Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2011, Vol. 2 Issue (3) : 202-214    https://doi.org/10.1007/s13238-011-1018-1      PMID: 21468892
REVIEW
Structure and function of WD40 domain proteins
Chao Xu1, Jinrong Min1,2()
1. Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, Ontario, M5G 1L7, Canada; 2. Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
 Download: PDF(1126 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The WD40 domain exhibits a β-propeller architecture, often comprising seven blades. The WD40 domain is one of the most abundant domains and also among the top interacting domains in eukaryotic genomes. In this review, we will discuss the identification, definition and architecture of the WD40 domains. WD40 domain proteins are involved in a large variety of cellular processes, in which WD40 domains function as a protein-protein or protein-DNA interaction platform. WD40 domain mediates molecular recognition events mainly through the smaller top surface, but also through the bottom surface and sides. So far, no WD40 domain has been found to display enzymatic activity. We will also discuss the different binding modes exhibited by the large versatile family of WD40 domain proteins. In the last part of this review, we will discuss how post-translational modifications are recognized by WD40 domain proteins.

Keywords WD40      beta-propeller      protein-protein interaction      scaffold      post-translational modification     
Corresponding Author(s): Min Jinrong,Email:jr.min@utoronto.ca   
Issue Date: 01 March 2011
 Cite this article:   
Chao Xu,Jinrong Min. Structure and function of WD40 domain proteins[J]. Prot Cell, 2011, 2(3): 202-214.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-011-1018-1
https://academic.hep.com.cn/pac/EN/Y2011/V2/I3/202
Fig.1  Definition of WD40 repeat and WD40 domains.
(A) HMM logo of WD40 repeat from the website http://pfam.sanger.ac.uk/family?id=WD40#tabview=tab3 (). The letter size represents the conservation level of each amino acid in the WD40 repeat.The residues marked by stars are conserved hydrophobic residues involved in WD40 β-propeller stabilization. (B) Structure of a canonical WD40 repeat protein. Each repeat consists of four β-strands. (C) WD40 domain is stabilized mainly through hydrophobic interactions between the blades. (D) Structure comparison of the repeats in the same WD40 protein or between different WD40 proteins. The PDB accession codes for WDR5, WDR39, WDR61, WDR92 and Gβ are 2H9M, 3FM0, 3OW8, 3I2N and 1GP2, respectively.
Fig.1  Definition of WD40 repeat and WD40 domains.
(A) HMM logo of WD40 repeat from the website http://pfam.sanger.ac.uk/family?id=WD40#tabview=tab3 (). The letter size represents the conservation level of each amino acid in the WD40 repeat.The residues marked by stars are conserved hydrophobic residues involved in WD40 β-propeller stabilization. (B) Structure of a canonical WD40 repeat protein. Each repeat consists of four β-strands. (C) WD40 domain is stabilized mainly through hydrophobic interactions between the blades. (D) Structure comparison of the repeats in the same WD40 protein or between different WD40 proteins. The PDB accession codes for WDR5, WDR39, WDR61, WDR92 and Gβ are 2H9M, 3FM0, 3OW8, 3I2N and 1GP2, respectively.
Fig.2  Architecture of WD40 domain proteins shown in cartoon representation.
(A) WDR5 (2H9M); (B) Sif2p (1R5M); (C) Sec13 in complex with Sec31 (2PM6). The SEC13 is colored in green and Sec31 is colored in gray with the insertion repeat colored in salmon; (D) Aip1 (1NR0). The two seven-bladed β-propellers are colored in blue and green, respectively; (E) DDB1 (3EI3). The three seven-bladed β-propellers are colored in red, blue and green, respectively; (F) Superposition of DDB1 from three DDB1 structures. The first two β-propellers of DDB1 can be well superimposedx(colored in gray), but the third β-propeller exhibited significant shift. The shifted β-propeller is colored in red (2HYE), green (3EI2) and blue (2B5L), respectively.
Fig.2  Architecture of WD40 domain proteins shown in cartoon representation.
(A) WDR5 (2H9M); (B) Sif2p (1R5M); (C) Sec13 in complex with Sec31 (2PM6). The SEC13 is colored in green and Sec31 is colored in gray with the insertion repeat colored in salmon; (D) Aip1 (1NR0). The two seven-bladed β-propellers are colored in blue and green, respectively; (E) DDB1 (3EI3). The three seven-bladed β-propellers are colored in red, blue and green, respectively; (F) Superposition of DDB1 from three DDB1 structures. The first two β-propellers of DDB1 can be well superimposedx(colored in gray), but the third β-propeller exhibited significant shift. The shifted β-propeller is colored in red (2HYE), green (3EI2) and blue (2B5L), respectively.
Fig.3  WD40 domain proteins exhibit different binding modes.
(A) The different F-box proteins in the SCF ubiquitin ligase recruit different substrates through the WD40 domain; (B) The different DCAF WD40 proteins recognize different substrates for Cul4-DDB1 ubiquitin ligase; (C) Clathrin (purple) in complex with two different peptides (blue β-arrestin 2/AP-3 1C9I and yellow 1C9L); (D) WDR5 (blue) in complex with MLL (red, 3EMH) and unmodified H3K4 (yellow, 2H9M); (E) TLE1 (green) in complex with eh1 (red, 2CE8) and WRPW (yellow, 2CE9); (F) G protein beta (red)-gamma (blue) heterodimer in complex with alpha (cyan, PDB code: 1GP2) and phosducin (yellow, PDB code: 1A0R).
Fig.3  WD40 domain proteins exhibit different binding modes.
(A) The different F-box proteins in the SCF ubiquitin ligase recruit different substrates through the WD40 domain; (B) The different DCAF WD40 proteins recognize different substrates for Cul4-DDB1 ubiquitin ligase; (C) Clathrin (purple) in complex with two different peptides (blue β-arrestin 2/AP-3 1C9I and yellow 1C9L); (D) WDR5 (blue) in complex with MLL (red, 3EMH) and unmodified H3K4 (yellow, 2H9M); (E) TLE1 (green) in complex with eh1 (red, 2CE8) and WRPW (yellow, 2CE9); (F) G protein beta (red)-gamma (blue) heterodimer in complex with alpha (cyan, PDB code: 1GP2) and phosducin (yellow, PDB code: 1A0R).
Fig.4  Utilization of insertions and extentions inside WD40 repeat domains in ligand binding.
The WD40 protein is colored in gray except the insertion or extension (A) Bub3 (green) in complex with Mad3 (salmon, 2I3T); (B) RBBP7 (blue) in complex with H4 (yellow, 3CFS) and RBBP4 (blue) in complex with Fog-1 (salmon, 2XU7).
Fig.4  Utilization of insertions and extentions inside WD40 repeat domains in ligand binding.
The WD40 protein is colored in gray except the insertion or extension (A) Bub3 (green) in complex with Mad3 (salmon, 2I3T); (B) RBBP7 (blue) in complex with H4 (yellow, 3CFS) and RBBP4 (blue) in complex with Fog-1 (salmon, 2XU7).
Fig.5  Utilization of the inter-blade binding grooves of WD40 domain in ligand binding.
(A) Crystal structure of yeast Sro7 protein. The C-terminal tail of Sro7 is colored in yellow, and the insertion motif from the second WD40 domain of Sro7 is colored in salmon. (B) The first WD40 domain of Sro7 is displayed in surface representation and the two α-helixes from the C-terminal tail of Sro7 reside in two hydrophobic pockets formed between the second and third blades, and the third and fourth blades, respectively. (C) Crystal structure of the C-terminal WD40 domain of PALB2 and the BRCA2 peptide (aa 21-39). The BRCA2 peptide is colored in yellow. The short α-helix from the BRCA2 peptide is bound in a pocket formed between the fourth and fifth blades of the PALB2 WD40 β-propeller.
Fig.5  Utilization of the inter-blade binding grooves of WD40 domain in ligand binding.
(A) Crystal structure of yeast Sro7 protein. The C-terminal tail of Sro7 is colored in yellow, and the insertion motif from the second WD40 domain of Sro7 is colored in salmon. (B) The first WD40 domain of Sro7 is displayed in surface representation and the two α-helixes from the C-terminal tail of Sro7 reside in two hydrophobic pockets formed between the second and third blades, and the third and fourth blades, respectively. (C) Crystal structure of the C-terminal WD40 domain of PALB2 and the BRCA2 peptide (aa 21-39). The BRCA2 peptide is colored in yellow. The short α-helix from the BRCA2 peptide is bound in a pocket formed between the fourth and fifth blades of the PALB2 WD40 β-propeller.
Fig.6  Recognition of post-translational modification marks by WD40 domains.
(A) FBW7 (gray) in complex with cyclin E degron (yellow). The residues involved in binding with phosphorylated peptide are shown in cyan sticks. (B) WDR5 (gray) in complex with dimethylated-H3K4 (red). Residues involved in interaction with H3R2 are shown in green sticks. (C) EED (gray) in complex with trimethylated-H3K27 (yellow). Residues involved in direct interaction with the peptide are shown in blue sticks.
Fig.6  Recognition of post-translational modification marks by WD40 domains.
(A) FBW7 (gray) in complex with cyclin E degron (yellow). The residues involved in binding with phosphorylated peptide are shown in cyan sticks. (B) WDR5 (gray) in complex with dimethylated-H3K4 (red). Residues involved in interaction with H3R2 are shown in green sticks. (C) EED (gray) in complex with trimethylated-H3K27 (yellow). Residues involved in direct interaction with the peptide are shown in blue sticks.
1 Adams-Cioaba, M.A., Guo, Y., Bian, C., Amaya, M.F., Lam, R., Wasney, G.A., Vedadi, M., Xu, C., and Min, J. (2010). Structural studies of the tandem Tudor domains of fragile X mental retardation related proteins FXR1 and FXR2. PLoS One 5, e13559.
pmid:21072162
2 Adams-Cioaba, M.A., and Min, J. (2009). Structure and function of histone methylation binding proteins. Biochemistry and cell biology= Biochimie et biologie cellulaire 87, 93–105 .
3 Andrade, M.A., Perez-Iratxeta, C., and Ponting, C.P. (2001). Protein repeats: structures, functions, and evolution. J Struct Biol 134, 117–131 .
pmid:11551174
4 Ang, X.L., and Wade Harper, J. (2005). SCF-mediated protein degradation and cell cycle control. Oncogene 24, 2860–2870 .
pmid:15838520
5 Angers, S., Li, T., Yi, X., MacCoss, M.J., Moon, R.T., and Zheng, N. (2006). Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443, 590–593 .
pmid:16964240
6 Bergametti, F., Bianchi, J., and Transy, C. (2002). Interaction of hepatitis B virus X protein with damaged DNA-binding protein p127: structural analysis and identification of antagonists. J Biomed Sci 9, 706–715 .
pmid:12432237
7 Brohawn, S.G., Partridge, J.R., Whittle, J.R., and Schwartz, T.U. (2009). The nuclear pore complex has entered the atomic age. Structure 17, 1156–1168 .
pmid:19748337
8 Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S., and Zhang, Y. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 .
9 Cao, R., and Zhang, Y. (2004). The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 14, 155–164 .
pmid:15196462
10 Cardozo, T., and Pagano, M. (2004). The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5, 739–751 .
pmid:15340381
11 Chan, D.W., Wang, Y., Wu, M., Wong, J., Qin, J., and Zhao, Y. (2009). Unbiased proteomic screen for binding proteins to modified lysines on histone H3. Proteomics 9, 2343–2354 .
pmid:19337993
12 Chen, X., Zhang, Y., Douglas, L., and Zhou, P. (2001). UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation. J Biol Chem 276, 48175–48182 .
pmid:11673459
13 Couture, J.F., Collazo, E., and Trievel, R.C. (2006). Molecular recognition of histone H3 by the WD40 protein WDR5. Nat Struct Mol Biol 13, 698–703 .
pmid:16829960
14 Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A., and Pirrotta, V. (2002). Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196 .
pmid:12408863
15 English, C.M., Adkins, M.W., Carson, J.J., Churchill, M.E., and Tyler, J.K. (2006). Structural basis for the histone chaperone activity of Asf1. Cell 127, 495–508 .
pmid:17081973
16 Eryilmaz, J., Pan, P., Amaya, M.F., Allali-Hassani, A., Dong, A., Adams-Cioaba, M.A., Mackenzie, F., Vedadi, M., and Min, J. (2009). Structural studies of a four-MBT repeat protein MBTD1. PLoS One 4, e7274.
pmid:19841675
17 Feng, Q., and Zhang, Y. (2003). The NuRD complex: linking histone modification to nucleosome remodeling. Curr Top Microbiol Immunol 274, 269–290 .
pmid:12596911
18 Fong, H.K., Hurley, J.B., Hopkins, R.S., Miake-Lye, R., Johnson, M.S., Doolittle, R.F., and Simon, M.I. (1986). Repetitive segmental structure of the transducin beta subunit: homology with the CDC4 gene and identification of related mRNAs. Proc Natl Acad Sci U S A 83, 2162–2166 .
pmid:3083416
19 Gao, Z., Huang, Z., Olivey, H.E., Gurbuxani, S., Crispino, J.D., and Svensson, E.C. (2010). FOG-1-mediated recruitment of NuRD is required for cell lineage re-enforcement during haematopoiesis. EMBO J 29, 457–468 .
pmid:20010697
20 Gaudet, R., Bohm, A., and Sigler, P.B. (1996). Crystal structure at 2.4 angstroms resolution of the complex of transducin betagamma and its regulator, phosducin. Cell 87, 577–588 .
pmid:8898209
21 Groisman, R., Polanowska, J., Kuraoka, I., Sawada, J., Saijo, M., Drapkin, R., Kisselev, A.F., Tanaka, K., and Nakatani, Y. (2003). The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357–367 .
pmid:12732143
22 Guerrero-Santoro, J., Kapetanaki, M.G., Hsieh, C.L., Gorbachinsky, I., Levine, A.S., and Rapi?-Otrin, V. (2008). The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates histone H2A. Cancer Res 68, 5014–5022 .
pmid:18593899
23 Guo, Y., Nady, N., Qi, C., Allali-Hassani, A., Zhu, H., Pan, P., Adams-Cioaba, M.A., Amaya, M.F., Dong, A., Vedadi, M., (2009). Methylation-state-specific recognition of histones by the MBT repeat protein L3MBTL2. Nucleic Acids Res 37, 2204–2210 .
pmid:19233876
24 Han, Z., Guo, L., Wang, H., Shen, Y., Deng, X.W., and Chai, J. (2006). Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Mol Cell 22, 137–144 .
pmid:16600877
25 Hansen, K.H., Bracken, A.P., Pasini, D., Dietrich, N., Gehani, S.S., Monrad, A., Rappsilber, J., Lerdrup, M., and Helin, K. (2008). A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 10, 1291–1300 .
pmid:18931660
26 Hao, B., Oehlmann, S., Sowa, M.E., Harper, J.W., and Pavletich, N.P. (2007). Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell 26, 131–143 .
pmid:17434132
27 Hardwick, K.G., Johnston, R.C., Smith, D.L., and Murray, A.W. (2000). MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p, and Mad2p. J Cell Biol 148, 871–882 .
pmid:10704439
28 Hattendorf, D.A., Andreeva, A., Gangar, A., Brennwald, P.J., and Weis, W.I. (2007). Structure of the yeast polarity protein Sro7 reveals a SNARE regulatory mechanism. Nature 446, 567–571 .
pmid:17392788
29 He, Y.J., McCall, C.M., Hu, J., Zeng, Y., and Xiong, Y. (2006). DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev 20, 2949–2954 .
pmid:17079684
30 Higa, L.A., Wu, M., Ye, T., Kobayashi, R., Sun, H., and Zhang, H. (2006). CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol 8, 1277–1283 .
pmid:17041588
31 Hu, J., McCall, C.M., Ohta, T., and Xiong, Y. (2004). Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage. Nat Cell Biol 6, 1003–1009 .
pmid:15448697
32 Jennings, B.H., Pickles, L.M., Wainwright, S.M., Roe, S.M., Pearl, L.H., and Ish-Horowicz, D. (2006). Molecular recognition of transcriptional repressor motifs by the WD domain of the Groucho/TLE corepressor. Mol Cell 22, 645–655 .
pmid:16762837
33 Jin, J., Cardozo, T., Lovering, R.C., Elledge, S.J., Pagano, M., and Harper, J.W. (2004). Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 18, 2573–2580 .
pmid:15520277
34 Johnston, C.A., Kimple, A.J., Giguère, P.M., and Siderovski, D.P. (2008). Structure of the parathyroid hormone receptor C terminus bound to the G-protein dimer Gbeta1gamma2. Structure 16, 1086–1094 .
pmid:18611381
35 Kirchhausen, T., and Harrison, S.C. (1981). Protein organization in clathrin trimers. Cell 23, 755–761 .
pmid:7226229
36 Lambright, D.G., Sondek, J., Bohm, A., Skiba, N.P., Hamm, H.E., and Sigler, P.B. (1996). The 2.0 A crystal structure of a heterotrimeric G protein. Nature 379, 311–319 .
pmid:8552184
37 Larsen, N.A., Al-Bassam, J., Wei, R.R., and Harrison, S.C. (2007). Structural analysis of Bub3 interactions in the mitotic spindle checkpoint. Proc Natl Acad Sci U S A 104, 1201–1206 .
pmid:17227844
38 Lejon, S., Thong, S.Y., Murthy, A., AlQarni, S., Murzina, N.V., Blobel, G.A., Laue, E.D., and Mackay, J.P. (2011). Insights into association of the NuRD complex with FOG-1 from the crystal structure of an RbAp48·FOG-1 complex. J Biol Chem 286, 1196–1203 .
pmid:21047798
39 Lens, S.M., Wolthuis, R.M., Klompmaker, R., Kauw, J., Agami, R., Brummelkamp, T., Kops, G., and Medema, R.H. (2003). Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J 22, 2934–2947 .
pmid:12805209
40 Letunic, I., Doerks, T., and Bork, P. (2009). SMART 6: recent updates and new developments. Nucleic Acids Res 37, D229–D232 .
pmid:18978020
41 Li, D., and Roberts, R. (2001). WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 58, 2085–2097 .
pmid:11814058
42 Li, T., Chen, X., Garbutt, K.C., Zhou, P., and Zheng, N. (2006). Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 124, 105–117 .
pmid:16413485
43 Li, T., Robert, E.I., van Breugel, P.C., Strubin, M., and Zheng, N. (2010). A promiscuous α-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery. Nat Struct Mol Biol 17, 105–111 .
pmid:19966799
44 Liu, H., Wang, J.Y., Huang, Y., Li, Z., Gong, W., Lehmann, R., and Xu, R.M. (2010a). Structural basis for methylarginine-dependent recognition of Aubergine by Tudor. Genes & Dev 24: 1876–1881
45 Liu, K., Chen, C., Guo, Y., Lam, R., Bian, C., Xu, C., Zhao, D.Y., Jin, J., MacKenzie, F., Pawson, T., (2010b). Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain. Proc Natl Acad Sci U S A 107, 18398–18403 .
pmid:20937909
46 Margueron, R., Justin, N., Ohno, K., Sharpe, M.L., Son, J., Drury, W.J. 3rd, Voigt, P., Martin, S.R., Taylor, W.R., De Marco, V., (2009). Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 .
pmid:19767730
47 Michel, J.J., and Xiong, Y. (1998). Human CUL-1, but not other cullin family members, selectively interacts with SKP1 to form a complex with SKP2 and cyclin A. Cell Growth Differ 9, 435–449 .
pmid:9663463
48 Min, J., Allali-Hassani, A., Nady, N., Qi, C., Ouyang, H., Liu, Y., MacKenzie, F., Vedadi, M., and Arrowsmith, C.H. (2007). L3MBTL1 recognition of mono- and dimethylated histones. Nat Struct Mol Biol 14, 1229–1230 .
pmid:18026117
49 Min, J., Zhang, Y., and Xu, R.M. (2003). Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev 17, 1823–1828 .
pmid:12897052
50 Mohri, K., Vorobiev, S., Fedorov, A.A., Almo, S.C., and Ono, S. (2004). Identification of functional residues on Caenorhabditis elegans actin-interacting protein 1 (UNC-78) for disassembly of actin depolymerizing factor/cofilin-bound actin filaments. J Biol Chem 279, 31697–31707 .
pmid:15150269
51 Müller, J., Hart, C.M., Francis, N.J., Vargas, M.L., Sengupta, A., Wild, B., Miller, E.L., O’Connor, M.B., Kingston, R.E., and Simon, J.A. (2002). Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 .
pmid:12408864
52 Murzin, A.G. (1992). Structural principles for the propeller assembly of beta-sheets: the preference for seven-fold symmetry. Proteins 14, 191–201 .
pmid:1409568
53 Murzina, N.V., Pei, X.Y., Zhang, W., Sparkes, M., Vicente-Garcia, J., Pratap, J.V., McLaughlin, S.H., Ben-Shahar, T.R., Verreault, A., Luisi, B.F., (2008). Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure 16, 1077–1085 .
pmid:18571423
54 Nash, P., Tang, X., Orlicky, S., Chen, Q., Gertler, F.B., Mendenhall, M.D., Sicheri, F., Pawson, T., and Tyers, M. (2001). Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 .
pmid:11734846
55 Neer, E.J., Schmidt, C.J., Nambudripad, R., and Smith, T.F. (1994). The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297–300 .
pmid:8090199
56 Oliver, A.W., Swift, S., Lord, C.J., Ashworth, A., and Pearl, L.H. (2009). Structural basis for recruitment of BRCA2 by PALB2. EMBO Rep 10, 990–996 .
pmid:19609323
57 Orlicky, S., Tang, X., Willems, A., Tyers, M., and Sicheri, F. (2003). Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112, 243–256 .
pmid:12553912
58 Paoli, M. (2001). Protein folds propelled by diversity. Prog Biophys Mol Biol 76, 103–130 .
pmid:11389935
59 Patel, A., Dharmarajan, V., and Cosgrove, M.S. (2008). Structure of WDR5 bound to mixed lineage leukemia protein-1 peptide. J Biol Chem 283, 32158–32161 .
pmid:18829459
60 Ruthenburg, A.J., Wang, W., Graybosch, D.M., Li, H., Allis, C.D., Patel, D.J., and Verdine, G.L. (2006). Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Nat Struct Mol Biol 13, 704–712 .
pmid:16829959
61 Schuetz, A., Allali-Hassani, A., Martín, F., Loppnau, P., Vedadi, M., Bochkarev, A., Plotnikov, A.N., Arrowsmith, C.H., and Min, J. (2006). Structural basis for molecular recognition and presentation of histone H3 by WDR5. EMBO J 25, 4245–4252 .
pmid:16946699
62 Schuster-B?ckler, B., Schultz, J., and Rahmann, S. (2004). HMM Logos for visualization of protein families. BMC Bioinformatics 5, 7.
pmid:14736340
63 Shaw, N., Zhao, M., Cheng, C., Xu, H., Saarikettu, J., Li, Y., Da, Y., Yao, Z., Silvennoinen, O., Yang, J., (2007). The multifunctional human p100 protein ‘hooks’ methylated ligands. Nat Struct Mol Biol 14, 779–784 .
pmid:17632523
64 Smith, T.F., Gaitatzes, C., Saxena, K., and Neer, E.J. (1999). The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24, 181–185 .
pmid:10322433
65 Song, J.J., Garlick, J.D., and Kingston, R.E. (2008). Structural basis of histone H4 recognition by p55. Genes Dev 22, 1313–1318 .
pmid:18443147
66 Song, J.J., and Kingston, R.E. (2008). WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3-binding pocket. J Biol Chem 283, 35258–35264 .
pmid:18840606
67 Stirnimann, C.U., Petsalaki, E., Russell, R.B., and Müller, C.W. (2010). WD40 proteins propel cellular networks. Trends Biochem Sci 35, 565–574 .
pmid:20451393
68 Sy, S.M., Huen, M.S., and Chen, J. (2009). PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci U S A 106, 7155–7160 .
pmid:19369211
69 ter Haar, E., Harrison, S.C., and Kirchhausen, T. (2000). Peptide-in-groove interactions link target proteins to the beta-propeller of clathrin. Proc Natl Acad Sci U S A 97, 1096–1100 .
pmid:10655490
70 Ungewickell, E., and Branton, D. (1981). Assembly units of clathrin coats. Nature 289, 420–422 .
pmid:7464911
71 Verreault, A., Kaufman, P.D., Kobayashi, R., and Stillman, B. (1996). Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87, 95–104 .
pmid:8858152
72 Verreault, A., Kaufman, P.D., Kobayashi, R., and Stillman, B. (1998). Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr Biol 8, 96–108 .
pmid:9427644
73 Voegtli, W.C., Madrona, A.Y., and Wilson, D.K. (2003). The structure of Aip1p, a WD repeat protein that regulates Cofilin-mediated actin depolymerization. J Biol Chem 278, 34373–34379 .
pmid:12807914
74 Wall, M.A., Coleman, D.E., Lee, E., I?iguez-Lluhi, J.A., Posner, B.A., Gilman, A.G., and Sprang, S.R. (1995). The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83, 1047–1058 .
pmid:8521505
75 Wang, H., Zhai, L., Xu, J., Joo, H.Y., Jackson, S., Erdjument-Bromage, H., Tempst, P., Xiong, Y., and Zhang, Y. (2006). Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell 22, 383–394 .
pmid:16678110
76 Wang, L., Brown, J.L., Cao, R., Zhang, Y., Kassis, J.A., and Jones, R.S. (2004). Hierarchical recruitment of polycomb group silencing complexes. Mol Cell 14, 637–646 .
pmid:15175158
77 Whittle, J.R., and Schwartz, T.U. (2010). Structure of the Sec13-Sec16 edge element, a template for assembly of the COPII vesicle coat. J Cell Biol 190, 347–361 .
pmid:20696705
78 Wittschieben, B.O., Iwai, S., and Wood, R.D. (2005). DDB1-DDB2 (xeroderma pigmentosum group E) protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic sites, and compound lesions in DNA. J Biol Chem 280, 39982–39989 .
pmid:16223728
79 Wu, G., Xu, G., Schulman, B.A., Jeffrey, P.D., Harper, J.W., and Pavletich, N.P. (2003). Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell 11, 1445–1456 .
pmid:12820959
80 Wu, X.H., Chen, R.C., Gao, Y., and Wu, Y.D. (2010). The effect of Asp-His-Ser/Thr-Trp tetrad on the thermostability of WD40-repeat proteins. Biochemistry 49, 10237–10245 .
pmid:20939513
81 Wysocka, J., Swigut, T., Milne, T.A., Dou, Y., Zhang, X., Burlingame, A.L., Roeder, R.G., Brivanlou, A.H., and Allis, C.D. (2005). WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859–872 .
pmid:15960974
82 Xu, C., Bian, C., Yang, W., Galka, M., Ouyang, H., Chen, C., Qiu, W., Liu, H., Jones, A.E., MacKenzie, F., (2010). Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2). Proc Natl Acad Sci U S A 107, 19266–19271 .
pmid:20974918
[1] Vsevolod V. Gurevich, Eugenia V. Gurevich, Vladimir N. Uversky. Arrestins: structural disorder creates rich functionality[J]. Protein Cell, 2018, 9(12): 986-1003.
[2] Rudo Simeon, Zhilei Chen. In vitro-engineered non-antibody protein therapeutics[J]. Protein Cell, 2018, 9(1): 3-14.
[3] Donglu Wu, Yong Cai, Jingji Jin. Potential coordination role between O-GlcNAcylation and epigenetics[J]. Protein Cell, 2017, 8(10): 713-723.
[4] Ping Wang,Chang Sun,Tingting Zhu,Yanhui Xu. Structural insight into mechanisms for dynamic regulation of PKM2[J]. Protein Cell, 2015, 6(4): 275-287.
[5] Joo-Man Park,Seong-Ho Jo,Mi-Young Kim,Tae-Hyun Kim,Yong-Ho Ahn. Role of transcription factor acetylation in the regulation of metabolic homeostasis[J]. Protein Cell, 2015, 6(11): 804-813.
[6] Xiaofei Yang,Dongmei Hou,Wei Jiang,Chen Zhang. Intercellular protein-protein interactions at synapses[J]. Protein Cell, 2014, 5(6): 420-444.
[7] Zhi-Ping Liu, Luonan Chen. Proteome-wide prediction of protein-protein interactions from high-throughput data[J]. Prot Cell, 2012, 3(7): 508-520.
[8] Elizabeth B. Sawyer, Paul D. Barker. Continued surprises in the cytochrome c biogenesis story[J]. Prot Cell, 2012, 3(6): 405-409.
[9] Nuoyan zheng, Xiahe Huang, Bojiao Yin, Dan Wang, Qi Xie. An effective system for detecting protein-protein interaction based on in vivo cleavage by PPV NIa protease[J]. Prot Cell, 2012, 3(12): 921-928.
[10] Jing Pu, Cheol Woong Ha, Shuyan Zhang, Jong Pil Jung, Won-Ki Huh, Pingsheng Liu. Interactomic study on interaction between lipid droplets and mitochondria[J]. Prot Cell, 2011, 2(6): 487-496.
[11] Sunil K. Verma, Trivadi S. Ganesan, Uday Kishore, Peter J. Parker. The tumor suppressor RASSF1A is a novel effector of small G protein Rap1A[J]. Prot Cell, 2011, 2(3): 237-249.
[12] Zheng Zhou, Jun-Ming Liao, Peng Zhang, Jun-Bao Fan, Jie Chen, Yi Liang. Parkinson disease drug screening based on the interaction between D2 dopamine receptor and beta-arrestin 2 detected by capillary zone electrophoresis[J]. Prot Cell, 2011, 2(11): 899-905.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed