209 .
doi: 10.1074/jbc.M504488200
49 Thompson, C.B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456-1462 .
doi: 10.1126/science.7878464
50 Thompson, D.M., Lu, C., Green, P.J., and Parker, R. (2008). tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14, 2095-2103 .
51 Thompson, D.M., and Parker, R. (2009a). The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 185, 43-50 .
doi: 10.1083/jcb.200811119
52 Thompson, D.M., and Parker, R. (2009b). Stressing out over tRNA cleavage. Cell 138, 215-219 .
53 Vaughn, A.E., and Deshmukh, M. (2008). Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat Cell Biol 10, 1477-1483 .
doi: 10.1038/ncb1807
54 Vaux, D.L., and Korsmeyer, S.J. (1999). Cell death in development. Cell 96, 245-254 .
55 Vousden, K.H., and Lane, D.P. (2007). p53 in health and disease. Nat Rev Mol Cell Biol 8, 275-283 .
doi: 10.1038/nrm2147
56 Wallace, D.C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39, 359-407 .
doi: 10.1146/annurev.genet.39.110304.095751
57 Wang, X. (2001). The expanding role of mitochondria in apoptosis. Genes Dev 15, 2922-2933 .
58 Watanabe, Y., Kawai, G., Yokogawa, T., Hayashi, N., Kumazawa, Y., Ueda, T., Nishikawa, K., Hirao, I., Miura, K., and Watanabe, K. (1994). Higher-order structure of bovine mitochondrial tRNA(SerUGA): chemical modification and computer modeling. Nucleic Acids Res 22, 5378-5384 .
doi: 10.1093/nar/22.24.5378
59 White, R.J. (2004). RNA polymerase III transcription and cancer. Oncogene 23, 3208-3216 .
doi: 10.1038/sj.onc.1207547
60 White, R.J. (2005). RNA polymerases I and III, growth control and cancer. Nat Rev Mol Cell Biol 6, 69-78 .
doi: 10.1038/nrm1551
61 Yamasaki, S., Ivanov, P., Hu, G.F., and Anderson, P. (2009). Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 185, 35-42 .
doi: 10.1083/jcb.200811106
62 Yang, X., Chang, H.Y., and Baltimore, D. (1998). Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell 1, 319-325 .
doi: 10.1016/S1097-2765(00)80032-5
63 Yue, D., Maizels, N., and Weiner, A.M. (1996). CCA-adding enzymes and poly(A) polymerases are all members of the same nucleotidyltransferase superfamily: characterization of the CCA-adding enzyme from the archaeal hyperthermophile Sulfolobus shibatae. RNA 2, 895-908 .
64 Zou, H., Henzel, W.J., Liu, X., Lutschg, A., and Wang, X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405-413 .
[1] Peipei Liu, Jinliang Huang, Qian Zheng, Leiming Xie, Xinping Lu, Jie Jin, Geng Wang. Mammalian mitochondrial RNAs are degraded in the mitochondrial intermembrane space by RNASET2[J]. Protein Cell, 2017, 8(10): 735-749.
[2] Kelei Bi,Yueting Zheng,Feng G"ao,Jianshu Dong,Jiangyun Wang,Yi Wang,Weimin Gong. Crystal structure of E. coli arginyl-tRNA synthetase and ligand binding studies revealed key residues in arginine recognition[J]. Protein Cell, 2014, 5(2): 151-159.
[3] Elizabeth B. Sawyer, Paul D. Barker. Continued surprises in the cytochrome c biogenesis story[J]. Prot Cell, 2012, 3(6): 405-409.
[4] Fengbin Wang, Meiruo Liu, Rui Qiu, Chaoneng Ji. The dual role of ubiquitin-like protein Urm1 as a protein modifier and sulfur carrier[J]. Prot Cell, 2011, 2(8): 612-619.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed