Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2017, Vol. 8 Issue (8) : 560-572    https://doi.org/10.1007/s13238-017-0377-7
MINI-REVIEW
The minor collagens in articular cartilage
Yunyun Luo1,2(), Dovile Sinkeviciute1,3, Yi He1, Morten Karsdal1, Yves Henrotin4, Ali Mobasheri5,6, Patrik Önnerfjord3, Anne Bay-Jensen1
1. Biomarkers & Research, Nordic Bioscience A/S, Herlev, Denmark
2. Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
3. Department of Clinical Sciences, Medical Faculty, Lund University, Lund, Sweden
4. Bone and Cartilage Research Unit, Institute of Pathology, Level 5, Arthropole Liège, University of Liège, CHU Sart-Tilman, 4000 Liège, Belgium
5. Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
6. Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Centre for Musculoskeletal Ageing Research, Queen’s Medical Centre, Nottingham, NG7 2UH, UK
 Download: PDF(648 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including these minor collagens. The generation and release of fragmented molecules could generate novel biochemical markers with the capacity to monitor disease progression, facilitate drug development and add to the existing toolbox for in vitro studies, preclinical research and clinical trials.

Keywords collagen      biomarker      arthritis     
Corresponding Author(s): Yunyun Luo   
Issue Date: 23 August 2017
 Cite this article:   
Yunyun Luo,Dovile Sinkeviciute,Yi He, et al. The minor collagens in articular cartilage[J]. Protein Cell, 2017, 8(8): 560-572.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-017-0377-7
https://academic.hep.com.cn/pac/EN/Y2017/V8/I8/560
1 AlexopoulosLG, YounI, BonaldoP, GuilakF (2009) Developmental and osteoarthritic changes in Col6a1-knockout mice: biomechanics of type VI collagen in the cartilage pericellular matrix.Arthritis Rheum60(3):771–779
https://doi.org/10.1002/art.24293
2 AlizadehBZ, NjajouOT, BijkerkC, MeulenbeltI, De WildtSC, HofmanA, PolsHAP, SlagboomPE, Van DuijnCM (2005) Evidence for a role of the genomic region of the gene encoding for the α1 chain of type IX collagen (COL9A1) in hip osteoarthritis: a population-based study.Arthritis Rheum52(5):1437–1442
https://doi.org/10.1002/art.21020
3 AlvarezJ, BalbinM, SantosF, FernandezM, FerrandoS, LopezJM (2000) Different bone growth rates are associated with changes in the expression pattern of types II and X collagens and collagenase 3 in proximal growth plates of the rat tibia.J Bone Miner Res15(1):82–94
https://doi.org/10.1359/jbmr.2000.15.1.82
4 AppletonCTG, PitelkaV, HenryJ, BeierF (2007) Global analyses of gene expression in early experimental osteoarthritis.Arthritis Rheum56(6):1854–1868
https://doi.org/10.1002/art.22711
5 AraiK, NagashimaY, TakemotoT, NishiyamaT (2008) Mechanical strain increases expression of type XII collagen in murine osteoblastic MC3T3-E1 cells.Cell Struct Funct33(2):203–210
https://doi.org/10.1247/csf.08025
6 BauerDC, HunterDJ, AbramsonSB, AtturM, CorrM, FelsonD, HeinegårdD, JordanJM, KeplerTB, LaneNE, SaxneT, TyreeB, KrausVB, For the Osteoarthritis Biomarkers Network(2006) Classification of osteoarthritis biomarkers: a proposed approach.Osteoarthritis Cartil14(8):723–727
https://doi.org/10.1016/j.joca.2006.04.001
7 Bay-JensenA-C, HenrotinY, KarsdalM, MobasheriA (2016) The need for predictive, prognostic, objective and complementary blood-based biomarkers in osteoarthritis (OA).EBioMedicine7:4–6
https://doi.org/10.1016/j.ebiom.2016.05.004
8 BidansetDJ, GuidryC, RosenbergLC, ChoiHU, TimplR, HookM (1992) Binding of the proteoglycan decorin to collagen type VI.J Biol Chem267(8):5250–5256
9 BlaschkeUK, EikenberryEF, HulmesDJS, GallaHJ, BrucknerP (2000) Collagen XI nucleates self-assembly and limits lateral growth of cartilage fibrils.J Biol Chem275(14):10370–10378
https://doi.org/10.1074/jbc.275.14.10370
10 BoissierMC, ChiocchiaG, RonziereMC, HerbageD, FournierC (1990) Arthritogenicity of minor cartilage collagens (types IX and XI) in mice.Arthritis Rheum33:1–8
https://doi.org/10.1002/art.1780330101
11 Boot-HandfordRP, TuckwellDS, PlumbDA, Farrington RockC, PoulsomR (2003) A novel and highly conserved collagen (proα1 (XXVII)) with a unique expression pattern and unusual molecular characteristics establishes a new clade within the vertebrate fibrillar collagen family.J Biol Chem278(33):31067–31077
https://doi.org/10.1074/jbc.M212889200
12 BrewCJ, CleggPD, Boot-HandfordRP, AndrewJG, HardinghamT (2010) Gene expression in human chondrocytes in late osteoarthritis is changed in both fibrillated and intact cartilage without evidence of generalised chondrocyte hypertrophy.Ann Rheum Dis69(1):234–240
https://doi.org/10.1136/ard.2008.097139
13 BrownJC, GolbikR, MannK, TimplR (1994) Structure and stability of the triple-helical domains of human collagen XIV.Matrix Biol14 (4):287–295
https://doi.org/10.1016/0945-053X(94)90194-5
14 ChenS, MienaltowskiMJ, BirkDE (2015) Regulation of corneal stroma extracellular matrix assembly.Exp Eye Res133:69–80
https://doi.org/10.1016/j.exer.2014.08.001
15 ChiquetM, BirkDE, BönnemannCG, KochM (2014) Collagen XII: protecting bone and muscle integrity by organizing collagen fibrils.Int J Biochem Cell Biol53:51–54
https://doi.org/10.1016/j.biocel.2014.04.020
16 CremerMA, YeXJ, TeratoK, OwensSW, SeyerJM, KangAH (1994) Type XI collagen-induced arthritis in the Lewis rat. Characterization of cellular and humoral immune responses to native types XI, V, and II collagen and constituent alpha-chains.J. Immunol.153:824–832
17 Czarny-RatajczakM, LohinivaJ,RogalaP, KozlowskiK, PeräläM, CarterL, SpectorTD, KolodziejL, SeppänenU, GlazarR, KrólewskiJ, Latos-BielenskaA, Ala-KokkoL (2001) A mutation in COL9A1 causes multiple epiphyseal dysplasia: further evidence for locus heterogeneity.Am J Hum Genet69:969–980
https://doi.org/10.1086/324023
18 D’AngeloM, YanZ, NooreyazdanM, PacificiM, SarmentDS, BillingsPC, LeboyPS (2000) MMP-13 is induced during chondrocyte hypertrophy.J Cell Biochem77(4):678–693
https://doi.org/10.1002/(SICI)1097-4644(20000615)77:4<678::AID-JCB15>3.0.CO;2-P
19 DanfelterM, ÖnnerfjordP, HeinegårdD (2007) Fragmentation of proteins in cartilage treated with interleukin-1: Specific cleavage of type IX collagen by matrix metalloproteinase 13 releases the NC4 domain.J Biol Chem282(51):36933–36941
https://doi.org/10.1074/jbc.M702491200
20 EckhardU, HuesgenPF, SchillingO, BellacCL, ButlerGS, CoxJH, DufourA, GoebelerV, KappelhoffR, dem KellerUA, KleinT, LangePF, MarinoG, MorrisonCJ, PrudovaA, RodriguezD, StarrAE, WangY, OverallCM (2016) Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses.Matrix Biol49:37–60
https://doi.org/10.1016/j.matbio.2015.09.003
21 EyreDR(1991) The collagens of articular cartilage.Semin Arthritis Rheum21(3):2–11
https://doi.org/10.1016/0049-0172(91)90035-X
22 EyreD (2002) Collagen of articular cartilage.Arthritis Res.4(1):30–35
https://doi.org/10.1186/ar380
23 EyreDR (2004) Collagens and cartilage matrix homeostasis.Clin Orthop Relat Res427(Suppl):S118–S122
https://doi.org/10.1097/01.blo.0000144855.48640.b9
24 EyreDR, AponS, WuJJ, EricssonLH, WalshKA (1987) Collagen type IX: evidence for covalent linkages to type II collagen in cartilage.FEBS Lett220(2):337–341
https://doi.org/10.1016/0014-5793(87)80842-6
25 EyreDR, PietkaT, WeisMA, WuJJ (2004) Covalent cross-linking of the NC1 domain of collagen type IX to collagen type II in cartilage.J Biol Chem279(4):2564–2568
https://doi.org/10.1074/jbc.M311653200
26 EyreDR, WeisMA, WuJJ (2006) Articular cartilage collagen: an irreplaceable framework?Eur Cells Mater12:57–63
https://doi.org/10.22203/eCM.v012a07
27 FässlerR, SchnegelsbergPN, DausmanJ, ShinyaT, MuragakiY, McCarthyMT, OlsenBR, JaenischR (1994) Mice lacking alpha1 (IX) collagen develop noninflammatory degenerative joint disease.Proc Natl Acad Sci USA91(1):5070–5074
https://doi.org/10.1073/pnas.91.11.5070
28 FoldagerCB, TohWS, GomollAH, OlsenBR, SpectorM (2014) Distribution of basement membrane molecules, laminin and collagen type IV, in normal and degenerated cartilage tissues.Cartilage5(2):123–132
https://doi.org/10.1177/1947603513518217
29 FrischholzS, BeierF, GirkontaiteI, WagnerK, PöschlE, TurnayJ, MayerU, Von Der MarkK (1998) Characterization of human type X procollagen and its NC-1 domain expressed as recombinant proteins in HEK293 cells.J Biol Chem273(8):4547–4555
https://doi.org/10.1074/jbc.273.8.4547
30 FukuiN, MiyamotoY, NakajimaM, IkedaY, HikitaA, FurukawaH, MitomiH, TanakaN, KatsuragawaY, YamamotoS, SawabeM, JujiT, MoriT, SuzukiR, IkegawaS (2008a) Zonal gene expression of chondrocytes in osteoarthritic cartilage.Arthritis Rheum58(12):3843–3853
https://doi.org/10.1002/art.24036
31 FukuiN, IkedaY, OhnukiT, TanakaN, HikitaA, MitomiH, MoriT, JujiT, KatsuragawaY, YamamotoS, SawabeM, YamaneS, SuzukiR, SandellLJ, OchiT (2008b) Regional differences in chondrocyte metabolism in osteoarthritis: a detailed analysis by laser capture microdissection.Arthritis Rheum58 (1):154–163
https://doi.org/10.1002/art.23175
32 GannonJM, WalkerG, FischerM, CarpenterR, ThompsonRC, OegemaTR (1991) Localization of type X collagen in canine growth plate and adult canine articular cartilage.J Orthop Res9 (4):485–494
https://doi.org/10.1002/jor.1100090404
33 Giry-LozinguezC, Aubert-FoucherE, PeninF, DeléageG, DubletB, Van Der RestM (1998) Identification and characterization of a heparin binding site within the NC1 domain of chicken collagen XIV.Matrix Biol17(2):145–149
https://doi.org/10.1016/S0945-053X(98)90027-0
34 GoldringSR, PurduePE, CrottiTN, ShenZ, FlanneryMR, BinderNB, RossFP, McHughKP (2013) Bone remodelling in inflammatory arthritis.Ann Rheum Dis72(Suppl 2):ii52–ii55
https://doi.org/10.1136/annrheumdis-2012-202199
35 GrässelS, TimplR, TanEM, ChuML (1996) Biosynthesis and processing of type XVI collagen in human fibroblasts and smooth muscle cells.Eur J Biochem242:576–584
https://doi.org/10.1111/j.1432-1033.1996.0576r.x
36 GregoryKE, KeeneDR, TufaSF, LunstrumGP, MorrisNP (2001) Developmental distribution of collagen type XII in cartilage: association with articular cartilage and the growth plate.J Bone Miner Res16(11):2005–2016
https://doi.org/10.1359/jbmr.2001.16.11.2005
37 GudmannNS, MunkHL, ChristensenAF, EjstrupL, SørensenGL, LoftAG, KarsdalMA, Bay-JensenA-C, HeY, SiebuhrAS, JunkerP (2016) Chondrocyte activity is increased in psoriatic arthritis and axial spondyloarthritis.Arthritis Res Ther18(1):141
https://doi.org/10.1186/s13075-016-1040-z
38 HaggR, HedbomE, MöllersU, AszódiA, FässlerR, MoU, AszoA, FaR (1997) Absence of the α1(IX) chain leads to a functional knock-out of the entire collagen IX protein in mice.J Biol Chem1 (33):20650–20654
https://doi.org/10.1074/jbc.272.33.20650
39 HamanoY, ZeisbergM, SugimotoH, LivelyJC, MaeshimaY, YangC, HynesRO, WerbZ, SudhakarA, KalluriR (2003) Physiological levels of tumstatin, a fragment of collagen IV α3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via αVβ3 integrin.Cancer Cell3(6):589–601
https://doi.org/10.1016/S1535-6108(03)00133-8
40 HeY, SiebuhrAS, Brandt-hansenNU, WangJ, SuD, ZhengQ, SimonsenO, PetersenKK, Arendt-nielsenL, EskehaveT, HoeckHC, KarsdalMA, Bay-jensenAC (2014) Type X collagen levels are elevated in serum from human osteoarthritis patients and associated with biomarkers of cartilage degradation and inflammation.BMC Musculoskelet Disord15:309
https://doi.org/10.1186/1471-2474-15-309
41 HeinegårdD, SaxneT (2011) The role of the cartilage matrix in osteoarthritis.Nat Rev Rheumatol7(1):50–56
https://doi.org/10.1038/nrrheum.2010.198
42 HemmavanhC, KochM, BirkDE, EspanaEM (2013) Abnormal corneal endothelial maturation in collagen XII and XIV Null mice.I nvestig Ophthalmol Vis Sci54(5):3297–3308
https://doi.org/10.1167/iovs.12-11456
43 HenrotinY, SanchezC, Bay-JensenAC, MobasheriA (2016) Osteoarthritis biomarkers derived from cartilage extracellular matrix: current status and future perspectives.Ann Phys Rehabil Med59(3):145–148
https://doi.org/10.1016/j.rehab.2016.03.004
44 HidaM, HamanakaR, OkamotoO, YamashitaK, SasakiT, YoshiokaH, MatsuoN (2014) Nuclear factor y (NF-Y) regulates the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes.In Vitro Cell Dev Biol Anim50(4):358–366
https://doi.org/10.1007/s11626-013-9692-3
45 HjortenR, HansenU, UnderwoodRA, TelferHE, FernandesRJ, KrakowD, SebaldE, Wachsmann-HogiuS, BrucknerP, JacquetR, LandisWJ, ByersPH, PaceJM (2007) Type XXVII collagen at the transition of cartilage to bone during skeletogenesis.Bone41 (4):535–542
https://doi.org/10.1016/j.bone.2007.06.024
46 HolmesDF, KadlerKE (2006) The 10+4 microfibril structure of thin cartilage fibrils.Proc Natl Acad Sci USA103(46):17249–17254
https://doi.org/10.1073/pnas.0608417103
47 HuebnerJL, JohnsonKA, KrausVB, TerkeltaubRA (2009) Transglutaminase 2 is a marker of chondrocyte hypertrophy and osteoarthritis severity in the Hartley guinea pig model of knee OA.Osteoarthritis Cartil17(8):1056–1064
https://doi.org/10.1016/j.joca.2009.02.015
48 IchimuraS, WuJJ, EyreDR (2000) Two-dimensional peptide mapping of cross-linked type IX collagen in human cartilage.Arch Biochem Biophys378(1):33–39
https://doi.org/10.1006/abbi.2000.1805
49 JakkulaE, MelkoniemiM, KivirantaI, LohinivaJ, RäinäSS, PeräläM, WarmanML, AhonenK, KrögerH, GöringHHH, Ala-KokkoL (2005) The role of sequence variations within the genes encoding collagen II, IX and XI in non-syndromic, early-onset osteoarthritis.Osteoarthritis Cartil13(6):497–507
https://doi.org/10.1016/j.joca.2005.02.005
50 JengL, HsuH-P, SpectorM (2013) Tissue-engineered cartilaginous constructs for the treatment of caprine cartilage defects, including distribution of laminin and type IV collagen.Tissue Eng Part A19 (19–20):2267–2274
https://doi.org/10.1089/ten.tea.2013.0013
51 JenkinsE, MossJB, PaceJM, BridgewaterLC (2005) The new collagen gene COL27A1 contains SOX9-responsive enhancer elements.Matrix Biol24(3):177–184
https://doi.org/10.1016/j.matbio.2005.02.004
52 KarsdalMA, HenriksenK, LeemingDJ, MitchellP, DuffinK, BarascukN, KlicksteinL, AggarwalP, NemirovskiyO, ByrjalsenI, QvistP, Bay-JensenAC, DamEB, MadsenSH, ChristiansenC (2009) Biochemical markers and the FDA Critical Path: how biomarkers may contribute to the understanding of pathophysiology and provide unique and necessary tools for drug development.Biomarkers14(3):181–202
https://doi.org/10.1080/13547500902777608
53 KarsdalMA, HenriksenK, LeemingDJ, WoodworthT, VassiliadisE, Bay-JensenA-C (2010) Novel combinations of Post-Translational Modification (PTM) neo-epitopes provide tissue-specific biochemical markers—are they the cause or the consequence of the disease?Clin Biochem43(10–11):793–804
https://doi.org/10.1016/j.clinbiochem.2010.03.015
54 KarsdalMA, NielsenMJ, SandJM, HenriksenK, GenoveseF, Bay-JensenA-C, SmithV, AdamkewiczJI, ChristiansenC, LeemingDJ (2013a) Extracellular matrix remodeling: the common denominator in connective tissue diseases. Possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure.Assay Drug Dev Technol11(2):70–92
https://doi.org/10.1089/adt.2012.474
55 KarsdalMA, Bay-JensenAC, LeemingDJ, HenriksenK, ChristiansenC (2013b) Quantification of ‘end products’ of tissue destruction in inflammation may reflect convergence of cytokine and signaling pathways—implications for modern clinical chemistry.Biomarkers18(5):375–378
https://doi.org/10.3109/1354750X.2013.789084
56 KarsdalMA, ChristiansenC, LadelC, HenriksenK, KrausVB, Bay-JensenAC (2014) Osteoarthritis—a case for personalized health care?Osteoarthritis Cartil22(1):7–16
https://doi.org/10.1016/j.joca.2013.10.018
57 KarsdalMA, GenoveseF, MadsenEA, Manon-JensenT, SchuppanD (2015) Collagen and tissue turnover as a function of age: implications for fibrosis.J Hepatol64:103–109
https://doi.org/10.1016/j.jhep.2015.08.014
58 KassnerA, HansenU, MiosgeN, ReinhardtDP, AignerT, Bruckner-TudermanL, BrucknerP, GrässelS (2003) Discrete integration of collagen XVI into tissue-specific collagen fibrils or beaded microfibrils.Matrix Biol22(2):131–143
https://doi.org/10.1016/S0945-053X(03)00008-8
59 KassnerA, TiedemannK, NotbohmH, LudwigT, MörgelinM, ReinhardtDP, ChuML, BrucknerP, GrässelS (2004) Molecular structure and interaction of recombinant human type XVI collagen.J Mol Biol339(4):835–853
https://doi.org/10.1016/j.jmb.2004.03.042
60 KeeneDR, LunstrumGP, MorrisNP, StoddardDW, BurgesonRE (1991) Two type XII-like collagens localize to the surface of banded collagen fibrils.J Cell Biol113(4):971–978
https://doi.org/10.1083/jcb.113.4.971
61 KochM, SchulzeJ, HansenU, AshwodtT, KeeneDR, BrunkenWJ, BurgesonRE, BrucknerP, Bruckner- L (2004) A novel marker of tissue junctions, collagen XXII.J Biol Chem279(21):22514–22521
https://doi.org/10.1074/jbc.M400536200
62 KojimaT, MwaleF, YasudaT, GirardC, PooleAR, LavertyS (2001) Early degradation of type IX and type II collagen with the onset of experimental inflammatory arthritis.Arthritis Rheum44(1):120–127
https://doi.org/10.1002/1529-0131(200101)44:1<120::AID-ANR16>3.0.CO;2-X
63 KrausVB, BlancoFJ, EnglundM, KarsdalMA, LohmanderLS (2015a) Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use.Osteoarthritis Cartil23(8):1233–1241
https://doi.org/10.1016/j.joca.2015.03.036
64 KrausVB, BlancoFJ, EnglundM, HenrotinY, LohmanderLS, LosinaE, ÖnnerfjordP, PersianiS (2015b) OARSI clinical trials recommendations: soluble biomarker assessments in clinical trials in osteoarthritis.Osteoarthritis Cartilage23(5):686–697
https://doi.org/10.1016/j.joca.2015.03.002
65 KuivaniemiH, TrompG, ProckopDJ(1997) Mutations in fibrillar collagens (types I, II, III, and XI), fibril-associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of disease of bone, cartilage, and blood vessels.Hum Mutat9 (4):300–315
https://doi.org/10.1002/(SICI)1098-1004(1997)9:4<300::AID-HUMU2>3.0.CO;2-9
66 KvistAJ, NyströmA, HultenbyK, SasakiT,TaltsJF, AspbergA (2008) The major basement membrane components localize to the chondrocyte pericellular matrix—a cartilage basement membrane equivalent?Matrix Biol27(1):22–33
https://doi.org/10.1016/j.matbio.2007.07.007
67 KwanAPL, CummingsCE, ChapmanJA, GrantME (1991) Macromolecular organization of chicken type X collagen in vitro.J Cell Biol114(3):597–604
https://doi.org/10.1083/jcb.114.3.597
68 LaiCH, ChuML (1996) Tissue distribution and developmental expression of type XVI collagen in the mouse.Tissue Cell28 (2):155–164
https://doi.org/10.1016/S0040-8166(96)80004-8
69 LeeSJ, KimMJ, KeeSJ, SongSK, KweonSS, ShinMH, ParkDJ, ParkYW, LeeSS, KimTJ (2013) Association study of the candidate gene for knee osteoarthritis in Koreans.Rheumatol Int33(3):783–786
https://doi.org/10.1007/s00296-011-2191-5
70 LeemingDJ, KarsdalMA, RasmussenLM, ScholzeA, TepelM (2013) Association of systemic collagen type IV formation with survival among patients undergoing hemodialysis.PLoS ONE8 (8):e71050
https://doi.org/10.1371/journal.pone.0071050
71 LohinivaJ, PaassiltaP, SeppänenU, VierimaaO, KivirikkoS, Ala-KokkoL (2000) Splicing mutations in the COL3 domain of collagen IX cause multiple epiphyseal dysplasia.Am J Med Genet90:216–222
https://doi.org/10.1002/(SICI)1096-8628(20000131)90:3<216::AID-AJMG6>3.0.CO;2-1
72 LoughlinJ, MustafaZ, DowlingB, SouthamL, MarcellineL, RäinäSS, Ala-KokkoL, ChapmanK (2002) Finer linkage mapping of a primary hip osteoarthritis susceptibility locus on chromosome 6.Eur J Hum Genet10(9):562–568
https://doi.org/10.1038/sj.ejhg.5200848
73 LuS, CarlsenS, HanssonAS, HolmdahlR (2002) Immunization of rats with homologous type XI collagen leads to chronic and relapsing arthritis with different genetics and joint pathology than arthritis induced with homologous type II collagen.J Autoimmun18:199–211
https://doi.org/10.1006/jaut.2001.0581
74 LuckmanSP, ReesE, KwanAPL (2003) Partial characterization of cell-type X collagen interactions.Biochem J372(Pt 2):485–493
https://doi.org/10.1042/bj20021572
75 MatsumotoT, CooperGM, GharaibehB, MeszarosLB, LiG, UsasA, FuFH, HuardJ (2009) Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of musclederived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1.Arthritis Rheum60(5):1390–1405
https://doi.org/10.1002/art.24443
76 MayoJL, HoldenDN, BarrowJR, BridgewaterLC (2009) The transcription factor Lc-Maf participates in Col27a1 regulation during chondrocyte maturation.Exp Cell Res315(13):2293–2300
https://doi.org/10.1016/j.yexcr.2009.04.020
77 McDevittCA, PahlJA, AyadS, MillerRR, UratsujiM, AndrishJT (1988) Experimental osteoarthritic articular cartilage is enriched in guanidine soluble type VI collagen.Biochem Biophys Res Commun157:250–255
https://doi.org/10.1016/S0006-291X(88)80040-8
78 MioF, ChibaK, HiroseY, KawaguchiY, MikamiY, OyaT, MoriM, KamataM, MatsumotoM, OzakiK, TanakaT, TakahashiA, KuboT, KimuraT, ToyamaY, IkegawaS (2007) A functional polymorphism in COL11A1, which encodes the alpha 1 chain of type XI collagen, is associated with susceptibility to lumbar disc herniation.Am J Hum Genet81(6):1271–1277
https://doi.org/10.1086/522377
79 MorganK, EvansHB, FirthSA, SmithMN, AyadS, WeissJB, LennoxPJ (1983) Holt, 1 Alpha 2 alpha 3 alpha collagen is arthritogenic.Ann Rheum Dis42(6):680–683
https://doi.org/10.1136/ard.42.6.680
80 MustafaZ, ChapmanK, IrvenC, CarrAJ, ClipshamK, ChitnavisJ, SinsheimerJS, BloomfieldVA, McCartneyM, CoxO, SykesB, LoughlinJ (2000) Linkage analysis of candidate genes as susceptibility loci for osteoarthritis-suggestive linkage of COL9A1 to female hip osteoarthritis.Rheumatology (Oxford)39(3):299–306
https://doi.org/10.1093/rheumatology/39.3.299
81 MyllyharjuJ, KivirikkoKI (2001) Collagens and collagen-related diseases.Ann Med33(1):7–21
https://doi.org/10.3109/07853890109002055
82 NakataK, OnoK, MiyazakiJ, OlsenBR, MuragakiY, AdachiE, YamamuraK, KimuraT (1993) Osteoarthritis associated with mild chondrodysplasia in transgenic mice expressing alpha-1(IX) collagen chains with a central deletion.Proc Natl Acad Sci USA90(7):2870–2874
https://doi.org/10.1073/pnas.90.7.2870
83 NishiyamaT, McDonoughAM, BrunsRR, BurgesonRE (1994) Type XII and XIV collagens mediate interactions between banded collagen fibers in vitro and may modulate extracellular matrix deformability.J Biol Chem269(45):28193–28199
84 OpolkaA, RatzingerS, SchubertT, SpiegelHU, GrifkaJ, BrucknerP, ProbstA, GrässelS (2007) Collagen IX is indispensable for timely maturation of cartilage during fracture repair in mice.Matrix Biol26(2):85–95
https://doi.org/10.1016/j.matbio.2006.09.010
85 PaceJM, CorradoM, MisseroC, ByersPH (2003) Identification, characterization and expression analysis of a new fibrillar collagen gene, COL27A1.Matrix Biol22(1):3–14
https://doi.org/10.1016/S0945-053X(03)00007-6
86 PfaffM, AumailleyM, SpecksU, KnolleJ, ZerwesHG, TimplR (1993) Integrin and Arg-Gly-Asp dependence of cell adhesion to the native and unfolded triple helix of collagen type VI.Exp Cell Res206(1):167–176
https://doi.org/10.1006/excr.1993.1134
87 PlumbDA, FerraraL, TorbicaT, KnowlesL, MironovA, KadlerKE, BriggsMD, Boot-HandfordRP (2011) Collagen XXVII organises the pericellular matrix in the growth plate.PLoS ONE6(12): e29422
https://doi.org/10.1371/journal.pone.0029422
88 PolacekM, BruunJ-A, ElvenesJ, FigenschauY, MartinezI (2011) The secretory profiles of cultured human articular chondrocytes and mesenchymal stem cells: implications for autologous cell transplantation strategies.Cell Transplant20(9):1381–1393
https://doi.org/10.3727/096368910X550215
89 PooleCA, GilbertRT, HerbageD, HartmannDJ (1997) Immunolocalization of type IX collagen in normal and spontaneously osteoarthritic canine tibial cartilage and isolated chondrons.Osteoarthritis Cartil5:191–204
https://doi.org/10.1016/S1063-4584(97)80014-3
90 ReiserK, McCormickRJ, RuckerRB (1992) Enzymatic and nonenzymatic cross-linking of collagen and elastin.FASEB J6 (7):2439–2449
91 Rodriguez-FontenlaC, CalazaM, EvangelouE, ValdesAM, ArdenN, BlancoFJ, CarrA, ChapmanK, DeloukasP, DohertyM, EskoT, Garcés AletáCM, Gomez-Reino CarnotaJJ, HelgadottirH, HofmanA, JonsdottirI, KerkhofHJM, KloppenburgM, McCaskieA, NtzaniEE, OllierWER, OreiroN, PanoutsopoulouK, RalstonSH, RamosYF, RianchoJA, RivadeneiraF, SlagboomPE, StyrkarsdottirU, ThorsteinsdottirU, ThorleifssonG, TsezouA, UitterlindenAG, WallisGA, WilkinsonJM, ZhaiG, ZhuY, FelsonDT, IoannidisJPA, LoughlinJ, MetspaluA, MeulenbeltI, StefanssonK, Van MeursJB, ZegginiE, SpectorTD, GonzalezA (2014) Assessment of osteoarthritis candidate genes in a metaanalysis of nine genome-wide association studies.Arthritis Rheumatol.66(4):940–949
https://doi.org/10.1002/art.38300
92 RuehlM, ErbenU, SchuppanD, WagnerC, ZellerA, FreiseC, Al-HasaniH, LoesekannM, NotterM, WittigBM, ZeitzM, DieterichW, SomasundaramR (2005) The elongated first fibronectin type III domain of collagen XIV is an inducer of quiescence and differentiation in fibroblasts and preadipocytes.J Biol Chem280 (46):38537–38543
https://doi.org/10.1074/jbc.M502210200
93 SandJM, LarsenL, HogaboamC, MartinezF, HanM, LarsenMR, NawrockiA, ZhengQ, KarsdalMA, LeemingDJ (2013) MMP mediated degradation of type IV collagen alpha 1 and alpha 3 chains reflects basement membrane remodeling in experimental and clinical fibrosis—validation of two novel biomarker assays.PLoS ONE8(12):1–12
https://doi.org/10.1371/journal.pone.0084934
94 SandJMB, KnoxAJ, LangeP, SunS, KristensenJH, LeemingDJ, KarsdalMA, BoltonCE, JohnsonSR (2015) Accelerated extracellular matrix turnover during exacerbations of COPD.Respir Res16(1):69
https://doi.org/10.1186/s12931-015-0225-3
95 SandJM, MartinezG, MidjordAK, KarsdalMA, LeemingDJ, LangeP (2016) Characterization of serological neo-epitope biomarkers reflecting collagen remodeling in clinically stable chronic obstructive pulmonary disease.Clin Biochem49(15):1144–1151
https://doi.org/10.1016/j.clinbiochem.2016.09.003
96 SchmidTM, LinsenmayerTF (1985) Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues.J Cell Biol100(2):598–605
https://doi.org/10.1083/jcb.100.2.598
97 SchmidTM, MayneR, JeffreyJJ, LinsenmayerTF (1986) Type X collagen contains two cleavage sites for a vertebrate collagenase.J Biol Chem261(9):4184–4189
98 ShenG (2005) The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage.Orthod Craniofac Res8(1):11–17
https://doi.org/10.1111/j.1601-6343.2004.00308.x
99 SmeriglioP, DhulipalaL, LaiJH, GoodmanSB, DragooJL, SmithRL, MaloneyWJ, YangF, BhutaniN (2015) Collagen VI enhances cartilage tissue generation by stimulating chondrocyte proliferation.Tissue Eng Part A21(3–4):840–849
https://doi.org/10.1089/ten.tea.2014.0375
100 SmithGN, HastyKA, BrandtKD (1989) Type XI collagen is associated with the chondrocyte surface in suspension culture.Matrix9(3):186–192
https://doi.org/10.1016/S0934-8832(89)80049-6
101 SteinertAF, ProffenB, KunzM, HendrichC, GhivizzaniSC, NöthU, RethwilmA, EulertJ, EvansCH (2009) Hypertrophy is induced during the in vitro chondrogenic differentiation of human mesenchymal stem cells by bone morphogenetic protein-2 and bone morphogenetic protein-4 gene transfer.Arthritis Res Ther11(5): R148
https://doi.org/10.1186/ar2822
102 SunS, HenriksenK, KarsdalMA, ByrjalsenI, RittwegerJ, ArmbrechtG, BelavyDL, FelsenbergD, NedergaardAF (2015) Collagen type III and VI turnover in response to long-term immobilization.PLoS ONE10(12):e0144525
https://doi.org/10.1371/journal.pone.0144525
103 SussmanMD, OgleRC, BalianG (1984) Biosynthesis and processing of collagens in different cartilaginous tissues.J Orthop Res2(2):134–142
https://doi.org/10.1002/jor.1100020204
104 TaylorDW, AhmedN, ParrenoJ, LunstrumGP, GrossAE, DiamandisEP, KandelRA (2014) Collagen type XII and versican are present in the early stages of cartilage tissue formation by both redifferentating passaged and primary chondrocytes.Tissue Eng Part A21(3–4):683–693
105 van der KraanPM, van den BergWB (2012) Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration?Osteoarthritis Cartilage20(3):223–232
https://doi.org/10.1016/j.joca.2011.12.003
106 Van der RestRM (1987) Structure and function of collagen types.Academic Press, New York
107 van SpilWE, DeGrootJ, LemsWF, OostveenJCM, LafeberFPJG (2010) Serum and urinary biochemical markers for knee and hiposteoarthritis: a systematic review applying the consensus BIPED criteria.Osteoarthritis Cartil18(5):605–612
https://doi.org/10.1016/j.joca.2010.01.012
108 VeidalSS, KarsdalMA, VassiliadisE, NawrockiA, LarsenMR, NguyenQHT, HägglundP, LuoY, ZhengQ, VainerB, LeemingDJ (2011) MMP mediated degradation of type VI collagen is highly associated with liver Fibrosis- Identification and validation of a novel biochemical marker assay.PLoS ONE6(9):1–9
https://doi.org/10.1371/journal.pone.0024753
109 WachsmuthL, SöderS, FanZ, FingerF, AignerT (2006) Immunolocalization of matrix proteins in different human cartilage subtypes.Histol Histopathol21(4–6):477–485
110 WagenerR, GaraSK, KobbeB, PaulssonM, ZauckeF (2009) The knee osteoarthritis susceptibility locus DVWA on chromosome 3p24.3 is the 5′ part of the split COL6A4 gene.Matrix Biol28 (6):307–310
https://doi.org/10.1016/j.matbio.2009.05.003
111 WalkerGD, FischerM, GannonJ, ThompsonRC, OegemaTR (1995) Expression of type-X collagen in osteoarthritis.J Orthop Res13(1):4–12
https://doi.org/10.1002/jor.1100130104
112 WangG, ZhangY, ZhaoX, MengC, MaL, KongY (2015) MicroRNA-411 inhibited matrix metalloproteinase 13 expression in human chondrocytes.Am J Transl Res7(10):2000–2006
113 WattSL, LunstrumsGP, McdonoughAM, KeeneDR, BurgesonsRE, MorrissllNP (1992) Characterization of collagen types XII and XIV from fetal bovine cartilage.Biochemistry267(28):20093–20099
114 WibergC, HedbomE, KhairullinaA, LamandéSR, OldbergÅ, TimplR, MörgelinM, HeinegårdD (2001) Biglycan and decorin bind close to the N-terminal region of the collagen VI triple helix.J Biol Chem276(22):18947–18952
https://doi.org/10.1074/jbc.M100625200
115 WuJJ, LarkMW, ChunLE, EyreDR (1991) Sites of stromelysin cleavage in collagen types II, IX, X, and XI of cartilage.J Biol Chem266(9):5625–5628
116 WuJJ, WoodsPE, EyreDR (1992) Identification of cross-linking sites in bovine cartilage type-IX collagen reveals an antiparallel type-II-type-IX molecular relationship and type-IX to type-IX bonding.J Biol Chem267(32):23007–23014
117 XuL, FlahiffCM, WaldmanBA, WuD, OlsenBR, SettonLA, LiY (2003) Osteoarthritis-like changes and decreased mechanical function of articular cartilage in the joints of mice with the chondrodysplasia gene (cho).Arthritis Rheum48(9):2509–2518
https://doi.org/10.1002/art.11233
118 XuL, PengH, WuD, HuK, GoldringMB, OlsenBE, LiY(2005) Activation of the discoidin domain receptor 2 induces expression of matrix metalloproteinase 13 associated with osteoarthritis in mice.J Biol Chem280(1):548–555
https://doi.org/10.1074/jbc.M411036200
119 XuJ, WangW, LudemanM, ChengK, HayamiT, LotzJC, KapilaS (2008) Chondrogenic differentiation of human mesenchymal stem cells in three-dimensional alginate gels.Tissue Eng Part A14(5):667–680
https://doi.org/10.1089/tea.2007.0272
120 YamagataM, YamadaKM, YamadaSS, ShinomuraT, TanakaH, NishidaY, ObaraM, KimataK (1991) The complete primary structure of type XII collagen shows a chimeric molecule with reiterated fibronectin type III motifs, von Willebrand factor A motifs, a domain homologous to a noncollagenous region of type IX collagen, and short collagenous domains with an Arg-Gly-Asp site.J Cell Biol115(1):209–221
https://doi.org/10.1083/jcb.115.1.209
121 ZelenskiNA, LeddyHA, Sanchez-AdamsJ, ZhangJ, BonaldoP, LiedtkeW, GuilakF (2015) Type VI collagen regulates pericellular matrix properties, chondrocyte swelling, and mechanotransduction in mouse articular cartilage.Arthritis Rheumatol67(5):1286–1294
https://doi.org/10.1002/art.39034
122 ZwolanekD, VeitG, EbleJA, GullbergD, RuggieroF, HeinoJ, MeierM, StetefeldJ, KochM (2014) Collagen XXII binds to collagenbinding integrins via the novel motifs GLQGER and GFKGER.Biochem J459(1):217–227
https://doi.org/10.1042/BJ20130642
[1] Jiaxing Cui, Hongfei Cui, Mingran Yang, Shiyu Du, Junfeng Li, Yingxue Li, Liyang Liu, Xuegong Zhang, Shao Li. Tongue coating microbiome as a potential biomarker for gastritis including precancerous cascade[J]. Protein Cell, 2019, 10(7): 496-509.
[2] Xiaoying Chen,Kunshan Zhang,Liqiang Zhou,Xinpei Gao,Junbang Wang,Yinan Yao,Fei He,Yuping Luo,Yongchun Yu,Siguang Li,Liming Cheng,Yi E. Sun. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation[J]. Protein Cell, 2016, 07(03): 175-186.
[3] Haiyan Chu,Ting Wu,Wenyu Wu,Wenzhen Tu,Shuai Jiang,Sidi Chen,Yanyun Ma,Qingmei Liu,Xiaodong Zhou,Li Jin,Jiucun Wang. Involvement of collagen-binding heat shock protein 47 in scleroderma-associated fibrosis[J]. Protein Cell, 2015, 6(8): 589-598.
[4] Ming Fang, Reed Jacob, Owen McDougal, Julia Thom Oxford. Minor fibrillar collagens, variable regions alternative splicing, intrinsic disorder, and tyrosine sulfation[J]. Prot Cell, 2012, 3(6): 419-433.
[5] Hui Dai, Xiao-Ming Gao. Elevated levels of serum antibodies against alpha-1, 6-glucan in patients with systemic lupus erythematosus or rheumatoid arthritis[J]. Prot Cell, 2011, 2(9): 739-744.
[6] Takuma Hayashi, Akiko Horiuchi, Tanri Shiozawa, Kenji Sano, Nobuyoshi Hiraoka, Yae Kanai, Susumu Tonegawa, Ikuo Konishi, . Mice-lacking LMP2, immuno-proteasome subunit, as an animal model of spontaneous uterine leiomyosarcoma[J]. Protein Cell, 2010, 1(8): 711-717.
[7] Hans-Christian Siebert, Monika Burg-Roderfeld, Thomas Eckert, Sabine St?tzel, Ulrike Kirch, Tammo Diercks, Martin J. Humphries, Martin Frank, Rainer Wechselberger, Emad Tajkhorshid, Steffen Oesser. Interaction of the α2A domain of integrin with small collagen fragments[J]. Prot Cell, 2010, 1(4): 393-405.
[8] Edward A. Lin, Chuan-Ju Liu, . The role of ADAMTSs in arthritis[J]. Protein Cell, 2010, 1(1): 33-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed