Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2014, Vol. 5 Issue (10) : 737-749    https://doi.org/10.1007/s13238-014-0089-1
REVIEW
Mitochondria-mediated apoptosis in mammals
Shunbin Xiong1,Tianyang Mu2,Guowen Wang3,Xuejun Jiang4,*()
1. Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
2. Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian 116044, China
3. Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
4. Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
 Download: PDF(627 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The mitochondria-mediated caspase activation pathway is a major apoptotic pathway characterized by mitochondrial outer membrane permeabilization (MOMP) and subsequent release of cytochrome c into the cytoplasm to activate caspases. MOMP is regulated by the Bcl-2 family of proteins. This pathway plays important roles not only in normal development, maintenance of tissue homeostasis and the regulation of immune system, but also in human diseases such as immune disorders, neurodegeneration and cancer. In the past decades the molecular basis of this pathway and the regulatory mechanism have been comprehensively studied, yet a great deal of new evidence indicates that cytochrome c release from mitochondria does not always lead to irreversible cell death, and that caspase activation can also have non-death functions. Thus, many unsolved questions and new challenges are still remaining. Furthermore, the dysfunction of this pathway involved in cancer development is obvious, and targeting the pathway as a therapeutic strategy has been extensively explored, but the efficacy of the targeted therapies is still under development. In this review we will discuss the mitochondria-mediated apoptosis pathway and its physiological roles and therapeutic implications.

Keywords apoptosome      Bcl-2 family      IAPs      IAP antagonists      cancer therapy     
Corresponding Author(s): Xuejun Jiang   
Issue Date: 24 October 2014
 Cite this article:   
Shunbin Xiong,Tianyang Mu,Guowen Wang, et al. Mitochondria-mediated apoptosis in mammals[J]. Protein Cell, 2014, 5(10): 737-749.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-014-0089-1
https://academic.hep.com.cn/pac/EN/Y2014/V5/I10/737
1 Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW (2002) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell9: 423-432
https://doi.org/10.1016/S1097-2765(02)00442-2
2 Ackler S, Xiao Y, Mitten MJ, Foster K, Oleksijew A, Refici M, Schlessinger S, Wang B, Chemburkar SR, Bauch J (2008) ABT-263 and rapamycin act cooperatively to kill lymphoma cells in vitro and in vivo. Mol Cancer Ther7: 3265-3274
https://doi.org/10.1158/1535-7163.MCT-08-0268
3 Ashkenazi A, Holland P, Eckhardt SG (2008) Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/Tumor necrosis factor-related apoptosisinducing ligand (rhApo2L/TRAIL). J Clin Oncol26: 3621-3630
https://doi.org/10.1200/JCO.2007.15.7198
4 Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW, Epstein AL, Korsmeyer SJ (1985) Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell41: 899-906
https://doi.org/10.1016/S0092-8674(85)80070-2
5 Barrett RM, Colnaghi R, Wheatley SP (2011) Threonine 48 in the BIR domain of survivin is critical to its mitotic and anti-apoptotic activities and can be phosphorylated by CK2 in vitro. Cell Cycle10: 538-548
https://doi.org/10.4161/cc.10.3.14758
6 Ben-Ari Z, Pappo O, Cheporko Y, Yasovich N, Offen D, Shainberg A, Leshem D, Sulkes J, Vidne BA, Hochhauser E (2007) Bax ablation protects against hepatic ischemia/reperfusion injury in transgenic mice. Liver Transplant13: 1181-1188
https://doi.org/10.1002/lt.21221
7 Beug ST, Cheung HH, Lacasse EC, Korneluk RG (2012) Modulation of immune signalling by inhibitors of apoptosis. Trends Immunol33(11): 535-545
https://doi.org/10.1016/j.it.2012.06.004
8 Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG, Selivanova G (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med8: 282-288
https://doi.org/10.1038/nm0302-282
9 Cao X, Yap JL, Newell-Rogers MK, Peddaboina C, Jiang W, Papaconstantinou HT, Jupitor D, Rai A, Jung KY, Tubin RP (2013) The novel BH3 alpha-helix mimetic JY-1-106 induces apoptosis in a subset of cancer cells (lung cancer, colon cancer and mesothelioma) by disrupting Bcl-xL and Mcl-1 protein-protein interactions with Bak. Mol Cancer12: 42
https://doi.org/10.1186/1476-4598-12-42
10 Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell94: 727-737
https://doi.org/10.1016/S0092-8674(00)81732-8
11 Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature406: 855-862
https://doi.org/10.1038/35022514
12 Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES, Shi Y, Dataa P (2001) Structural basis of caspase-7 inhibition by XIAP. Cell104: 769-780
https://doi.org/10.1016/S0092-8674(01)00272-0
13 Chan FK (2012) Fueling the flames: mammalian programmed necrosis in inflammatory diseases. Cold Spring Harb Perspect Biol4(11). doi:
https://doi.org/10.1101/cshperspect.a008805
14 Chen DJ, Huerta S (2009) Smac mimetics as new cancer therapeutics. Anticancer Drugs20: 646-658
https://doi.org/10.1097/CAD.0b013e32832ced78
15 Chen P, Nordstrom W, Gish B, Abrams JM (1996) Grim, a novel cell death gene in Drosophila. Genes Dev10: 1773-1782
https://doi.org/10.1101/gad.10.14.1773
16 Chen R, Valencia I, Zhong F, McColl KS, Roderick HL, Bootman MD, Berridge MJ, Conway SJ, Holmes AB, Mignery GA (2004) Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J cell biol166: 193-203
https://doi.org/10.1083/jcb.200309146
17 Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ (2001) BCL-2, BCL-X(L) sequester BH3 domainonly molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell8: 705-711
https://doi.org/10.1016/S1097-2765(01)00320-3
18 Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell137: 1112-1123
https://doi.org/10.1016/j.cell.2009.05.037
19 Crook NE, Clem RJ, Miller LK (1993) An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol67: 2168-2174
20 Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM, Datta SR, Greenberg ME, Licklider LJ, Lowell BB (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature424: 952-956
https://doi.org/10.1038/nature01825
21 Danial NN, Gimenez-Cassina A, Tondera D (2010) Homeostatic functions of BCL-2 proteins beyond apoptosis. Adv Exp Med Biol687: 1-32
https://doi.org/10.1007/978-1-4419-6706-0_1
22 Devarajan E, Sahin AA, Chen JS, Krishnamurthy RR, Aggarwal N, Brun AM, Sapino A, Zhang F, Sharma D, Yang XH (2002) Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene21: 8843-8851
https://doi.org/10.1038/sj.onc.1206044
23 Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) X-linked IAP is a direct inhibitor of cell-death proteases. Nature388: 300-304
https://doi.org/10.1038/40901
24 Deveraux QL, Reed JC (1999) IAP family proteins-suppressors of apoptosis. Genes Dev13: 239-252
https://doi.org/10.1101/gad.13.3.239
25 Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell102: 33-42
https://doi.org/10.1016/S0092-8674(00)00008-8
26 Dubrez L, Berthelet J, Glorian V (2013) IAP proteins as targets for drug development in oncology. Onco Targets Ther9: 1285-1304
https://doi.org/10.2147/OTT.S33375
27 Edison N, Zuri D, Maniv I, Bornstein B, Lev T, Gottfried Y, Kemeny S, Garcia-Fernandez M, Kagan J, Larisch S (2012) The IAPantagonist ARTS initiates caspase activation upstream of cytochrome C and SMAC/Diablo. Cell Death Differ19: 356-368
https://doi.org/10.1038/cdd.2011.112
28 Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell44: 817-829
https://doi.org/10.1016/0092-8674(86)90004-8
29 Endo K, Kohnoe S, Watanabe A, Tashiro H, Sakata H, Morita M, Kakeji Y, Maehara Y (2009) Clinical significance of Smac/ DIABLO expression in colorectal cancer. Oncol Rep21: 351-355
30 Fischer U, Schulze-Osthoff K (2005) New approaches and therapeutics targeting apoptosis in disease. Pharmacol Rev57: 187-215
https://doi.org/10.1124/pr.57.2.6
31 Fulda S, Vucic D (2012) Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov11: 109-124
https://doi.org/10.1038/nrd3627
32 Fulda S, Wick W, Weller M, Debatin KM (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med8: 808-815
33 Gao Z, Tian Y, Wang J, Yin Q, Wu H, Li YM, Jiang X (2007) A dimeric Smac/diablo peptide directly relieves caspase-3 inhibition by XIAP. Dynamic and cooperative regulation of XIAP by Smac/ Diablo. J Biol Chem282: 30718-30727
https://doi.org/10.1074/jbc.M705258200
34 Garcia-Fernandez M, Kissel H, Brown S, Gorenc T, Schile AJ, Rafii S, Larisch S, Steller H (2010) Sept4/ARTS is required for stem cell apoptosis and tumor suppression. Genes Dev24: 2282-2293
https://doi.org/10.1101/gad.1970110
35 Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol2: 156-162
https://doi.org/10.1038/35004029
36 Goldstein JC, Munoz-Pinedo C, Ricci JE, Adams SR, Kelekar A, Schuler M, Tsien RY, Green DR (2005) Cytochrome c is released in a single step during apoptosis. Cell Death Differ12: 453-462
https://doi.org/10.1038/sj.cdd.4401596
37 Gottfried Y, Rotem A, Lotan R, Steller H, Larisch S (2004) The mitochondrial ARTS protein promotes apoptosis through targeting XIAP. EMBO J23: 1627-1635
https://doi.org/10.1038/sj.emboj.7600155
38 Goyal L, McCall K, Agapite J, Hartwieg E, Steller H (2000) Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J19: 589-597
https://doi.org/10.1093/emboj/19.4.589
39 Grether ME, Abrams JM, Agapite J, White K, Steller H (1995) The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev9: 1694-1708
https://doi.org/10.1101/gad.9.14.1694
40 Guicciardi ME, Gores GJ (2013) Unshackling caspase-7 for cancer therapy. J Clin Investig123: 3706-3708
https://doi.org/10.1172/JCI71440
41 Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL, Kagi D, Khoo W (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell94: 339-352
https://doi.org/10.1016/S0092-8674(00)81477-4
42 Han J, Zhong CQ, Zhang DW (2011) Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol12: 1143-1149
https://doi.org/10.1038/ni.2159
43 Hao Y, Sekine K, Kawabata A, Nakamura H, Ishioka T, Ohata H, Katayama R, Hashimoto C, Zhang X, Noda T (2004) Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function. Nat Cell Biol6: 849-860
https://doi.org/10.1038/ncb1159
44 Hao Z, Duncan GS, Chang CC, Elia A, Fang M, Wakeham A, Okada H, Calzascia T, Jang Y, You-Ten A (2005) Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf-1 in apoptosis. Cell121: 579-591
https://doi.org/10.1016/j.cell.2005.03.016
45 Hardwick JM, Soane L (2013) Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol5(2). doi:
https://doi.org/10.1101/cshperspect.a008722
46 Harlin H, Reffey SB, Duckett CS, Lindsten T, Thompson CB (2001) Characterization of XIAP-deficient mice. Mol Cell Biol21: 3604-3608
https://doi.org/10.1128/MCB.21.10.3604-3608.2001
47 He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell137: 1100-1111
https://doi.org/10.1016/j.cell.2009.05.021
48 Hegde R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti L, DuBois G, Lazebnik Y, Zervos AS, Fernandes-Alnemri T (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis proteincaspase interaction. J Biol Chem277: 432-438
https://doi.org/10.1074/jbc.M109721200
49 Herbst RS, Frankel SR (2004) Oblimersen sodium (Genasense bcl-2 antisense oligonucleotide): a rational therapeutic to enhance apoptosis in therapy of lung cancer. Clin Cancer Res10: 4245s-4248s
https://doi.org/10.1158/1078-0432.CCR-040018
50 Hetz C, Vitte PA, Bombrun A, Rostovtseva TK, Montessuit S, Hiver A, Schwarz MK, Church DJ, Korsmeyer SJ, Martinou JC (2005) Bax channel inhibitors prevent mitochondrion-mediated apoptosis and protect neurons in a model of global brain ischemia. J Biol Chem280: 42960-42970
https://doi.org/10.1074/jbc.M505843200
51 Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, XavierR J, Yuan J (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell135: 1311-1323
https://doi.org/10.1016/j.cell.2008.10.044
52 Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature348: 334-336
https://doi.org/10.1038/348334a0
53 Horvitz HR (1999) Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res59: 1701s-1706s
54 Horvitz HR, Shaham S, Hengartner MO (1994) The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol59: 377-385
https://doi.org/10.1101/SQB.1994.059.01.042
55 Hu Y, Ding L, Spencer DM, Nunez G (1998) WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. J Biol Chem273: 33489-33494
https://doi.org/10.1074/jbc.273.50.33489
56 Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H (2001) Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell104: 781-790
57 Huang H, Zhang XF, Zhou HJ, Xue YH, Dong QZ, Ye QH, Qin LX (2010) Expression and prognostic significance of osteopontin and caspase-3 in hepatocellular carcinoma patients after curative resection. Cancer Sci101: 1314-1319
https://doi.org/10.1111/j.1349-7006.2010.01524.x
58 Jiang X, Wang X (2000) Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem275: 31199-31203
https://doi.org/10.1074/jbc.C000405200
59 Jiang X, Kim HE, Shu H, Zhao Y, Zhang H, Kofron J, Donnelly J, Burns D, Ng SC, Rosenberg S, Wang X (2003) Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science299: 223-226
https://doi.org/10.1126/science.1076807
60 Jiang X, Wang X (2004) Cytochrome C-mediated apoptosis. Annu Rev Biochem73: 87-106
https://doi.org/10.1146/annurev.biochem.73.011303.073706
61 Jost PJ, Grabow S, Gray D, McKenzie MD, Nachbur U, Huang DC, Bouillet P, Thomas HE, Borner C, Silke J (2009) XIAP discriminates between type I and type II FAS-induced apoptosis. Nature460: 1035-1039
https://doi.org/10.1038/nature08229
62 Kamada S, Shimono A, Shinto Y, Tsujimura T, Takahashi T, Noda T, Kitamura Y, Kondoh H, Tsujimoto Y (1995) bcl-2 deficiency in mice leads to pleiotropic abnormalities: accelerated lymphoid cell death in thymus and spleen, polycystic kidney, hair hypopigmentation, and distorted small intestine. Cancer Res55: 354-359
63 Katagiri N, Shobuike T, Chang B, Kukita A, Miyamoto H (2012) The human apoptosis inhibitor NAIP induces pyroptosis in macrophages infected with Legionella pneumophila. Microbes Infect14: 1123-1132
https://doi.org/10.1016/j.micinf.2012.03.006
64 Kerr JF (2002) History of the events leading to the formulation of the apoptosis concept. Toxicology181-182: 471-474
https://doi.org/10.1016/S0300-483X(02)00457-2
65 Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer26: 239-257
https://doi.org/10.1038/bjc.1972.33
66 Kim HE, Du F, Fang M, Wang X (2005) Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc Natl Acad Sci USA102: 17545-17550
https://doi.org/10.1073/pnas.0507900102
67 Kim HE, Jiang X, Du F, Wang X (2008) PHAPI, CAS, andHsp70 promote apoptosome formation by preventing Apaf-1 aggregation and enhancing nucleotide exchange on Apaf-1. Mol Cell30: 239-247
https://doi.org/10.1016/j.molcel.2008.03.014
68 Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature384: 368-372
https://doi.org/10.1038/384368a0
69 Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic P, Flavell RA (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell94: 325-337
https://doi.org/10.1016/S0092-8674(00)81476-2
70 Kuranaga E, Miura M (2007) Nonapoptotic functions of caspases: caspases as regulatory molecules for immunity and cell-fate determination. Trends Cell Biol17: 135-144
https://doi.org/10.1016/j.tcb.2007.01.001
71 LaCasse EC, Baird S, Korneluk RG, MacKenzie AE (1998) The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene17: 3247-3259
https://doi.org/10.1038/sj.onc.1202569
72 Lamkanfi M, Festjens N, Declercq W, Vanden Berghe T, Vandenabeele P (2007) Caspases in cell survival, proliferation and differentiation. Cell Death Differ14: 44-55
https://doi.org/10.1038/sj.cdd.4402047
73 Larisch S, Yi Y, Lotan R, Kerner H, Eimerl S, Tony Parks W, Gottfried Y, Birkey Reffey S, de Caestecker MP, Danielpour D (2000) A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat Cell Biol2: 915-921
https://doi.org/10.1038/35046566
74 Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell91: 479-489
https://doi.org/10.1016/S0092-8674(00)80434-1
75 Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell94: 491-501
https://doi.org/10.1016/S0092-8674(00)81590-1
76 Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, Harran PG (2004) A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science305: 1471-1474
https://doi.org/10.1126/science.1098231
77 Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M (2010) Caspase-3 activation via mitochondria is required for longterm depression and AMPA receptor internalization. Cell141: 859-871
https://doi.org/10.1016/j.cell.2010.03.053
78 Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz T, McDermott A (2012) The RIP1/ RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell150: 339-350
https://doi.org/10.1016/j.cell.2012.06.019
79 Lieber J, Eicher C, Wenz J, Kirchner B, Warmann SW, Fuchs J, Armeanu-Ebinger S (2011) The BH3 mimetic ABT-737 increases treatment efficiency of paclitaxel against hepatoblastoma. BMC Cancer11: 362
https://doi.org/10.1186/1471-2407-11-362
80 Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell6: 1389-1399
https://doi.org/10.1016/S1097-2765(00)00136-2
81 Linkermann A, Green DR (2014) Necroptosis. N Engl J Med370: 455-465
https://doi.org/10.1056/NEJMra1310050
82 Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell86: 147-157
https://doi.org/10.1016/S0092-8674(00)80085-9
83 Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC, Fesik SW (2000) Structural basis for binding of Smac/ DIABLO to the XIAP BIR3 domain. Nature408: 1004-1008
https://doi.org/10.1038/35050006
84 Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, Miller RS, Yi H, Shangary S, Sun Y (2008) SM-164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP. Cancer Res68: 9384-9393
https://doi.org/10.1158/0008-5472.CAN-08-2655
85 Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell94: 481-490
https://doi.org/10.1016/S0092-8674(00)81589-5
86 MacFarlane M, Merrison W, Bratton SB, Cohen GM (2002) Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J Biol Chem277: 36611-36616
https://doi.org/10.1074/jbc.M200317200
87 Mahadevan D, Chalasani P, Rensvold D, Kurtin S, Pretzinger C, Jolivet J, Ramanathan RK, Von Hoff DD, Weiss GJ (2013) Phase I trial of AEG35156 an antisense oligonucleotide to XIAP plus gemcitabine in patients with metastatic pancreatic ductal adenocarcinoma. Am J Clin Oncol36: 239-243
https://doi.org/10.1097/COC.0b013e3182467a13
88 Martins LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, Lemoine NR, Savopoulos J, Gray CW, Creasy CL, Dingwall C (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem277: 439-444
https://doi.org/10.1074/jbc.M109784200
89 Martins LM, Morrison A, Klupsch K, Fedele V, Moisoi N, Teismann P, Abuin A, Grau E, Geppert M, Livi GP (2004) Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol24: 9848-9862
https://doi.org/10.1128/MCB.24.22.9848-9862.2004
90 Martins CP, Brown-Swigart L, Evan GI (2006) Modeling the therapeutic efficacy of p53 restoration in tumors. Cell127: 1323-1334
https://doi.org/10.1016/j.cell.2006.12.007
91 McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol5: a008656
https://doi.org/10.1101/cshperspect.a008656
92 Michaelidis TM, Sendtner M, Cooper JD, Airaksinen MS, Holtmann B, Meyer M, Thoenen H (1996) Inactivation of bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development. Neuron17: 75-89
https://doi.org/10.1016/S0896-6273(00)80282-2
93 Mizutani Y, Nakanishi H, Li YN, Matsubara H, Yamamoto K, Sato N, Shiraishi T, Nakamura T, Mikami K, Okihara K (2007) Overexpression of XIAP expression in renal cell carcinoma predicts a worse prognosis. Int J Oncol30: 919-925
94 Motoyama N, Wang F, Roth KA, Sawa H, Nakayama K, Negishi I, Senju S, Zhang Q, Fujii S (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science267: 1506-1510
https://doi.org/10.1126/science.7878471
95 Motoyama N, Kimura T, Takahashi T, Watanabe T, Nakano T (1999) bcl-x prevents apoptotic cell death of both primitive and definitive erythrocytes at the end of maturation. J Exp Med189: 1691-1698
https://doi.org/10.1084/jem.189.11.1691
96 Moulin M, Anderton H, Voss AK, Thomas T, Wong WW, Bankovacki A, Feltham R, Chau D, Cook WD, Silke J (2012) IAPs limit activation of RIP kinases by TNF receptor 1 during development. EMBO J31: 1679-1691
https://doi.org/10.1038/emboj.2012.18
97 Newton K, Dugger DL, Wickliffe KE, Kapoor N, de Almagro MC, Vucic D, Komuves L, Ferrando RE, French DM, Webster J (2014) Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science343: 1357-1360
https://doi.org/10.1126/science.1249361
98 Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature457: 981-989
https://doi.org/10.1038/nature07767
99 Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS, Green DR (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature471: 363-367
https://doi.org/10.1038/nature09852
100 Okada H, Suh WK, Jin J, Woo M, Du C, Elia A, Duncan GS, Wakeham A, Itie A, Lowe SW (2002) Generation and characterization of Smac/DIABLO-deficient mice. Mol Cell Biol22: 3509-3517
https://doi.org/10.1128/MCB.22.10.3509-3517.2002
101 Okada H, Bakal C, Shahinian A, Elia A, Wakeham A, Suh WK, Duncan GS, Ciofani M, Rottapel R, Zuniga-Pflucker JC (2004) Survivin loss in thymocytes triggers p53-mediated growth arrest and p53-independent cell death. J Exp Med199: 399-410
https://doi.org/10.1084/jem.20032092
102 Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas.[see comment]. Nature358: 80-83
https://doi.org/10.1038/358080a0
103 Popgeorgiev N, Bonneau B, Ferri KF, Prudent J, Thibaut J, Gillet G (2011) The apoptotic regulator Nrz controls cytoskeletal dynamics via the regulation of Ca2+ trafficking in the zebrafish blastula. Dev Cell20: 663-676
https://doi.org/10.1016/j.devcel.2011.03.016
104 Provencio M, Martin P, Garcia V, Candia A, Sanchez AC, Bellas C (2010) Caspase 3a: new prognostic marker for diffuse large B-cell lymphoma in the rituximab era. Leuk Lymphoma51: 2021-2030
https://doi.org/10.3109/10428194.2010.516039
105 Ren J, Shi M, Liu R, Yang QH, Johnson T, Skarnes WC, Du C (2005) The Birc6 (Bruce) gene regulates p53 and the mitochondrial pathway of apoptosis and is essential for mouse embryonic development. Proc Natl Acad Sci USA102: 565-570
https://doi.org/10.1073/pnas.0408744102
106 Ren D, Tu HC, Kim H, Wang GX, Bean GR, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH (2010) BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science330: 1390-1393
https://doi.org/10.1126/science.1190217
107 Reuland SN, Goldstein NB, Partyka KA, Cooper DA, Fujita M, Norris DA, Shellman YG (2011) The combination of BH3-mimetic ABT-737 with the alkylating agent temozolomide induces strong synergistic killing of melanoma cells independent of p53. PloS One6: e24294
https://doi.org/10.1371/journal.pone.0024294
108 Riedl SJ, Li W, Chao Y, Schwarzenbacher R, Shi Y (2005) Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature434: 926-933
https://doi.org/10.1038/nature03465
109 Rodriguez J, Lazebnik Y (1999) Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev13: 3179-3184
https://doi.org/10.1101/gad.13.24.3179
110 Rolland SG, Conradt B (2010) New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics. Curr Opin Cell Biol22: 852-858
https://doi.org/10.1016/j.ceb.2010.07.014
111 Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. Embo J16: 6914-6925
https://doi.org/10.1093/emboj/16.23.6914
112 Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/ Fas) signaling pathways. EMBO J17: 1675-1687
https://doi.org/10.1093/emboj/17.6.1675
113 Schimmer AD, Estey EH, Borthakur G, Carter BZ, Schiller GJ, Tallman MS, Altman JK, Karp JE, Kassis J, Hedley DW (2009) Phase I/II trial of AEG35156 X-linked inhibitor of apoptosis protein antisense oligonucleotide combined with idarubicin and cytarabine in patients with relapsed or primary refractory acute myeloid leukemia. J Clin Oncol27: 4741-4746
https://doi.org/10.1200/JCO.2009.21.8172
114 Selivanova G, Iotsova V, Okan I, Fritsche M, Strom M, Groner B, Grafstrom RC, Wiman KG (1997) Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat Med3: 632-638
https://doi.org/10.1038/nm0697-632
115 Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J (2008) Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA105: 3933-3938
https://doi.org/10.1073/pnas.0708917105
116 Shchors K, Persson AI, Rostker F, Tihan T, Lyubynska N, Li N, Swigart LB, Berger MS, Hanahan D, Weiss WA (2013) Using a preclinicalmousemodel of high-grade astrocytomato optimize p53 restoration therapy. Proc Natl Acad Sci USA110: E1480-E1489
https://doi.org/10.1073/pnas.1219142110
117 Skoufias DA, Mollinari C, Lacroix FB, Margolis RL (2000) Human survivin is a kinetochore-associated passenger protein. J Cell Biol151: 1575-1582
https://doi.org/10.1083/jcb.151.7.1575
118 Speliotes EK, Uren A, Vaux D, Horvitz HR (2000) The survivin-like C. elegans BIR-1 protein acts with the Aurora-like kinase AIR-2 to affect chromosomes and the spindle midzone. Mol Cell6: 211-223
https://doi.org/10.1016/S1097-2765(00)00023-X
119 Steinhart L, Belz K, Fulda S (2013) Smac mimetic and demethylating agents synergistically trigger cell death in acute myeloid leukemia cells and overcome apoptosis resistance by inducing necroptosis. Cell Death Dis4: e802
https://doi.org/10.1038/cddis.2013.320
120 Strater J, Herter I, Merkel G, Hinz U, Weitz J, Moller P (2010) Expression and prognostic significance of APAF-1, caspase-8 and caspase-9 in stage II/III colon carcinoma: caspase-8 and caspase-9 is associated with poor prognosis. Int J Cancer127: 873-880
121 Sun XM, Bratton SB, Butterworth M, MacFarlane M, Cohen GM (2002) Bcl-2 and Bcl-xL inhibit CD95-mediated apoptosis by preventing mitochondrial release of Smac/DIABLO and subsequent inactivation of X-linked inhibitor-of-apoptosis protein. J Biol Chem277: 11345-11351
https://doi.org/10.1074/jbc.M109893200
122 Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell148: 213-227
https://doi.org/10.1016/j.cell.2011.11.031
123 Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell8: 613-621
https://doi.org/10.1016/S1097-2765(01)00341-0
124 Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol11: 621-632
https://doi.org/10.1038/nrm2952
125 Tait SW, Parsons MJ, Llambi F, Bouchier-Hayes L, Connell S, Munoz-Pinedo C, Green DR (2010) Resistance to caspaseindependent cell death requires persistence of intact mitochondria. Dev Cell18: 802-813
https://doi.org/10.1016/j.devcel.2010.03.014
126 Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, Scudiero DA, Tudor G, Qui YH, Monks A (2000) Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res6: 1796-1803
127 Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol9: 231-241
https://doi.org/10.1038/nrm2312
128 Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science281: 1312-1316
https://doi.org/10.1126/science.281.5381.1312
129 Toledo F, Wahl GM (2007) MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol39: 1476-1482
https://doi.org/10.1016/j.biocel.2007.03.022
130 Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, Johnson EF, Marsh KC, Mitten MJ, Nimmer P (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res68: 3421-3428
https://doi.org/10.1158/0008-5472.CAN-07-5836
131 Tsujimoto Y, Cossman J, Jaffe E, Croce CM (1985) Involvement of the bcl-2 gene in human follicular lymphoma. Science228: 1440-1443
https://doi.org/10.1126/science.3874430
132 Twiddy D, Cain K (2007) Caspase-9 cleavage, do you need it? Biochem J405: e1-e2
133 Uren AG, Wong L, Pakusch M, Fowler KJ, Burrows FJ, Vaux DL, Choo KH (2000) Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr Biol10: 1319-1328
https://doi.org/10.1016/S0960-9822(00)00769-7
134 van Loo G, van Gurp M, Depuydt B, Srinivasula SM, Rodriguez I, Alnemri ES, Gevaert K, Vandekerckhove J, Declercq W, Vandenabeele P (2002) The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ9: 20-26
https://doi.org/10.1038/sj.cdd.4400970
135 Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science303: 844-848
https://doi.org/10.1126/science.1092472
136 Vaux DL, Cory S, Adams JM (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature335: 440-442
https://doi.org/10.1038/335440a0
137 Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T (2007) Restoration of p53 function leads to tumour regression in vivo. Nature445: 661-665
https://doi.org/10.1038/nature05541
138 Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell102: 43-53
https://doi.org/10.1016/S0092-8674(00)00009-X
139 Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM, Day CL, Tikoo A, Burke R, Wrobel C (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem277: 445-454
https://doi.org/10.1074/jbc.M109891200
140 Villunger A, Labi V, Bouillet P, Adams J, Strasser A (2011) Can the analysis of BH3-only protein knockout mice clarify the issue of ‘direct versus indirect’ activation of Bax and Bak? Cell Death Differ18: 1545-1546
https://doi.org/10.1038/cdd.2011.100
141 Vucic D, Kaiser WJ, Harvey AJ, Miller LK (1997) Inhibition of reaperinduced apoptosis by interaction with inhibitor of apoptosis proteins (IAPs). Proc Natl Acad Sci USA94: 10183-10188
https://doi.org/10.1073/pnas.94.19.10183
142 Vucic D, Kaiser WJ, Miller LK (1998) Inhibitor of apoptosis proteins physically interact with and block apoptosis induced by Drosophila proteins HID and GRIM. Mol Cell Biol18: 3300-3309
143 Vucic D, Stennicke HR, Pisabarro MT, Salvesen GS, Dixit VM (2000) ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol10: 1359-1366
https://doi.org/10.1016/S0960-9822(00)00781-8
144 Wade M, Wang YV, Wahl GM (2010) The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol20: 299-309
https://doi.org/10.1016/j.tcb.2010.01.009
145 Wang SL, Hawkins CJ, Yoo SJ, Muller HA, Hay BA (1999) The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell98: 453-463
https://doi.org/10.1016/S0092-8674(00)81974-1
146 Wang Y, Suh YA, Fuller MY, Jackson JG, Xiong S, Terzian T, Quintas-Cardama A, Bankson JA, El-Naggar AK, Lozano G (2011) Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation. J Clin Investig121: 893-904
https://doi.org/10.1172/JCI44504
147 Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science292: 727-730
https://doi.org/10.1126/science.1059108
148 White K, Tahaoglu E, Steller H (1996) Cell killing by the Drosophila gene reaper. Science271: 805-807
https://doi.org/10.1126/science.271.5250.805
149 Woo M, Hakem R, Soengas MS, Duncan GS, Shahinian A, Kagi D, Hakem A, McCurrach M, Khoo W, Kaufman SA (1998) Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev12: 806-819
https://doi.org/10.1101/gad.12.6.806
150 Woo M, Hakem R, Furlonger C, Hakem A, Duncan GS, Sasaki T, Bouchard D, Lu L, Wu GE, Paige CJ (2003) Caspase-3 regulates cell cycle in B cells: a consequence of substrate specificity. Nat Immunol4: 1016-1022
https://doi.org/10.1038/ni976
151 Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, Shi Y (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature408: 1008-1012
https://doi.org/10.1038/35050012
152 Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature445: 656-660
https://doi.org/10.1038/nature05529
153 Yang QH, Du C (2004) Smac/DIABLO selectively reduces the levels of c-IAP1 and c-IAP2 but not that of XIAP and livin in HeLa cells. J Biol Chem279: 16963-16970
https://doi.org/10.1074/jbc.M401253200
154 Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C (2003) Omi/ HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev17: 1487-1496
https://doi.org/10.1101/gad.1097903
155 Yin XM, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B, Roth KA, Korsmeyer SJ (1999) Bid-deficient mice are resistant to Fasinduced hepatocellular apoptosis. Nature400: 886-891
https://doi.org/10.1038/23730
156 Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell94: 739-750
https://doi.org/10.1016/S0092-8674(00)81733-X
157 Yu T, Wang X, Purring-Koch C, Wei Y, McLendon GL (2001) A mutational epitope for cytochrome C binding to the apoptosis protease activation factor-1. J Biol Chem276: 13034-13038
https://doi.org/10.1074/jbc.M009773200
158 Yu X, Vazquez A, Levine AJ, Carpizo DR (2012) Allele-specific p53 mutant reactivation. Cancer Cell21: 614-625
https://doi.org/10.1016/j.ccr.2012.03.042
159 Zermati Y, Garrido C, Amsellem S, Fishelson S, Bouscary D, Valens F, Varet B, Solary E, Hermine O (2001) Caspase activation is required for terminal erythroid differentiation. J Exp Med193: 247-254
https://doi.org/10.1084/jem.193.2.247
160 Zermati Y, Mouhamad S, Stergiou L, Besse B, Galluzzi L, Boehrer S, Pauleau AL, Rosselli F, D’Amelio M, Amendola R (2007) Nonapoptotic role for Apaf-1 in the DNA damage checkpoint: 624-637
https://doi.org/10.1016/j.molcel.2007.09.030
161 Zhang HZ, Kasibhatla S, Wang Y, Herich J, Guastella J, Tseng B, Drewe J, Cai SX (2004) Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg Med Chem12: 309-317
https://doi.org/10.1016/j.bmc.2003.11.013
162 Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNFinduced cell death from apoptosis to necrosis. Science325: 332-336
https://doi.org/10.1126/science.1172308
163 Zlobec I, Steele R, Terracciano L, Jass JR, Lugli A (2007) Selecting immunohistochemical cut-off scores for novel biomarkers of progression and survival in colorectal cancer. J Clin Pathol60: 1112-1116
https://doi.org/10.1136/jcp.2006.044537
164 Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell90: 405-413
https://doi.org/10.1016/S0092-8674(00)80501-2
165 Zou H, Li Y, Liu X, Wang X (1999) An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem274: 11549-11556
https://doi.org/10.1074/jbc.274.17.11549
166 Zou H, Yang R, Hao J, Wang J, Sun C, Fesik SW, Wu JC, Tomaselli KJ, Armstrong RC (2003) Regulation of the Apaf-1/caspase-9 apoptosome by caspase-3 and XIAP. J Biol Chem278: 8091-8098
https://doi.org/10.1074/jbc.M204783200
[1] Anna Gortat,Mónica Sancho,Laura Mondragón,Àgel Messeguer,Enrique Pérez-Payá,Mar Orzáez. Apaf1 inhibition promotes cell recovery from apoptosis[J]. Protein Cell, 2015, 6(11): 833-843.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed