Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2015, Vol. 6 Issue (8) : 589-598    https://doi.org/10.1007/s13238-015-0171-3
RESEARCH ARTICLE
Involvement of collagen-binding heat shock protein 47 in scleroderma-associated fibrosis
Haiyan Chu1,Ting Wu1,Wenyu Wu2,5,Wenzhen Tu3,Shuai Jiang1,Sidi Chen1,Yanyun Ma1,Qingmei Liu1,Xiaodong Zhou4,Li Jin1,*(),Jiucun Wang1,5,*()
1. Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
2. Division of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
3. Division of Rheumatology, Shanghai TCM-Integrated Hospital, Shanghai 200082, China
4. Division of Rheumatology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
5. Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai 20080, China
 Download: PDF(980 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Uncontrolled fibrosis of skin and internal organs is the main characteristic of scleroderma, and collagen is a major extracellular matrix protein that deposits in the fibrotic organs. As the chaperone of collagen, heat shock protein 47 (HSP47) is closely related with the development of fibrosis. To explore the potential function of HSP47 in the pathogenesis of scleroderma, the clinical, in vivo and in vitro studies were performed. In clinical, the increased mRNA level of HSP47 was observed in the skin fibroblasts and PBMC from scleroderma patients, and the enhanced protein level of HSP47 was also detected in the skin biopsy and plasma of the above patients. Unexpectedly, the enhanced levels of HSP47 were positively correlated with the presence of anti-centromere antibody in scleroderma patients. Moreover, a high expression of HSP47 was found in the skin lesion of BLM-induced scleroderma mouse model. Further in vitro studies demonstrated that HSP47 knockdown could block the intracellular and extracellular collagen over-productions induced by exogenous TGF-β. Therefore, the results in this study provide direct evidence that HSP47 is involved in the pathogenesis of scleroderma. The high expression of HSP47 can be detected in the circulatory system of scleroderma patients, indicating that HSP47 may become a pathological marker to assess the progression of scleroderma, and also explain the systemic fibrosis of scleroderma. Meanwhile, collagen over-expression is blocked by HSP47 knockdown, suggesting the possibility that HSP47 can be a potential therapeutic target for scleroderma.

Keywords systemic sclerosis      fibrosis      collagen      heat shock protein 47      anti-centromere antibody      therapeutic target     
Corresponding Author(s): Li Jin,Jiucun Wang   
Issue Date: 05 August 2015
 Cite this article:   
Haiyan Chu,Ting Wu,Wenyu Wu, et al. Involvement of collagen-binding heat shock protein 47 in scleroderma-associated fibrosis[J]. Protein Cell, 2015, 6(8): 589-598.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-015-0171-3
https://academic.hep.com.cn/pac/EN/Y2015/V6/I8/589
1 Abraham DJ, Krieg T, Distler J, Distler O (2009) Overview of pathogenesis of systemic sclerosis. Rheumatology 48(Suppl 3): iii3-7
https://doi.org/10.1093/rheumatology/ken481
2 Bhattacharyya S, Wei J, Varga J (2012) Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol 8: 42-54
https://doi.org/10.1038/nrrheum.2011.149
3 Bournia VK, Vlachoyiannopoulos PG, Selmi C, Moutsopoulos HM, Gershwin ME (2009) Recent advances in the treatment of systemic sclerosis. Clin Rev Allergy Immunol 36: 176-200
https://doi.org/10.1007/s12016-008-8114-x
4 Broen JC, Coenen MJ, Radstake TR (2012) Genetics of systemic sclerosis: an update. Curr Rheumatol Rep 14: 11-21
https://doi.org/10.1007/s11926-011-0221-7
5 Denton CP, Black CM, Abraham DJ (2006) Mechanisms and consequences of fibrosis in systemic sclerosis. Nat Clin Pract Rheumatol 2: 134-144
https://doi.org/10.1038/ncprheum0115
6 Derk CT, Jimenez SA (2003) Systemic sclerosis: current views of its pathogenesis. Autoimmun Rev 2: 181-191
https://doi.org/10.1016/S1568-9972(03)00005-3
7 Fujimoto M, Hamaguchi Y, Yazawa N, Komura K, Takehara K, Sato S (2004) Autoantibodies to a collagen-specific molecular chaperone, heat-shock protein 47, in systemic sclerosis. Clin Exp Immunol 138: 534-539
https://doi.org/10.1111/j.1365-2249.2004.02633.x
8 Hagiwara S, Iwasaka H, Matsumoto S, Noguchi T, Yoshioka H (2007) Coexpression of HSP47 gene and type I and type III collagen genes in LPS-induced pulmonary fibrosis in rats. Lung 185: 31-37
https://doi.org/10.1007/s00408-006-0085-1
9 Hirayoshi K, Kudo H, Takechi H, Nakai A, Iwamatsu A, Yamada KM, Nagata K (1991) HSP47: a tissue-specific, transformation-sensitive, collagen-binding heat shock protein of chicken embryo fibroblasts. Mol Cell Biol 11: 4036-4044
10 Hunzelmann N, Brinckmann J (2010) What are the new milestones in the pathogenesis of systemic sclerosis? Ann Rheum Dis 69 (Suppl 1): i52-56
https://doi.org/10.1136/ard.2009.117119
11 Ishida Y, Kubota H, Yamamoto A, Kitamura A, Bachinger HP, Nagata K (2006) Type I collagen in Hsp47-null cells is aggregated in endoplasmic reticulum and deficient in N-propeptide processing and fibrillogenesis. Mol Biol Cell 17: 2346-2355
https://doi.org/10.1091/mbc.E05-11-1065
12 Jercan O, Penescu M, Malaescu DG (2012) Immunoexpression of alpha-SMA and CD68 in native kidney biopsies. Rom J Morphol Embryol= Revue roumaine de morphologie et embryologie 53: 1037-1042
13 Kach J, Sandbo N, Sethakorn N, Williams J, Reed EB, La J, Tian X, Brain SD, Rajendran K, Krishnan R (2013) Regulation of myofibroblast differentiation and bleomycin-induced pulmonary fibrosis by adrenomedullin. Am J Physiol Lung Cell Mol Physiol 304: L757-764
https://doi.org/10.1152/ajplung.00262.2012
14 Kakugawa T, Mukae H, Hayashi T, Ishii H, Abe K, Fujii T, Oku H, Miyazaki M, Kadota J, Kohno S (2004) Pirfenidone attenuates expression of HSP47 in murine bleomycin-induced pulmonary fibrosis. Eur Respir J 24: 57-65
https://doi.org/10.1183/09031936.04.00120803
15 Kakugawa T, Mukae H, Hishikawa Y, Ishii H, Sakamoto N, Ishimatsu Y, Fujii T, Koji T, Kohno S (2010) Localization of HSP47 mRNA in murine bleomycin-induced pulmonary fibrosis. Virchows Archiv Int J Pathol 456: 309-315
https://doi.org/10.1007/s00428-009-0876-x
16 Krieg T, Abraham D, Lafyatis R (2007) Fibrosis in connective tissue disease: the role of the myofibroblast and fibroblast-epithelial cell interactions. Arthritis Res Therapy 9(Suppl 2): S4
https://doi.org/10.1186/ar2188
17 Kurkinen M, Taylor A, Garrels JI, Hogan BL (1984) Cell surfaceassociated proteins which bind native type IV collagen or gelatin. J Biol Chem 259: 5915-5922
18 Kuroda K, Tsukifuji R, Shinkai H (1998) Increased expression of heat-shock protein 47 is associated with overproduction of type I procollagen in systemic sclerosis skin fibroblasts. J Investig Dermatol 111: 1023-1028
https://doi.org/10.1046/j.1523-1747.1998.00437.x
19 Leask A (2012) Emerging targets for the treatment of scleroderma. Expert Opin Emerg Drugs 17: 173-179
https://doi.org/10.1517/14728214.2012.678833
20 Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18: 816-827
https://doi.org/10.1096/fj.03-1273rev
21 Martin JE, Bossini-Castillo L, Martin J (2012) Unraveling the genetic component of systemic sclerosis. Hum Genet 131: 1023-1037
https://doi.org/10.1007/s00439-011-1137-z
22 Masi AT (1980) Preliminary criteria for the classification of systemic sclerosis (scleroderma). Subcommittee for scleroderma criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. Arthritis Rheum 23: 581-590
https://doi.org/10.1002/art.1780230510
23 Masuda H, Fukumoto M, Hirayoshi K, Nagata K (1994) Coexpression of the collagen-binding stress protein HSP47 gene and the alpha 1(I) and alpha 1(III) collagen genes in carbon tetrachlorideinduced rat liver fibrosis. J Clin Investig 94: 2481-2488
https://doi.org/10.1172/JCI117617
24 Mehra S, Walker J, Patterson K, Fritzler MJ (2013) Autoantibodies in systemic sclerosis. Autoimmun Rev 12: 340-354
https://doi.org/10.1016/j.autrev.2012.05.011
25 Nagata K (1998) Expression and function of heat shock protein 47: a collagen-specific molecular chaperone in the endoplasmic reticulum. Matrix Biol J Int Soc Matrix Biol 16: 379-386
https://doi.org/10.1016/S0945-053X(98)90011-7
26 Nishino T, Miyazaki M, Abe K, Furusu A, Mishima Y, Harada T, Ozono Y, Koji T, Kohno S (2003) Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress peritoneal fibrosis in rats. Kidney Int 64: 887-896
https://doi.org/10.1046/j.1523-1755.2003.00169.x
27 Ohba S, Wang ZL, Baba TT, Nemoto TK, Inokuchi T (2003) Antisense oligonucleotide against 47-kDa heat shock protein (Hsp47) inhibits wound-induced enhancement of collagen production. Arch Oral Biol 48: 627-633
https://doi.org/10.1016/S0003-9969(03)00117-1
28 Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R (2004) Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 36: 598-606
https://doi.org/10.1016/j.biocel.2003.10.005
29 Quan TE, Cowper SE, Bucala R (2006) The role of circulating fibrocytes in fibrosis. Curr Rheumatol Rep 8: 145-150
https://doi.org/10.1007/s11926-006-0055-x
30 Rabquer BJ, Koch AE (2012) Angiogenesis and vasculopathy in systemic sclerosis: evolving concepts. Curr Rheumatol Rep 14: 56-63
https://doi.org/10.1007/s11926-011-0219-1
31 Razzaque MS, Hossain MA, Kohno S, Taguchi T (1998) Bleomycininduced pulmonary fibrosis in rat is associated with increased expression of collagen-binding heat shock protein (HSP) 47. Virchows Arch Int J Pathol 432: 455-460
https://doi.org/10.1007/s004280050191
32 Saga S, Nagata K, Chen WT, Yamada KM (1987) pH-dependent function, purification, and intracellular location of a major collagen-binding glycoprotein. J Cell Biol 105: 517-527
https://doi.org/10.1083/jcb.105.1.517
33 Sapadin AN, Fleischmajer R (2002) Treatment of scleroderma. Arch Dermatol 138: 99-105
https://doi.org/10.1001/archderm.138.1.99
34 Sasaki H, Sato T, Yamauchi N, Okamoto T, Kobayashi D, Iyama S, Kato J, Matsunaga T, Takimoto R, Takayama T (2002) Induction of heat shock protein 47 synthesis by TGF-beta and IL-1 beta via enhancement of the heat shock element binding activity of heat shock transcription factor 1. J Immun 168: 5178-5183
https://doi.org/10.4049/jimmunol.168.10.5178
35 Verrecchia F, Mauviel A, Farge D (2006) Transforming growth factorbeta signaling through the Smad proteins: role in systemic sclerosis. Autoimmun Rev 5: 563-569
https://doi.org/10.1016/j.autrev.2006.06.001
36 Wang JC, Lai S, Guo X, Zhang X, de Crombrugghe B, Sonnylal S, Arnett FC, Zhou X (2010) Attenuation of fibrosis in vitro and in vivo with SPARC siRNA. Arthritis Res Therapy 12: R60
https://doi.org/10.1186/ar2973
37 Wang JC, Sonnylal S, Arnett FC, De Crombrugghe B, Zhou X (2011) Attenuation of expression of extracellular matrix genes with siRNAs to Sparc and Ctgf in skin fibroblasts of CTGF transgenic mice. Int J Immunopathol Pharmacol 24: 595-601
https://doi.org/10.3109/13880209.2010.535171
38 Wu T, Chu H, Tu W, Song M, Chen D, Yuan J, Yu L, Ma Y, Liu Q, Jin L (2014) Dissection of the mechanism of traditional Chinese medical prescription-Yiqihuoxue formula as an effective antifibrotic treatment for systemic sclerosis. BMC Complement Altern Med 14: 224
https://doi.org/10.1186/1472-6882-14-224
39 Xiao HB, Liu RH, Ling GH, Xiao L, Xia YC, Liu FY, Li J, Liu YH, Chen QK, Lv JL (2012) HSP47 regulates ECM accumulation in renal proximal tubular cells induced by TGF-beta1 through ERK1/ 2 and JNK MAPK pathways. Am J Physiol Renal Physiol 303: F757-765
https://doi.org/10.1152/ajprenal.00470.2011
40 Yan JD, Yang S, Zhang J, Zhu TH (2009) BMP6 reverses TGFbeta1- induced changes in HK-2 cells: implications for the treatment of renal fibrosis. Acta Pharmacol Sin 30: 994-1000
https://doi.org/10.1038/aps.2009.56
41 Yokota S, Kubota H, Matsuoka Y, Naitoh M, Hirata D, Minota S, Takahashi H, Fujii N, Nagata K (2003) Prevalence of HSP47 antigen and autoantibodies to HSP47 in the sera of patients with mixed connective tissue disease. Biochem Biophys Res Commun 303: 413-418
https://doi.org/10.1016/S0006-291X(03)00352-8
42 Yoshizaki A, Yanaba K, Yoshizaki A, Iwata Y, Komura K, Ogawa F, Takenaka M, Shimizu K, Asano Y, Hasegawa M (2010) Treatment with rapamycin prevents fibrosis in tight-skin and bleomycin-induced mouse models of systemic sclerosis. Arthritis Rheum 62: 2476-2487
https://doi.org/10.1002/art.27498
43 Zandman-Goddard G, Tweezer-Zaks N, Shoenfeld Y (2005) New therapeutic strategies for systemic sclerosis—a critical analysis of the literature. Clin Dev Immunol 12: 165-173
https://doi.org/10.1080/17402520500233437
[1] Yali Jiang, Yuanyuan Wang, Pengfei Ma, Dongjie An, Junlong Zhao, Shiqian Liang, Yuchen Ye, Yingying Lu, Peng Zhang, Xiaowei Liu, Hua Han, Hongyan Qin. Myeloid-specific targeting of Notch ameliorates murine renal fibrosis via reduced infiltration and activation of bone marrowderived macrophage[J]. Protein Cell, 2019, 10(3): 196-210.
[2] Guoxing Zheng, Changying Jiang, Yulin Li, Dandan Yang, Youcai Ma, Bing Zhang, Xuan Li, Pei Zhang, Xiaoyu Hu, Xueqiang Zhao, Jie Du, Xin Lin. TMEM43-S358L mutation enhances NF-κBTGFβ signal cascade in arrhythmogenic right ventricular dysplasia/cardiomyopathy[J]. Protein Cell, 2019, 10(2): 104-119.
[3] Yunyun Luo, Dovile Sinkeviciute, Yi He, Morten Karsdal, Yves Henrotin, Ali Mobasheri, Patrik Önnerfjord, Anne Bay-Jensen. The minor collagens in articular cartilage[J]. Protein Cell, 2017, 8(8): 560-572.
[4] Yi Feng,Hai-yan Ying,Ying Qu,Xiao-bo Cai,Ming-yi Xu,Lun-gen Lu. Novel matrine derivative MD-1 attenuates hepatic fibrosis by inhibiting EGFR activation of hepatic stellate cells[J]. Protein Cell, 2016, 7(9): 662-672.
[5] Xiaokang Li,Hui Zhao,Chunxiao Qi,Yang Zeng,Feng Xu,Yanan Du. Direct intercellular communications dominate the interaction between adipose-derived MSCs and myofibroblasts against cardiac fibrosis[J]. Protein Cell, 2015, 6(10): 735-745.
[6] Ming Liu,Lingxi Jiang,Xin-Yuan Guan. The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update[J]. Protein Cell, 2014, 5(9): 673-691.
[7] Qian Gao,Xiongfei Chen,Hongxia Duan,Zhaoqing Wang,Jing Feng,Dongling Yang,Lina Song,Ningxin Zhou,Xiyun Yan. FXYD6: a novel therapeutic target toward hepatocellular carcinoma[J]. Protein Cell, 2014, 5(7): 532-543.
[8] Ming Fang, Reed Jacob, Owen McDougal, Julia Thom Oxford. Minor fibrillar collagens, variable regions alternative splicing, intrinsic disorder, and tyrosine sulfation[J]. Prot Cell, 2012, 3(6): 419-433.
[9] Hao Ye, Kailin Tang, Linlin Yang, Zhiwei Cao, Yixue Li. Study of drug function based on similarity of pathway fingerprint[J]. Prot Cell, 2012, 3(2): 132-139.
[10] Huibi Cao, Robert S. Molday, Jim Hu. Gene therapy: light is finally in the tunnel[J]. Prot Cell, 2011, 2(12): 973-989.
[11] Hans-Christian Siebert, Monika Burg-Roderfeld, Thomas Eckert, Sabine St?tzel, Ulrike Kirch, Tammo Diercks, Martin J. Humphries, Martin Frank, Rainer Wechselberger, Emad Tajkhorshid, Steffen Oesser. Interaction of the α2A domain of integrin with small collagen fragments[J]. Prot Cell, 2010, 1(4): 393-405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed