|
|
|
Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection |
Rongjuan Pei2, Jianqi Feng1, Yecheng Zhang2, Hao Sun2, Lian Li1, Xuejie Yang5,7, Jiangping He5,6, Shuqi Xiao2, Jin Xiong2, Ying Lin1, Kun Wen8, Hongwei Zhou8, Jiekai Chen5,6,7, Zhili Rong1,3,4( ), Xinwen Chen2,5( ) |
1. Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China 2. Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China 3. Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China 4. Dermatology Hospital, Southern Medical University, Guangzhou 510091, China 5. Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China 6. The Centre of Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou 510530, China 7. Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China 8. Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China |
|
|
|
|
Abstract The coronavirus disease 2019 (COVID-19) pandemic is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is spread primary via respiratory droplets and infects the lungs. Currently widely used cell lines and animals are unable to accurately mimic human physiological conditions because of the abnormal status of cell lines (transformed or cancer cells) and species differences between animals and humans. Organoids are stem cell-derived selforganized three-dimensional culture in vitro and model the physiological conditions of natural organs. Here we showed that SARS-CoV-2 infected and extensively replicated in human embryonic stem cells (hESCs)-derived lung organoids, including airway and alveolar organoids which covered the complete infection and spread route for SARS-CoV-2 within lungs. The infected cells were ciliated, club, and alveolar type 2 (AT2) cells, which were sequentially located from the proximal to the distal airway and terminal alveoli, respectively. Additionally, RNA-seq revealed early cell response to virus infection including an unexpected downregulation of the metabolic processes, especially lipid metabolism, in addition to the well-known upregulation of immune response. Further, Remdesivir and a human neutralizing antibody potently inhibited SARS-CoV-2 replication in lung organoids. Therefore, human lung organoids can serve as a pathophysiological model to investigate the underlying mechanism of SARS-CoV-2 infection and to discover and test therapeutic drugs for COVID-19.
|
| Keywords
COVID-19
SARS-CoV-2
lung organoids
cell tropism
cellular metabolism
drug discovery
|
|
Corresponding Author(s):
Zhili Rong,Xinwen Chen
|
|
Online First Date: 11 January 2021
Issue Date: 14 October 2021
|
|
| 1 |
CM Anderson, A Stahl (2013) SLC27 fatty acid transport proteins. Mol Aspects Med 34:516–528
https://doi.org/10.1016/j.mam.2012.07.010
|
| 2 |
N Banu, SS Panikar, LR Leal, AR Leal (2020) Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to macrophage activation syndrome: therapeutic implications. Life Sci 256:117905
https://doi.org/10.1016/j.lfs.2020.117905
|
| 3 |
L Bao, W Deng, B Huang, H Gao, J Liu, L Ren, Q Wei, P Yu, Y Xu, F Qiet al. (2020) The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583:830–833
https://doi.org/10.1038/s41586-020-2312-y
|
| 4 |
JH Beigel, KM Tomashek, LE Dodd, AK Mehta, BS Zingman, AC Kalil, E Hohmann, HY Chu, A Luetkemeyer, S Klineet al. (2020) Remdesivir for the treatment of Covid-19—preliminary report. N Engl J Med.
https://doi.org/10.1056/NEJMoa2007764
|
| 5 |
XM Bustamante-Marin, LE Ostrowski (2017) Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol 9:a028241
https://doi.org/10.1101/cshperspect.a028241
|
| 6 |
RA Cairns, IS Harris, TW Mak (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95
https://doi.org/10.1038/nrc2981
|
| 7 |
AC Calkin, P Tontonoz (2012) Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 13:213–224
https://doi.org/10.1038/nrm3312
|
| 8 |
L Cantuti-Castelvetri, R Ojha, LD Pedro, M Djannatian, J Franz, S Kuivanen, F van der Meer, K Kallio, T Kaya, M Anastasinaet al. (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370:6518
https://doi.org/10.1126/science.abd2985
|
| 9 |
A Chandrashekar, J Liu, AJ Martinot, K McMahan, NB Mercado, L Peter, LH Tostanoski, J Yu, Z Maliga, M Nekorchuket al. (2020) SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science 369:812–817
https://doi.org/10.1126/science.abc4776
|
| 10 |
Y Chen, J Feng, S Zhao, L Han, H Yang, Y Lin, Z Rong (2018) Longterm engraftment promotes differentiation of alveolar epithelial cells from human embryonic stem cell derived lung organoids. Stem Cells Dev 27:1339–1349
https://doi.org/10.1089/scd.2018.0042
|
| 11 |
H Clevers (2016) Modeling development and disease with organoids. Cell 165:1586–1597
https://doi.org/10.1016/j.cell.2016.05.082
|
| 12 |
JL Daly, B Simonetti, CA Plagaro, MK Williamson, DK Shoemark, L Simon-Gracia, K Klein, M Bauer, R Hollandi, UF Greberet al. (2020) Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science
https://doi.org/10.1101/2020.06.05.134114
|
| 13 |
C Damiani, L Rovida, D Maspero, I Sala, L Rosato, M Di Filippo, D Pescini, A Graudenzi, M Antoniotti, G Mauri (2020) MaREA4-Galaxy: metabolic reaction enrichment analysis and visualization of RNA-seq data within Galaxy. Comput Struct Biotechnol J 18:993–999
https://doi.org/10.1016/j.csbj.2020.04.008
|
| 14 |
PA Dawson, ML Hubbert, A Rao (2010) Getting the mOST from OST: role of organic solute transporter, OSTalpha-OSTbeta, in bile acid and steroid metabolism. Biochim Biophys Acta 1801:994–1004
https://doi.org/10.1016/j.bbalip.2010.06.002
|
| 15 |
DL Diamond, AJ Syder, JM Jacobs, CM Sorensen, KA Walters, SC Proll, JE McDermott, MA Gritsenko, Q Zhang, R Zhaoet al. (2010) Temporal proteome and lipidome profiles reveal hepatitis C virusassociated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog 6:e1000719
https://doi.org/10.1371/journal.ppat.1000719
|
| 16 |
D Dutta, H Clevers (2017) Organoid culture systems to study hostpathogen interactions. Curr Opin Immunol 48:15–22
https://doi.org/10.1016/j.coi.2017.07.012
|
| 17 |
RT Eastman, JS Roth, KR Brimacombe, A Simeonov, M Shen, S Patnaik, MD Hall (2020) Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci 6:672–683
https://doi.org/10.1021/acscentsci.0c00489
|
| 18 |
AR Fehr, S Perlman (2015) Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 1282:1–23
https://doi.org/10.1007/978-1-4939-2438-7_1
|
| 19 |
KR Feingold, C Grunfeld (2000) Introduction to lipids and lipoproteins. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, Grossman A, Hershman JM, Hofland HJ, Kaltsas G et al (eds) Endotext. MDText.com, South Dartmouth
|
| 20 |
M Furuhashi, GS Hotamisligil (2008) Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 7:489–503
https://doi.org/10.1038/nrd2589
|
| 21 |
I Glowacka, S Bertram, P Herzog, S Pfefferle, I Steffen, MO Muench, G Simmons, H Hofmann, T Kuri, F Weberet al. (2010) Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J Virol 84:1198–1205
https://doi.org/10.1128/JVI.01248-09
|
| 22 |
J Harcourt, A Tamin, X Lu, S Kamili, SK Sakthivel, J Murray, K Queen, Y Tao, CR Paden, J Zhanget al. (2020) Isolation and characterization of SARS-CoV-2 from the first US COVID-19 patient. bioRxiv
https://doi.org/10.1101/2020.03.02.972935
|
| 23 |
NS Heaton, G Randall (2011) Multifaceted roles for lipids in viral infection. Trends Microbiol 19:368–375
https://doi.org/10.1016/j.tim.2011.03.007
|
| 24 |
A Heurich, H Hofmann-Winkler, S Gierer, T Liepold, O Jahn, S Pohlmann (2014) TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol 88:1293–1307
https://doi.org/10.1128/JVI.02202-13
|
| 25 |
R Hilgenfeld, M Peiris (2013) From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antiviral Res 100:286–295
https://doi.org/10.1016/j.antiviral.2013.08.015
|
| 26 |
M Hoffmann, H Kleine-Weber, S Schroeder, N Kruger, T Herrler, S Erichsen, TS Schiergens, G Herrler, NH Wu, A Nitscheet al. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(271–280):e278
https://doi.org/10.1016/j.cell.2020.02.052
|
| 27 |
JA Hollenbaugh, J Munger, B Kim (2011) Metabolite profiles of human immunodeficiency virus infected CD4+ T cells and macrophages using LC-MS/MS analysis. Virology 415:153–159
https://doi.org/10.1016/j.virol.2011.04.007
|
| 28 |
GS Hotamisligil, DA Bernlohr (2015) Metabolic functions of FABPs–mechanisms and therapeutic implications. Nat Rev Endocrinol 11:592–605
https://doi.org/10.1038/nrendo.2015.122
|
| 29 |
YXJ Hou, K Okuda, CE Edwards, DR Martinez, T Asakura, T DinnonKH, RE Kato, BL Lee, TM Yount, Masceniket al. (2020) SARSCoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182:429
https://doi.org/10.1016/j.cell.2020.05.042
|
| 30 |
C Huang, Y Wang, X Li, L Ren, J Zhao, Y Hu, L Zhang, G Fan, J Xu, X Guet al. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395:497–506
https://doi.org/10.1016/S0140-6736(20)30183-5
|
| 31 |
AP Hutchins, R Jauch, M Dyla, D Miranda-Saavedra (2014) glbase: a framework for combining, analyzing and displaying heterogeneous genomic and high-throughput sequencing data. Cell Regen (Lond) 3:1
https://doi.org/10.1186/2045-9769-3-1
|
| 32 |
RD Jiang, MQ Liu, Y Chen, C Shan, YW Zhou, XR Shen, Q Li, L Zhang, Y Zhu, HR Siet al.(2020) Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182(50–58):e58
https://doi.org/10.1016/j.cell.2020.05.027
|
| 33 |
MR Jia, T Wei, WF Xu (2010) The analgesic activity of bestatin as a potent APN inhibitor. Front Neurosci 4:50
https://doi.org/10.3389/fnins.2010.00050
|
| 34 |
M Kaye (2006) SARS-associated coronavirus replication in cell lines. Emerg Infect Dis 12:128–133
https://doi.org/10.3201/eid1201.050496
|
| 35 |
E Ketter, G Randall (2019) Virus impact on lipids and membranes. Annu Rev Virol 6:319–340
https://doi.org/10.1146/annurev-virology-092818-015748
|
| 36 |
JM Kim, YS Chung, HJ Jo, NJ Lee, MS Kim, SH Woo, S Park, JW Kim, HM Kim, MG Han (2020) Identification of Coronavirus Isolated from a Patient in Korea with COVID-19. Osong Public Health Res Perspect 11:3–7
https://doi.org/10.24171/j.phrp.2020.11.1.02
|
| 37 |
G Kroemer, J Pouyssegur (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482
https://doi.org/10.1016/j.ccr.2008.05.005
|
| 38 |
K Kuba, Y Imai, S Rao, H Gao, F Guo, B Guan, Y Huan, P Yang, Y Zhang, W Denget al. (2005) A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11:875–879
https://doi.org/10.1038/nm1267
|
| 39 |
MM Lamers, J Beumer, J van der Vaart, K Knoops, J Puschhof, TI Breugem, RBG Ravelli, J Paul van Schayck, AZ Mykytyn, HQ Duimelet al. (2020) SARS-CoV-2 productively infects human gut enterocytes. Science 369:50–54
https://doi.org/10.1126/science.abc1669
|
| 40 |
B Langmead, SL Salzberg (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359
https://doi.org/10.1038/nmeth.1923
|
| 41 |
B Li, CN Dewey (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323–323
https://doi.org/10.1186/1471-2105-12-323
|
| 42 |
JY Li, Z You, Q Wang, ZJ Zhou, Y Qiu, R Luo, XY Ge (2020) The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future. Microbes Infect 22:80–85
https://doi.org/10.1016/j.micinf.2020.02.002
|
| 43 |
MI Love, W Huber, S Anders (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550
https://doi.org/10.1186/s13059-014-0550-8
|
| 44 |
MI Martic-Kehl, R Schibli, PA Schubiger (2012) Can animal data predict human outcome? Problems and pitfalls of translational animal research. Eur J Nucl Med Mol Imaging 39:1492–1496
https://doi.org/10.1007/s00259-012-2175-z
|
| 45 |
KB McCauley, F Hawkins, M Serra, DC Thomas, A Jacob, DN Kotton (2017) Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell 20(844–857):e846
https://doi.org/10.1016/j.stem.2017.03.001
|
| 46 |
V Monteil, H Kwon, P Prado, A Hagelkruys, RA Wimmer, M Stahl, A Leopoldi, E Garreta, C Hurtado Del Pozo, F Prosperet al. (2020) Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181(905–913):e907
https://doi.org/10.1016/j.cell.2020.04.004
|
| 47 |
X Ou, Y Liu, X Lei, P Li, D Mi, L Ren, L Guo, R Guo, T Chen, J Huet al. (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11:1620
https://doi.org/10.1038/s41467-020-15562-9
|
| 48 |
C Pan, C Kumar, S Bohl, U Klingmueller, M Mann (2009) Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics 8:443–450
https://doi.org/10.1074/mcp.M800258-MCP200
|
| 49 |
S Ramani, SE Crawford, SE Blutt, MK Estes (2018) Human organoid cultures: transformative new tools for human virus studies. Curr Opin Virol 29:79–86
https://doi.org/10.1016/j.coviro.2018.04.001
|
| 50 |
D Risso, K Schwartz, G Sherlock, S Dudoit (2011) GC-content normalization for RNA-Seq data.BMC Bioinformatics 12:480–480
https://doi.org/10.1186/1471-2105-12-480
|
| 51 |
B Rockx, T Kuiken, S Herfst, T Bestebroer, MM Lamers, BB Oude Munnink, D de Meulder, G van Amerongen, J van den Brand, NMA Okbaet al. (2020) Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 368:1012–1015
https://doi.org/10.1126/science.abb7314
|
| 52 |
JR Rock, SH Randell, BL Hogan (2010) Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 3:545–556
https://doi.org/10.1242/dmm.006031
|
| 53 |
G Rossi, A Manfrin, MP Lutolf (2018) Progress and potential in organoid research. Nat Rev Genet 19:671–687
https://doi.org/10.1038/s41576-018-0051-9
|
| 54 |
JJ Ruprecht, ERS Kunji (2020) The SLC25 mitochondrial carrier family: structure and mechanism. Trends Biochem Sci 45:244–258
https://doi.org/10.1016/j.tibs.2019.11.001
|
| 55 |
EL Sanchez, M Lagunoff (2015) Viral activation of cellular metabolism. Virology 479–480:609–618
https://doi.org/10.1016/j.virol.2015.02.038
|
| 56 |
G Schmitz, G Muller (1991) Structure and function of lamellar bodies, lipid-protein complexes involved in storage and secretion of cellular lipids. J Lipid Res 32:1539–1570
|
| 57 |
JZ Shi, ZY Wen, GX Zhong, HL Yang, C Wang, BY Huang, RQ Liu, XJ He, L Shuai, ZR Sunet al. (2020a) Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 368:1016
https://doi.org/10.1126/science.abb7015
|
| 58 |
R Shi, C Shan, X Duan, Z Chen, P Liu, J Song, T Song, X Bi, C Han, L Wuet al. (2020b) A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 584:120–124
https://doi.org/10.1038/s41586-020-2381-y
|
| 59 |
SF Sia, LM Yan, AWH Chin, K Fung, KT Choy, AYL Wong, P Kaewpreedee, R Perera, LLM Poon, JM Nichollset al. (2020) Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583:834–838
https://doi.org/10.1038/s41586-020-2342-5
|
| 60 |
Z Song, Y Xu, L Bao, L Zhang, P Yu, Y Qu, H Zhu, W Zhao, Y Han, C Qin (2019) From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 11:59
https://doi.org/10.3390/v11010059
|
| 61 |
JW Song, SM Lam, X Fan, WJ Cao, SY Wang, H Tian, GH Chua, C Zhang, FP Meng, Z Xuet al. (2020) Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis. Cell Metab 32(188–202):e185
https://doi.org/10.1016/j.cmet.2020.06.016
|
| 62 |
D Sun, H Lennernas, LS Welage, JL Barnett, CP Landowski, D Foster, D Fleisher, KD Lee, GL Amidon (2002) Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm Res 19:1400–1416
https://doi.org/10.1023/A:1020483911355
|
| 63 |
T Suzuki, Y Ito, Y Sakai, A Saito, D Okuzaki, D Motooka, S Minami, T Kobayashi, T Yamamoto, T Okamotoet al. (2020) Generation of human bronchial organoids for SARS-CoV-2 research. bioRxiv
https://doi.org/10.1101/2020.05.25.115600
|
| 64 |
K Takayama (2020) In vitro and animal models for SARS-CoV-2 research. Trends Pharmacol Sci 41:513–517
https://doi.org/10.1016/j.tips.2020.05.005
|
| 65 |
SK Thaker, J Ch’ng, HR Christofk (2019) Viral hijacking of cellular metabolism. BMC Biol 17:59
https://doi.org/10.1186/s12915-019-0678-9
|
| 66 |
M Vaduganathan, O Vardeny, T Michel, JJV McMurray, MA Pfeffer, SD Solomon (2020) Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med 382:1653–1659
https://doi.org/10.1056/NEJMsr2005760
|
| 67 |
N van Doremalen, T Lambe, A Spencer, S Belij-Rammerstorfer, JN Purushotham, JR Port, V Avanzato, T Bushmaker, A Flaxman, M Ulaszewskaet al. (2020) ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv
https://doi.org/10.1101/2020.05.13.093195
|
| 68 |
MJ van Hemert, SH van den Worm, K Knoops, AM Mommaas, AE Gorbalenya, EJ Snijder (2008) SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. PLoS Pathog 4:e1000054
https://doi.org/10.1371/journal.ppat.1000054
|
| 69 |
P Verdecchia, C Cavallini, A Spanevello, F Angeli (2020) The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med 76:14–20
https://doi.org/10.1016/j.ejim.2020.04.037
|
| 70 |
Y Wang, D Zhang, G Du, R Du, J Zhao, Y Jin, S Fu, L Gao, Z Cheng, Q Luet al. (2020b) Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395:1569–1578
|
| 71 |
H Wang, MV Airola, K Reue (2017) How lipid droplets “TAG” along: Glycerolipid synthetic enzymes and lipid storage. Biochim Biophys Acta Mol Cell Biol Lipids 1862:1131–1145
https://doi.org/10.1016/j.bbalip.2017.06.010
|
| 72 |
M Wang, R Cao, L Zhang, X Yang, J Liu, M Xu, Z Shi, Z Hu, W Zhong, G Xiao (2020a) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30:269–271
https://doi.org/10.1038/s41422-020-0282-0
|
| 73 |
HS Warren, RG Tompkins, LL Moldawer, J Seok, W Xu, MN Mindrinos, RV Maier, W Xiao, RW Davis (2015) Mice are not men. Proc Natl Acad Sci USA 112:E345
https://doi.org/10.1073/pnas.1414857111
|
| 74 |
WJ Wiersinga, A Rhodes, AC Cheng, SJ Peacock, HC Prescott (2020) Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 324:782–793
https://doi.org/10.1001/jama.2020.12839
|
| 75 |
AJ Wilk, A Rustagi, NQ Zhao, J Roque, GJ Martínez-Colón, JL McKechnie, GT Ivison, T Ranganath, R Vergara, T Holliset al. (2020) A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med 26:1070–1076
https://doi.org/10.1038/s41591-020-0944-y
|
| 76 |
BN Williamson, F Feldmann, B Schwarz, K Meade-White, DP Porter, J Schulz, N van Doremalen, I Leighton, CK Yinda, L Perez-Perezet al. (2020) Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature 585:273–276
https://doi.org/10.1038/s41586-020-2423-5
|
| 77 |
L Xiao, H Sakagami, N Miwa (2020) ACE2: the key molecule for understanding the pathophysiology of severe and critical conditions of COVID-19: demon or angel? Viruses 12:491
https://doi.org/10.3390/v12050491
|
| 78 |
Y Yamamoto, S Gotoh, Y Korogi, M Seki, S Konishi, S Ikeo, N Sone, T Nagasaki, H Matsumoto, S Muroet al. (2017) Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat Methods 14:1097–1106
https://doi.org/10.1038/nmeth.4448
|
| 79 |
L Yang, Y Han, BE Nilsson-Payant, V Gupta, P Wang, X Duan, X Tang, J Zhu, Z Zhao, F Jaffreet al. (2020) A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids. Cell Stem Cell 27(125–136):e127
https://doi.org/10.1016/j.stem.2020.06.015
|
| 80 |
G Yu, L-G Wang, Y Han, Q-Y He (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16:284–287
https://doi.org/10.1089/omi.2011.0118
|
| 81 |
J Yu, LH Tostanoski, L Peter, NB Mercado, K McMahan, SH Mahrokhian, JP Nkolola, J Liu, Z Li, A Chandrashekaret al. (2020) DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science 369:806–811
https://doi.org/10.1126/science.abc6284
|
| 82 |
B Zhao, C Ni, R Gao, Y Wang, L Yang, J Wei, T Lv, J Liang, Q Zhang, W Xuet al. (2020) Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein Cell
https://doi.org/10.1101/2020.03.16.990317
|
| 83 |
X Zhou, W Jiang, Z Liu, S Liu, X Liang (2017) Virus infection and death receptor-mediated apoptosis. Viruses 9:316
https://doi.org/10.3390/v9110316
|
| 84 |
J Zhou, C Li, X Liu, MC Chiu, X Zhao, D Wang, Y Wei, A Lee, AJ Zhang, H Chuet al. (2020a) Infection of bat and human intestinal organoids by SARS-CoV-2. Nat Med 26:1077–1083
https://doi.org/10.1038/s41591-020-0912-6
|
| 85 |
P Zhou, XL Yang, XG Wang, B Hu, L Zhang, W Zhang, HR Si, Y Zhu, B Li, CL Huanget al. (2020b) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273
https://doi.org/10.1038/s41586-020-2012-7
|
| 86 |
N Zhu, D Zhang, W Wang, X Li, B Yang, J Song, X Zhao, B Huang, W Shi, R Luet al. (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382:727–733
https://doi.org/10.1056/NEJMoa2001017
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|