Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2012, Vol. 3 Issue (6) : 405-409    https://doi.org/10.1007/s13238-012-2912-x      PMID: 22723177
MINI-REVIEW
Continued surprises in the cytochrome c biogenesis story
Elizabeth B. Sawyer1(), Paul D. Barker2()
1. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; 2. University Chemical Laboratory, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
 Download: PDF(280 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cytochromes c covalently bind their heme prosthetic groups through thioether bonds between the vinyl groups of the heme and the thiols of a CXXCH motif within the protein. In Gram-negative bacteria, this process is catalyzed by the Ccm (cytochrome c maturation) proteins, also called System I. The Ccm proteins are found in the bacterial inner membrane, but some (CcmE, CcmG, CcmH, and CcmI) also have soluble functional domains on the periplasmic face of the membrane. Elucidation of the mechanisms involved in the transport and relay of heme and the apocytochrome from the bacterial cytosol into the periplasm, and their subsequent reaction, has proved challenging due to the fact that most of the proteins involved are membrane-associated, but recent progress in understanding some key components has thrown up some surprises. In this Review, we discuss advances in our understanding of this process arising from a substrate’s point of view and from recent structural information about individual components.

Keywords cytochrome c      heme      Ccm      post-translational modification      cytochrome b562      heme binding     
Corresponding Author(s): Sawyer Elizabeth B.,Email:beth.sawyer@cantab.net; Barker Paul D.,Email:pdb30@cam.ac.uk   
Issue Date: 01 June 2012
 Cite this article:   
Paul D. Barker,Elizabeth B. Sawyer. Continued surprises in the cytochrome c biogenesis story[J]. Prot Cell, 2012, 3(6): 405-409.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-012-2912-x
https://academic.hep.com.cn/pac/EN/Y2012/V3/I6/405
1 Allen, J.W., Barker, P.D., and Ferguson, S.J. (2003). A cytochrome b562 variant with a c-type cytochrome CXXCH heme-binding motif as a probe of the Escherichia coli cytochrome c maturation system. J Biol Chem 278, 52075-52083 .
doi: 10.1074/jbc.M307196200
2 Allen, J.W., Sawyer, E.B., Ginger, M.L., Barker, P.D., and Ferguson, S.J. (2009). Variant c-type cytochromes as probes of the substrate specificity of the E. coli cytochrome c maturation (Ccm) apparatus. Biochem J 419, 177-184 , 2, 184.
3 Arnesano, F., Banci, L., Barker, P.D., Bertini, I., Rosato, A., Su, X.C., and Viezzoli, M.S. (2002). Solution structure and characterization of the heme chaperone CcmE. Biochemistry 41, 13587-13594 .
doi: 10.1021/bi026362w
4 Barker, P.D., and Ferguson, S.J. (1999). Still a puzzle: why is haem covalently attached in c-type cytochromes? Structure 7, R281-R290 .
doi: 10.1016/S0969-2126(00)88334-3
5 Barker, P.D., Ferrer, J.C., Mylrajan, M., Loehr, T.M., Feng, R., Konishi, Y., Funk, W.D., MacGillivray, R.T., and Mauk, A.G. (1993). Transmutation of a heme protein. Proc Natl Acad Sci U S A 90, 6542-6546 .
doi: 10.1073/pnas.90.14.6542
6 Barker, P.D., Nerou, E.P., Freund, S.M., and Fearnley, I.M. (1995). Conversion of cytochrome b562 to c-type cytochromes. Biochemistry 34, 15191-15203 .
doi: 10.1021/bi00046a027
7 Daltrop, O., Allen, J.W.A., Willis, A.C., and Ferguson, S.J. (2002a). In vitro formation of a c-type cytochrome. Proc Natl Acad Sci U S A 99, 7872-7876 .
doi: 10.1073/pnas.132259099
8 Daltrop, O., Stevens, J.M., Higham, C.W., and Ferguson, S.J. (2002b). The CcmE protein of the c-type cytochrome biogenesis system: unusual in vitro heme incorporation into apo-CcmE and transfer from holo-CcmE to apo-cytochrome. Proc Natl Acad Sci U S A 99, 9703-9708 .
doi: 10.1073/pnas.152120699
9 Enggist, E., Th?ny-Meyer, L., Güntert, P., and Pervushin, K. (2002). NMR structure of the heme chaperone CcmE reveals a novel functional motif. Structure 10, 1551-1557 .
doi: 10.1016/S0969-2126(02)00885-7
10 Fee, J.A., Todaro, T.R., Luna, E., Sanders, D., Hunsicker-Wang, L.M., Patel, K.M., Bren, K.L., Gomez-Moran, E., Hill, M.G., Ai, J., . (2004). Cytochrome rc552, formed during expression of the truncated, Thermus thermophilus cytochrome c552 gene in the cytoplasm of Escherichia coli, reacts spontaneously to form protein-bound 2-formyl-4-vinyl (Spirographis) heme. Biochemistry 43, 12162-12176 .
doi: 10.1021/bi048968l
11 Feissner, R.E., Richard-Fogal, C.L., Frawley, E.R., and Kranz, R.G. (2006). ABC transporter-mediated release of a haem chaperone allows cytochrome c biogenesis. Mol Microbiol 61, 219-231 .
doi: 10.1111/j.1365-2958.2006.05221.x
12 Kranz, R., Lill, R., Goldman, B., Bonnard, G., and Merchant, S. (1998). Molecular mechanisms of cytochrome c biogenesis: three distinct systems. Mol Microbiol 29, 383-396 .
doi: 10.1046/j.1365-2958.1998.00869.x
13 Kranz, R.G., Richard-Fogal, C., Taylor, J.-S., and Frawley, E.R. (2009). Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol Mol Biol Rev 73, 510-528 .
doi: 10.1128/MMBR.00001-09
14 Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157 .
doi: 10.1016/S0092-8674(00)80085-9
15 Richard-Fogal, C.L., Frawley, E.R., Bonner, E.R., Zhu, H., San Francisco, B., and Kranz, R.G. (2009). A conserved haem redox and trafficking pathway for cofactor attachment. EMBO J 28, 2349-2359 .
doi: 10.1038/emboj.2009.189
16 Richard-Fogal, C.L., Frawley, E.R., and Kranz, R.G. (2008). Topology and function of CcmD in cytochrome c maturation. J Bacteriol 190, 3489-3493 .
doi: 10.1128/JB.00146-08
17 San Francisco, B., Bretsnyder, E.C., Rodgers, K.R., and Kranz, R.G. (2011). Heme ligand identification and redox properties of the cytochrome c synthetase, CcmF. Biochemistry 50, 10974-10985 .
doi: 10.1021/bi201508t
18 Sawyer, E.B., Stephens, E., Ferguson, S.J., Allen, J.W.A., and Barker, P.D. (2010). Aberrant attachment of heme to cytochrome by the Ccm system results in a cysteine persulfide linkage. J Am Chem Soc 132, 4974-4975 .
doi: 10.1021/ja908241v
19 Schulz, H., Hennecke, H., and Th?ny-Meyer, L. (1998). Prototype of a heme chaperone essential for cytochrome c maturation. Science 281, 1197-1200 .
doi: 10.1126/science.281.5380.1197
20 Stevens, J.M., Mavridou, D.A.I., Hamer, R., Kritsiligkou, P., Goddard, A.D., and Ferguson, S.J. (2011). Cytochrome c biogenesis System I. FEBS J 278, 4170-4178 .
doi: 10.1111/j.1742-4658.2011.08376.x
21 Th?ny-Meyer, L. (2002). Cytochrome c maturation: a complex pathway for a simple task? Biochem Soc Trans 30, 633-638 .
doi: 10.1042/BST0300633
22 Th?ny-Meyer, L., Fischer, F., Künzler, P., Ritz, D., and Hennecke, H. (1995). Escherichia coli genes required for cytochrome c maturation. J Bacteriol 177, 4321-4326 .
[1] Donglu Wu, Yong Cai, Jingji Jin. Potential coordination role between O-GlcNAcylation and epigenetics[J]. Protein Cell, 2017, 8(10): 713-723.
[2] Ping Wang,Chang Sun,Tingting Zhu,Yanhui Xu. Structural insight into mechanisms for dynamic regulation of PKM2[J]. Protein Cell, 2015, 6(4): 275-287.
[3] Joo-Man Park,Seong-Ho Jo,Mi-Young Kim,Tae-Hyun Kim,Yong-Ho Ahn. Role of transcription factor acetylation in the regulation of metabolic homeostasis[J]. Protein Cell, 2015, 6(11): 804-813.
[4] Chao Xu, Jinrong Min. Structure and function of WD40 domain proteins[J]. Prot Cell, 2011, 2(3): 202-214.
[5] Yide Mei, Aaron Stonestrom, Ya-Ming Hou, Xiaolu Yang. Apoptotic regulation and tRNA[J]. Prot Cell, 2010, 1(9): 795-801.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed