Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2014, Vol. 5 Issue (10) : 750-760    https://doi.org/10.1007/s13238-014-0083-7
REVIEW
Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control
Caiguo Zhang()
Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
 Download: PDF(504 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Eukaryotic cells contain numerous iron-requiring proteins such as iron-sulfur (Fe-S) cluster proteins, hemoproteins and ribonucleotide reductases (RNRs). These proteins utilize iron as a cofactor and perform key roles in DNA replication, DNA repair, metabolic catalysis, iron regulation and cell cycle progression. Disruption of iron homeostasis always impairs the functions of these ironrequiring proteins and is genetically associated with diseases characterized by DNA repair defects in mammals. Organisms have evolved multi-layered mechanisms to regulate iron balance to ensure genome stability and cell development. This review briefly provides current perspectives on iron homeostasis in yeast and mammals, and mainly summarizes the most recent understandings on iron-requiring protein functions involved in DNA stability maintenance and cell cycle control.

Keywords iron-requiring protein      DNA replication      DNA repair      cell cycle      iron homeostasis     
Corresponding Author(s): Caiguo Zhang   
Issue Date: 24 October 2014
 Cite this article:   
Caiguo Zhang. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control[J]. Protein Cell, 2014, 5(10): 750-760.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-014-0083-7
https://academic.hep.com.cn/pac/EN/Y2014/V5/I10/750
1 Acharya N, Johnson RE, Prakash S, Prakash L (2006) Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase zeta for mismatch extension and for extension opposite from DNA lesions. Mol Cell Biol26: 9555-9563
https://doi.org/10.1128/MCB.01671-06
2 Alvaro D, Lisby M, Rothstein R (2007) Genome-wide analysis of Rad52 foci reveals diverse mechanisms impacting recombination. PLoS Genet3: e228
https://doi.org/10.1371/journal.pgen.0030228
3 Amillet JM, Galiazzo F, Labbe-Bois R (1996) Effect of heme and vacuole deficiency on FRE1 gene expression and ferrireductase activity in Saccharomyces cerevisiae. FEMS Microbiol Lett137: 25-29
https://doi.org/10.1111/j.1574-6968.1996.tb08077.x
4 Anderson GJ, Vulpe CD (2009) Mammalian iron transport. Cellular Mol Life Sci CMLS66: 3241-3261
https://doi.org/10.1007/s00018-009-0051-1
5 Andrews NC, Schmidt PJ (2007) Iron homeostasis. Annu Rev Physiol69: 69-85
https://doi.org/10.1146/annurev.physiol.69.031905.164337
6 Aslan M, Horoz M, Kocyigit A, Ozgonul S, Celik H, Celik M, Erel O (2006) Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia. Mutat Res601: 144-149
https://doi.org/10.1016/j.mrfmmm.2006.06.013
7 Beaumont C (2010) Multiple regulatory mechanisms act in concert to control ferroportin expression and heme iron recycling by macrophages: 1233-1236
https://doi.org/10.3324/haematol.2010.025585
8 Berthelet S, Usher J, Shulist K, Hamza A, Maltez N, Johnston A, Fong Y, Harris LJ, Baetz K (2010) Functional genomics analysis of the Saccharomyces cerevisiae iron responsive transcription factor Aft1 reveals iron-independent functions. Genetics185: 1111-1128
https://doi.org/10.1534/genetics.110.117531
9 Bjorklund S, Skog S, Tribukait B, Thelander L (1990) S-phasespecific expression of mammalian ribonucleotide reductase R1 and R2 subunit mRNAs. Biochemistry29: 5452-5458
https://doi.org/10.1021/bi00475a007
10 Brown KR, Brown BM, Hoagland E, Mayne CL, Hegg EL (2004) Heme A synthase does not incorporate molecular oxygen into the formyl group of heme A. Biochemistry43: 8616-8624
https://doi.org/10.1021/bi049056m
11 Cendra Mdel M, Juarez A, Madrid C, Torrents E (2013) H-NS is a novel transcriptional modulator of the ribonucleotide reductase genes in Escherichia coli. J Bacteriol195: 4255-4263
https://doi.org/10.1128/JB.00490-13
12 Chabes AL, Pfleger CM, Kirschner MW, Thelander L (2003) Mouse ribonucleotide reductase R2 protein: a new target for anaphasepromoting complex-Cdh1-mediated proteolysis. Proc Natl Acad Sci USA100: 3925-3929
https://doi.org/10.1073/pnas.0330774100
13 Chabes AL, Bjorklund S, Thelander L (2004) S Phase-specific transcription of the mouse ribonucleotide reductase R2 gene requires both a proximal repressive E2F-binding site and an upstream promoter activating region. J Biol Chem279: 10796-10807
https://doi.org/10.1074/jbc.M312482200
14 Chaboute ME, Clement B, Philipps G (2002) S phase and meristemspecific expression of the tobacco RNR1b gene is mediated by an E2F element located in the 5’ leader sequence. J Biol Chem277: 17845-17851
https://doi.org/10.1074/jbc.M200959200
15 Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell11: 369-391
https://doi.org/10.1091/mbc.11.1.369
16 Cheng NH, Zhang W, Chen WQ, Jin J, Cui X, Butte NF, Chan L, Hirschi KD (2011) A mammalian monothiol glutaredoxin, Grx3, is critical for cell cycle progression during embryogenesis. FEBS J278: 2525-2539
https://doi.org/10.1111/j.1742-4658.2011.08178.x
17 Coin F, Oksenych V, Egly JM (2007) Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol Cell26: 245-256
https://doi.org/10.1016/j.molcel.2007.03.009
18 Couturier J, Touraine B, Briat JF, Gaymard F, Rouhier N (2013) The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions. Front Plant Sci4: 259
https://doi.org/10.3389/fpls.2013.00259
19 D’Angiolella V, Donato V, Forrester FM, Jeong YT, Pellacani C, Kudo Y, Saraf A, Florens L, Washburn MP, Pagano M (2012) Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell149: 1023-1034
https://doi.org/10.1016/j.cell.2012.03.043
20 Danilova N, Bibikova E, Covey TM, Nathanson D, Dimitrova E, Konto Y, Lindgren A, Glader B, Radu CG, Sakamoto KM. (2014). The role of DNA damage response in zebrafish and cellular models of Diamond Blackfan Anemia. Disease models & mechanisms
https://doi.org/10.1242/dmm.015495
21 Deans AJ, West SC (2009) FANCM connects the genome instability disorders Bloom’s syndrome and Fanconi anemia. Mol Cell36: 943-953
https://doi.org/10.1016/j.molcel.2009.12.006
22 Denic S, Agarwal MM (2007) Nutritional iron deficiency: an evolutionary perspective. Nutrition23: 603-614
https://doi.org/10.1016/j.nut.2007.05.002
23 Diaz-Castro J, Alferez MJ, Lopez-Aliaga I, Nestares T, Granados S, Barrionuevo M, Campos MS (2008) Influence of nutritional iron deficiency anemia on DNA stability and lipid peroxidation in rats. Nutrition24: 1167-1173
https://doi.org/10.1016/j.nut.2008.05.012
24 Dlouhy AC, Outten CE (2013) The iron metallome in eukaryotic organisms. Metal Ions Life Sci12: 241-278
https://doi.org/10.1007/978-94-007-5561-1_8
25 Dunn LL, Suryo Rahmanto Y, Richardson DR (2007) Iron uptake and metabolism in the new millennium. Trends Cell Biol17: 93-100
https://doi.org/10.1016/j.tcb.2006.12.003
26 Emerson LR, Nau ME, Martin RK, Kyle DE, Vahey M, Wirth DF (2002) Relationship between chloroquine toxicity and iron acquisition in Saccharomyces cerevisiae. Antimicrob Agents Chemother46: 787-796
https://doi.org/10.1128/AAC.46.3.787-796.2002
27 Fregoso M, Laine JP, Aguilar-Fuentes J, Mocquet V, Reynaud E, Coin F, Egly JM, Zurita M (2007) DNA repair and transcriptional deficiencies caused by mutations in the Drosophila p52 subunit of TFIIH generate developmental defects and chromosome fragility. Mol Cell Biol27: 3640-3650
https://doi.org/10.1128/MCB.00030-07
28 Fu D, Richardson DR (2007) Iron chelation and regulation of the cell cycle: 2 mechanisms of posttranscriptional regulation of the universal cyclin-dependent kinase inhibitor p21CIP1/WAF1 by iron depletion. Blood110: 752-761
https://doi.org/10.1182/blood-2007-03-076737
29 Gan L, von Moltke LL, Trepanier LA, Harmatz JS, Greenblatt DJ, Court MH (2009) Role of NADPH-cytochrome P450 reductase and cytochrome-b5/NADH-b5 reductase in variability of CYP3A activity in human liver microsomes. Drug Metab Dispos37: 90-96
https://doi.org/10.1124/dmd.108.023424
30 Gari K, Leon Ortiz AM, Borel V, Flynn H, Skehel JM, Boulton SJ (2012) MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism. Science337: 243-245
https://doi.org/10.1126/science.1219664
31 Girvan HM, Munro AW (2013) Heme sensor proteins. J Biol Chem288: 13194-13203
https://doi.org/10.1074/jbc.R112.422642
32 Gkouvatsos K, Papanikolaou G, Pantopoulos K (2012) Regulation of iron transport and the role of transferrin. Biochim Biophys Acta1820: 188-202
https://doi.org/10.1016/j.bbagen.2011.10.013
33 Hamza A, Baetz K (2012) Iron-responsive transcription factor Aft1 interacts with kinetochore protein Iml3 and promotes pericentromeric cohesin. J Biol Chem287: 4139-4147
https://doi.org/10.1074/jbc.M111.319319
34 Haro KJ, Sheth A, Scheinberg DA (2012) Dysregulation of IRP1-mediated iron metabolism causes gamma ray-specific radioresistance in leukemia cells. PLoS ONE7: e48841
https://doi.org/10.1371/journal.pone.0048841
35 Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell28: 739-745
https://doi.org/10.1016/j.molcel.2007.11.015
36 Haunhorst P, Hanschmann EM, Brautigam L, Stehling O, Hoffmann B, Muhlenhoff U, Lill R, Berndt C, Lillig CH (2013) Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation. Mol Biol Cell24: 1895-1903
https://doi.org/10.1091/mbc.E12-09-0648
37 He L, Wang H, Jin H, Guo C, Xie H, Yan K, Li X, Shen Q, Qiao T, Chen G (2009) CIAPIN1 inhibits the growth and proliferation of clear cell renal cell carcinoma. Cancer Lett276: 88-94
https://doi.org/10.1016/j.canlet.2008.10.044
38 Heath JL, Weiss JM, Lavau CP, Wechsler DS (2013) Iron deprivation in cancer—potential therapeutic implications. Nutrients5: 2836-2859
https://doi.org/10.3390/nu5082836
39 Herbik A, Bolling C, Buckhout TJ (2002) The involvement of a multicopper oxidase in iron uptake by the green algae Chlamydomonas reinhardtii. Plant Physiol130: 2039-2048
https://doi.org/10.1104/pp.013060
40 Heymann P, Ernst JF, Winkelmann G (2000) Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. FEMS Microbiol Lett186: 221-227
https://doi.org/10.1111/j.1574-6968.2000.tb09108.x
41 Holmes-Hampton GP, Jhurry ND, McCormick SP, Lindahl PA (2013) Iron content of Saccharomyces cerevisiae cells grown under irondeficient and iron-overload conditions. Biochemistry52: 105-114
https://doi.org/10.1021/bi3015339
42 Jiang X, Wang X (2004) Cytochrome C-mediated apoptosis. Annu Rev Biochem73: 87-106
https://doi.org/10.1146/annurev.biochem.73.011303.073706
43 Kamei A, Watanabe Y, Ishijima T, Uehara M, Arai S, Kato H, Nakai Y, Abe K (2010) Dietary iron-deficient anemia induces a variety of metabolic changes and even apoptosis in rat liver: a DNA microarray study. Physiol Genomics42: 149-156
https://doi.org/10.1152/physiolgenomics.00150.2009
44 Kaplan CD, Kaplan J (2009) Iron acquisition and transcriptional regulation. Chem Rev109: 4536-4552
https://doi.org/10.1021/cr9001676
45 Kaplan J, McVey Ward D, Crisp RJ, Philpott CC (2006) Irondependent metabolic remodeling in S. cerevisiae. Biochim Biophys Acta1763: 646-651
https://doi.org/10.1016/j.bbamcr.2006.03.008
46 Keyes SR, Cinti DL (1980) Biochemical properties of cytochrome b5-dependent microsomal fatty acid elongation and identification of products. J Biol Chem255: 11357-11364
47 Kilkenny ML, Longo MA, Perera RL, Pellegrini L (2013) Structures of human primase reveal design of nucleotide elongation site and mode of Pol alpha tethering. Proc Natl Acad Sci USA110: 15961-15966
https://doi.org/10.1073/pnas.1311185110
48 Kumar D, Viberg J, Nilsson AK, Chabes A (2010) Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S-phase checkpoint. Nucleic Acids Res38: 3975-3983
https://doi.org/10.1093/nar/gkq128
49 Laha S, Das SP, Hajra S, Sanyal K, Sinha P (2011) Functional characterization of the Saccharomyces cerevisiae protein Chl1 reveals the role of sister chromatid cohesion in the maintenance of spindle length during S-phase arrest. BMC Genet12: 83
https://doi.org/10.1186/1471-2156-12-83
50 Larade K, Jiang Z, Zhang Y, Wang W, Bonner-Weir S, Zhu H, Bunn HF (2008) Loss of Ncb5or results in impaired fatty acid desaturation, lipoatrophy, and diabetes. J Biol Chem283: 29285-29291
https://doi.org/10.1074/jbc.M804645200
51 Lee YD, Elledge SJ (2006) Control of ribonucleotide reductase localization through an anchoring mechanism involving Wtm1. Genes Dev20: 334-344
https://doi.org/10.1101/gad.1380506
52 Lee PJ, Alam J, Wiegand GW, Choi AM (1996) Overexpression of heme oxygenase-1 in human pulmonary epithelial cells results in cell growth arrest and increased resistance to hyperoxia. Proc Natl Acad Sci USA93: 10393-10398
https://doi.org/10.1073/pnas.93.19.10393
53 Lesuisse E, Simon-Casteras M, Labbe P (1998) Siderophoremediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology144(Pt 12): 3455-3462
https://doi.org/10.1099/00221287-144-12-3455
54 Li H, Outten CE (2012) Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe-2S] binding partners in iron homeostasis. Biochemistry51: 4377-4389
https://doi.org/10.1021/bi300393z
55 Li L, Chen OS, McVey Ward D, Kaplan J (2001) CCC1 is a transporter that mediates vacuolar iron storage in yeast. J Biol Chem276: 29515-29519
https://doi.org/10.1074/jbc.M103944200
56 Li L, Bagley D, Ward DM, Kaplan J (2008) Yap5 is an ironresponsive transcriptional activator that regulates vacuolar iron storage in yeast. Mol Cell Biol28: 1326-1337
https://doi.org/10.1128/MCB.01219-07
57 Li L, Kaplan J (1998) Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity. J Biol Chem273: 22181-22187
https://doi.org/10.1074/jbc.273.35.22181
58 Li H, Mapolelo DT, Dingra NN, Naik SG, Lees NS, Hoffman BM, Riggs-Gelasco PJ, Huynh BH, Johnson MK, Outten CE (2009) The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry48: 9569-9581
https://doi.org/10.1021/bi901182w
59 Lill R, Muhlenhoff U (2008) Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases.Annu Rev Biochem77: 669-700
https://doi.org/10.1146/annurev.biochem.76.052705.162653
60 Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H, Wilbrecht C, Muhlenhoff U (2012) The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta1823: 1491-1508
https://doi.org/10.1016/j.bbamcr.2012.05.009
61 Lipinski P, Starzynski RR, Drapier JC, Bouton C, Bartlomiejczyk T, Sochanowicz B, Smuda E, Gajkowska A, Kruszewski M (2005) Induction of iron regulatory protein 1 RNA-binding activity by nitric oxide is associated with a concomitant increase in the labile iron pool: implications for DNA damage. Biochem Biophys Res Commun327: 349-355
https://doi.org/10.1016/j.bbrc.2004.12.012
62 Lopez-Millan AF, Grusak MA, Abadia A, Abadia J (2013) Iron deficiency in plants: an insight from proteomic approaches. Front Plant Sci4: 254
https://doi.org/10.3389/fpls.2013.00254
63 Martinez-Pastor MT, de Llanos R, Romero AM, Puig S (2013) Posttranscriptional regulation of iron homeostasis in Saccharomyces cerevisiae. Int J Mol Sci14: 15785-15809
https://doi.org/10.3390/ijms140815785
64 Mendenhall MD, Hodge AE (1998) Regulation of Cdc28 cyclindependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev62: 1191-1243
65 Miller JL (2013) Iron deficiency anemia: a common and curable disease. Cold Spring Harbor perspectives in medicine 3
66 Miyabe I, Kunkel TA, Carr AM (2011) The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet7: e1002407
https://doi.org/10.1371/journal.pgen.1002407
67 Muckenthaler MU, Galy B, Hentze MW (2008) Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr28: 197-213
https://doi.org/10.1146/annurev.nutr.28.061807.155521
68 Muhlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N, Seubert A, Zhang Y, Stubbe J, Pierrel F, Herrero E (2010) Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metab12: 373-385
https://doi.org/10.1016/j.cmet.2010.08.001
69 Nakano K, Balint E, Ashcroft M, Vousden KH (2000) A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene19: 4283-4289
https://doi.org/10.1038/sj.onc.1203774
70 Nasmyth K (1993) Control of the yeast cell cycle by the Cdc28 protein kinase. Curr Opin Cell Biol5: 166-179
https://doi.org/10.1016/0955-0674(93)90099-C
71 Netz DJ, Stumpfig M, Dore C, Muhlenhoff U, Pierik AJ, Lill R (2010) Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat Chem Biol6: 758-765
https://doi.org/10.1038/nchembio.432
72 Netz DJ, Stith CM, Stumpfig M, Kopf G, Vogel D, Genau HM, Stodola JL, Lill R, Burgers PM, Pierik AJ (2012) Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol8: 125-132
https://doi.org/10.1038/nchembio.721
73 Ofir A, Kornitzer D (2010) Candida albicans cyclin Clb4 carries S-phase cyclin activity. Eukaryot Cell9: 1311-1319
https://doi.org/10.1128/EC.00038-10
74 Orrenius S, Nicotera P, Zhivotovsky B (2011) Cell death mechanisms and their implications in toxicology. Toxicol Sci Off J Soc Toxicol119: 3-19
https://doi.org/10.1093/toxsci/kfq268
75 Pamplona A, Ferreira A, Balla J, Jeney V, Balla G, Epiphanio S, Chora A, Rodrigues CD, Gregoire IP, Cunha-Rodrigues M (2007) Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat Med13: 703-710
https://doi.org/10.1038/nm1586
76 Pantopoulos K, Porwal SK, Tartakoff A, Devireddy L (2012) Mechanisms of mammalian iron homeostasis. Biochemistry51: 5705-5724
https://doi.org/10.1021/bi300752r
77 Parish JL, Rosa J, Wang X, Lahti JM, Doxsey SJ, Androphy EJ (2006) The DNA helicase ChlR1 is required for sister chromatid cohesion in mammalian cells. J Cell Sci119: 4857-4865
https://doi.org/10.1242/jcs.03262
78 Philpott CC (2006) Iron uptake in fungi: a system for every source. Biochim Biophys Acta1763: 636-645
https://doi.org/10.1016/j.bbamcr.2006.05.008
79 Philpott CC, Rashford J, Yamaguchi-Iwai Y, Rouault TA, Dancis A, Klausner RD (1998) Cell-cycle arrest and inhibition of G1 cyclin translation by iron in AFT1-1(up) yeast. EMBO J17: 5026-5036
https://doi.org/10.1093/emboj/17.17.5026
80 Philpott CC, Leidgens S, Frey AG (2012) Metabolic remodeling in iron-deficient fungi. Biochim Biophys Acta1823: 1509-1520
https://doi.org/10.1016/j.bbamcr.2012.01.012
81 Poor CB, Wegner SV, Li H, Dlouhy AC, Schuermann JP, Sanishvili R, Hinshaw JR, Riggs-Gelasco PJ, Outten CE, He C (2014) Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2. Proc Natl Acad Sci USA111: 4043-4048
https://doi.org/10.1073/pnas.1318869111
82 Portnoy ME, Liu XF, Culotta VC (2000) Saccharomyces cerevisiae expresses three functionally distinct homologues of the nramp family of metal transporters. Mol Cell Biol20: 7893-7902
https://doi.org/10.1128/MCB.20.21.7893-7902.2000
83 Portnoy ME, Jensen LT, Culotta VC (2002) The distinct methods by which manganese and iron regulate the Nramp transporters inyeast. Biochem J362: 119-124
https://doi.org/10.1042/0264-6021:3620119
84 Prakash S, Prakash L (2002) Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev16: 1872-1883
https://doi.org/10.1101/gad.1009802
85 Pugh RA, Honda M, Leesley H, Thomas A, Lin Y, Nilges MJ, Cann IK, Spies M (2008) The iron-containing domain is essential in Rad3 helicases for coupling of ATP hydrolysis to DNA translocation and for targeting the helicase to the single-stranded DNAdouble-stranded DNA junction. J Biol Chem283: 1732-1743
https://doi.org/10.1074/jbc.M707064200
86 Pyrih J, Harant K, Martincova E, Sutak R, Lesuisse E, Hrdy I, Tachezy J (2014) Giardia intestinalis incorporates heme into cytosolic cytochrome b(5). Eukaryot Cell13: 231-239
https://doi.org/10.1128/EC.00200-13
87 Quincozes-Santos A, Bobermin LD, Latini A, Wajner M, Souza DO, Goncalves CA, Gottfried C (2013) Resveratrol protects C6 astrocyte cell line against hydrogen peroxide-induced oxidative stress through heme oxygenase 1. PLoS ONE8: e64372
https://doi.org/10.1371/journal.pone.0064372
88 Rao VA (2013) Iron chelators with topoisomerase-inhibitory activity and their anticancer applications. Antioxid Redox Signal18: 930-955
https://doi.org/10.1089/ars.2012.4877
89 Rae TD, Goff HM (1998) The heme prosthetic group of lactoperoxidase. Structural characteristics of heme l and heme l-peptides: 27968-27977
https://doi.org/10.1074/jbc.273.43.27968
90 Reddy VV, Kupfer D, Caspi E (1977) Mechanism of C-5 double bond introduction in the biosynthesis of cholesterol by rat liver microsomes. J Biol Chem252: 2797-2801
91 Reid EL, Weynberg KD, Love J, Isupov MN, Littlechild JA, Wilson WH, Kelly SL, Lamb DC, Allen MJ (2013) Functional and structural characterisation of a viral cytochrome b5. FEBS Lett587: 3633-3639
https://doi.org/10.1016/j.febslet.2013.09.035
92 Renton FJ, Jeitner TM (1996) Cell cycle-dependent inhibition of the proliferation of human neural tumor cell lines by iron chelators. Biochem Pharmacol51: 1553-1561
https://doi.org/10.1016/0006-2952(96)00099-8
93 Romero A, Ramos E, de Los Rios C, Egea J, Del Pino J, Reiter RJ (2014) A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res56: 343
https://doi.org/10.1111/jpi.12132
94 Rouault TA (2012) Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis Models Mech5: 155-164
https://doi.org/10.1242/dmm.009019
95 Rudolf J, Makrantoni V, Ingledew WJ, Stark MJ, White MF (2006) The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol Cell23: 801-808
https://doi.org/10.1016/j.molcel.2006.07.019
96 Rutherford JC, Jaron S, Ray E, Brown PO, Winge DR (2001) A second iron-regulatory system in yeast independent of Aft1p. Proc Natl Acad Sci USA98: 14322-14327
https://doi.org/10.1073/pnas.261381198
97 Sanvisens N, Bano MC, Huang M, Puig S (2011) Regulation of ribonucleotide reductase in response to iron deficiency. Mol Cell44: 759-769
https://doi.org/10.1016/j.molcel.2011.09.021
98 Sanvisens N, de Llanos R, Puig S (2013) Function and regulation of yeast ribonucleotide reductase: cell cycle, genotoxic stress, and iron bioavailability. Biomed J36: 51-58
https://doi.org/10.4103/2319-4170.110398
99 Sauguet L, Klinge S, Perera RL, Maman JD, Pellegrini L (2010) Shared active site architecture between the large subunit of eukaryotic primase and DNA photolyase. PLoS ONE5: e10083
https://doi.org/10.1371/journal.pone.0010083
100 Schenkman JB, Jansson I (2003) The many roles of cytochrome b5. Pharmacol Ther97: 139-152
https://doi.org/10.1016/S0163-7258(02)00327-3
101 Schumacher SB, Stucki M, Hubscher U (2000) The N-terminal region of DNA polymerase delta catalytic subunit is necessary for holoenzyme function. Nucleic Acids Res28: 620-625
https://doi.org/10.1093/nar/28.2.620
102 Severance S, Hamza I (2009) Trafficking of heme and porphyrins in metazoa. Chem Rev109: 4596-4616
https://doi.org/10.1021/cr9001116
103 Shah R, Agarwal AK (2013) Anemia associated with chronic heart failure: current concepts. Clin Interv Aging8: 111-122
104 Shakoury-Elizeh M, Protchenko O, Berger A, Cox J, Gable K, Dunn TM, Prinz WA, Bard M, Philpott CC (2010) Metabolic response to iron deficiency in Saccharomyces cerevisiae. J Biol Chem285: 14823-14833
https://doi.org/10.1074/jbc.M109.091710
105 Sharp P, Srai SK (2007) Molecular mechanisms involved in intestinal iron absorption. World J Gastroenterol13: 4716-4724
106 Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G (2002) Maturation of cytosolic iron-sulfur proteins requires glutathione. J Biol Chem277: 26944-26949
https://doi.org/10.1074/jbc.M200677200
107 Siriwardana G, Seligman PA (2013) Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block. Physiol Rep1: e00176
https://doi.org/10.1002/phy2.176
108 Soe-Lin S, Apte SS, Andriopoulos B Jr, Andrews MC, Schranzhofer M, Kahawita T, Garcia-Santos D, Ponka P (2009) Nramp1 promotes efficient macrophage recycling of iron following erythrophagocytosis in vivo. Proc Natl Acad Sci USA106: 5960-5965
https://doi.org/10.1073/pnas.0900808106
109 Solti A, Gaspar L, Meszaros I, Szigeti Z, Levai L, Sarvari E (2008) Impact of iron supply on the kinetics of recovery of photosynthesis in Cd-stressed poplar (Populus glauca). Ann Bot102: 771-782
https://doi.org/10.1093/aob/mcn160
110 Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell9: 3273-3297
https://doi.org/10.1091/mbc.9.12.3273
111 Stehling O, Vashisht AA, Mascarenhas J, Jonsson ZO, Sharma T, Netz DJ, Pierik AJ, Wohlschlegel JA, Lill R (2012) MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity.Science337: 195-199
https://doi.org/10.1126/science.1219723
112 Stehling O, Mascarenhas J, Vashisht AA, Sheftel AD, Niggemeyer B, Rosser R, Pierik AJ, Wohlschlegel JA, Lill R (2013) Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron-sulfur proteins. Cell Metab18: 187-198
https://doi.org/10.1016/j.cmet.2013.06.015
113 Sung P, Guzder SN, Prakash L, Prakash S (1996) Reconstitution of TFIIH and requirement of its DNA helicase subunits, Rad3 and Rad25, in the incision step of nucleotide excision repair. J Biol Chem271: 10821-10826
https://doi.org/10.1074/jbc.271.18.10821
114 Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K, Takei Y, Nakamura Y (2000) A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature404: 42-49
https://doi.org/10.1038/35003506
115 Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol552: 335-344
https://doi.org/10.1113/jphysiol.2003.049478
116 Ueta R, Fujiwara N, Iwai K, Yamaguchi-Iwai Y (2007) Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae. Mol Biol Cell18: 2980-2990
https://doi.org/10.1091/mbc.E06-11-1054
117 Ueta R, Fujiwara N, Iwai K, Yamaguchi-Iwai Y (2012) Iron-induced dissociation of the Aft1p transcriptional regulator from target gene promoters is an initial event in iron-dependent gene suppression. Mol Cell Biol32: 4998-5008
https://doi.org/10.1128/MCB.00726-12
118 Urbanowski JL, Piper RC (1999) The iron transporter Fth1p forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane. J Biol Chem274: 38061-38070
https://doi.org/10.1074/jbc.274.53.38061
119 Vergeres G, Waskell L (1995) Cytochrome b5, its functions, structure and membrane topology. Biochimie77: 604-620
https://doi.org/10.1016/0300-9084(96)88176-4
120 Vohradsky J (2012) Stochastic simulation for the inference of transcriptional control network of yeast cyclins genes. Nucleic Acids Res40: 7096-7103
https://doi.org/10.1093/nar/gks440
121 Wagener FA, van Beurden HE, von den Hoff JW, Adema GJ, Figdor CG (2003) The heme-heme oxygenase system: a molecular switch in wound healing. Blood102: 521-528
https://doi.org/10.1182/blood-2002-07-2248
122 Wang X, Ira G, Tercero JA, Holmes AM, Diffley JF, Haber JE (2004) Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol24: 6891-6899
https://doi.org/10.1128/MCB.24.16.6891-6899.2004
123 White MF, Dillingham MS (2012) Iron-sulphur clusters in nucleic acid processing enzymes. Curr Opin Struct Biol22: 94-100
https://doi.org/10.1016/j.sbi.2011.11.004
124 Wu Y, Brosh RM Jr (2012) DNA helicase and helicase-nuclease enzymes with a conserved iron-sulfur cluster. Nucleic Acids Res40: 4247-4260
https://doi.org/10.1093/nar/gks039
125 Wu H, Li L, Du J, Yuan Y, Cheng X, Ling HQ (2005) Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana. Plant Cell Physiol46: 1505-1514
https://doi.org/10.1093/pcp/pci163
126 Wu Y, Suhasini AN, Brosh RM Jr (2009) Welcome the family of FANCJ-like helicases to the block of genome stability maintenance proteins. Cell Mol Life Sci66: 1209-1222
https://doi.org/10.1007/s00018-008-8580-6
127 Yamaguchi-Iwai Y, Ueta R, Fukunaka A, Sasaki R (2002) Subcellular localization of Aft1 transcription factor responds to iron status in Saccharomyces cerevisiae. J Biol Chem277: 18914-18918
https://doi.org/10.1074/jbc.M200949200
128 Yang J, Kim KD, Lucas A, Drahos KE, Santos CS, Mury SP, Capelluto DG, Finkielstein CV (2008) A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2. Mol Cell Biol28: 4697-4711
https://doi.org/10.1128/MCB.00236-08
129 Ye H, Rouault TA (2010) Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry49: 4945-4956
https://doi.org/10.1021/bi1004798
130 Ye W, Zhang L (2004) Heme controls the expression of cell cycle regulators and cell growth in HeLa cells. Biochem Biophys Res Commun315: 546-554
https://doi.org/10.1016/j.bbrc.2004.01.092
131 Yu B, Lane ME, Pestell RG, Albanese C, Wadler S (2000) Downregulation of cyclin D1 alters cdk 4- and cdk 2-specific phosphorylation of retinoblastoma protein. Mol Cell Biol Res Commun3: 352-359
https://doi.org/10.1006/mcbr.2000.0238
132 Yu Y, Kovacevic Z, Richardson DR (2007) Tuning cell cycle regulation with an iron key. Cell Cycle6: 1982-1994
https://doi.org/10.4161/cc.6.16.4603
133 Yun CW, Ferea T, Rashford J, Ardon O, Brown PO, Botstein D, Kaplan J, Philpott CC (2000a) Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake. J Biol Chem275: 10709-10715
https://doi.org/10.1074/jbc.275.14.10709
134 Yun CW, Tiedeman JS, Moore RE, Philpott CC (2000b) Siderophore-iron uptake in Saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters. J Biol Chem275: 16354-16359
https://doi.org/10.1074/jbc.M001456200
135 Yun CW, Bauler M, Moore RE, Klebba PE, Philpott CC (2001) The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. J Biol Chem276: 10218-10223
https://doi.org/10.1074/jbc.M010065200
136 Zhang AS (2010) Control of systemic iron homeostasis by the hemojuvelin-hepcidin axis. Adv Nutr1: 38-45
https://doi.org/10.3945/an.110.1009
137 Zhang Y, Lyver ER, Nakamaru-Ogiso E, Yoon H, Amutha B, Lee DW, Bi E, Ohnishi T, Daldal F, Pain D (2008) Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis. Mol Cell Biol28: 5569-5582
https://doi.org/10.1128/MCB.00642-08
138 Zhang F, Tao Y, Zhang Z, Guo X, An P, Shen Y, Wu Q, Yu Y, Wang F (2012) Metalloreductase Steap3 coordinates the regulation of iron homeostasis and inflammatory responses. Haematologica97: 1826-1835
https://doi.org/10.3324/haematol.2012.063974
139 Zhang C, Liu G, Huang M (2014a) Ribonucleotide reductase metallocofactor: assembly, maintenance and inhibition. Front Biol9: 104-113
https://doi.org/10.1007/s11515-014-1302-6
140 Zhang Y, Li H, Zhang C, An X, Liu L, Stubbe J, Huang M (2014) Conserved electron donor complex Dre2-Tah18 is required for ribonucleotide reductase metallocofactor assembly and DNA synthesis. Proceedings of the National Academy of Sciences of the United States of America
141 Zhao N, Gao J, Enns CA, Knutson MD (2010) ZRT/IRT-like protein 14 (ZIP14) promotes the cellular assimilation of iron from transferrin. J Biol Chem285: 32141-32150
https://doi.org/10.1074/jbc.M110.143248
[1] Shuxiang Xu, Jinchul Kim, Qingshuang Tang, Qu Chen, Jingfeng Liu, Yang Xu, Xuemei Fu. CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway[J]. Protein Cell, 2020, 11(5): 352-365.
[2] Zhanping Shi, Yanan Geng, Jiping Liu, Huina Zhang, Liqiang Zhou, Quan Lin, Juehua Yu, Kunshan Zhang, Jie Liu, Xinpei Gao, Chunxue Zhang, Yinan Yao, Chong Zhang, Yi E. Sun. Single-cell transcriptomics reveals gene signatures and alterations associated with aging in distinct neural stem/progenitor cell subpopulations[J]. Protein Cell, 2018, 9(4): 351-364.
[3] Caiguo Zhang,Fan Zhang. Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities[J]. Protein Cell, 2015, 6(2): 88-100.
[4] Haijin He,Marlyn Gonzalez,Fan Zhang,Fei Li. DNA replication components as regulators of epigenetic inheritance—lesson from fission yeast centromere[J]. Protein Cell, 2014, 5(6): 411-419.
[5] Dengwen Li,Xiaodong Sun,Linlin Zhang,Bing Yan,Songbo Xie,Ruming Liu,Min Liu,Jun Zhou. Histone deacetylase 6 and cytoplasmic linker protein 170 function together to regulate the motility of pancreatic cancer cells[J]. Protein Cell, 2014, 5(3): 214-223.
[6] Jijing Luo, Xiaoqi Liu. Polo-like kinase 1, on the rise from cell cycle regulation to prostate cancer development[J]. Prot Cell, 2012, 3(3): 182-197.
[7] Jianghong Man, Xuemin Zhang. CUEDC2: an emerging key player in inflammation and tumorigenesis[J]. Prot Cell, 2011, 2(9): 699-703.
[8] Chunbo Zhang, Yuheng Liu, Zhishang Hu, Lili An, Yikun He, Haiying Hang. Targeted deletion of mouse Rad1 leads to deficient cellular DNA damage responses[J]. Prot Cell, 2011, 2(5): 410-422.
[9] Gabriel M. Gordon, Wei Du. Conserved RB functions in development and tumor suppression[J]. Prot Cell, 2011, 2(11): 864-878.
[10] Wenzheng Zhang, Sheng Fu, Xuefeng Liu, Xuelian Zhao, Wenchi Zhang, Wei Peng, Congying Wu, Yuanyuan Li, Xuemei Li, Mark Bartlam, Zong-Hao Zeng, Qimin Zhan, Zihe Rao. Crystal structure of human Gadd45 reveals an active dimer[J]. Prot Cell, 2011, 2(10): 814-826.
[11] Mo Xu, Bing Zhu. Nucleosome assembly and epigenetic inheritance[J]. Prot Cell, 2010, 1(9): 820-829.
[12] Chia-Cheng Wu, Xiaohua Wu, Jiahuai Han, Peiqing Sun, . p38γ regulates UV-induced checkpoint signaling and repair of UV-induced DNA damage[J]. Protein Cell, 2010, 1(6): 573-583.
[13] Chonghua Li, Jianping Jin, . DNA replication licensing control and rereplication prevention[J]. Protein Cell, 2010, 1(3): 227-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed