Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2021, Vol. 12 Issue (4) : 240-260    https://doi.org/10.1007/s13238-021-00821-2
RESEARCH ARTICLE
Potentiating CD8+ T cell antitumor activity by inhibiting PCSK9 to promote LDLRmediated TCR recycling and signaling
Juanjuan Yuan1,2,4, Ting Cai1,2,4, Xiaojun Zheng2,3,4, Yangzi Ren2,3, Jingwen Qi2,4, Xiaofei Lu2,4, Huihui Chen2,4, Huizhen Lin2,4, Zijie Chen2,4, Mengnan Liu2,4, Shangwen He2,4, Qijun Chen2,4, Siyang Feng2,4, Yingjun Wu2,4, Zhenhai Zhang5(), Yanqing Ding2,3,4(), Wei Yang2,3,4()
1. Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan 528308, China
2. Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
3. Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
4. Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou 510515, China
5. Center for Precision Medicine, Guangdong Provincial People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China
 Download: PDF(3423 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metabolic regulation has been proven to play a critical role in T cell antitumor immunity. However, cholesterol metabolism as a key component of this regulation remains largely unexplored. Herein, we found that the low-density lipoprotein receptor (LDLR), which has been previously identified as a transporter for cholesterol, plays a pivotal role in regulating CD8+ T cell antitumor activity. Besides the involvement of cholesterol uptake which is mediated by LDLR in T cell priming and clonal expansion, we also found a non-canonical function of LDLR in CD8+ T cells: LDLR interacts with the T-cell receptor (TCR) complex and regulates TCR recycling and signaling, thus facilitating the effector function of cytotoxic T-lymphocytes (CTLs). Furthermore, we found that the tumor microenvironment (TME) downregulates CD8+ T cell LDLR level and TCR signaling via tumor cellderived proprotein convertase subtilisin/kexin type 9 (PCSK9) which binds to LDLR and prevents the recycling of LDLR and TCR to the plasma membrane thus inhibits the effector function of CTLs. Moreover, genetic deletion or pharmacological inhibition of PCSK9 in tumor cells can enhance the antitumor activity of CD8+ T cells by alleviating the suppressive effect on CD8+ T cells and consequently inhibit tumor progression. While previously established as a hypercholesterolemia target, this study highlights PCSK9/LDLR as a potential target for cancer immunotherapy as well.

Keywords LDLR      PCSK9      TCR      CD8+ T cells      tumor microenvironment      cancer immunotherapy     
Corresponding Author(s): Zhenhai Zhang,Yanqing Ding,Wei Yang   
Issue Date: 10 May 2021
 Cite this article:   
Juanjuan Yuan,Ting Cai,Xiaojun Zheng, et al. Potentiating CD8+ T cell antitumor activity by inhibiting PCSK9 to promote LDLRmediated TCR recycling and signaling[J]. Protein Cell, 2021, 12(4): 240-260.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-021-00821-2
https://academic.hep.com.cn/pac/EN/Y2021/V12/I4/240
1 M Abifadel, M Varret, JP Rabès, D Allard, K Ouguerram, M Devillers, C Cruaud, S Benjannet, L Wickham, D Erlichet al. (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34:154–156
https://doi.org/10.1038/ng1161
2 A Alcover, B Alarcón, V Di Bartolo (2018) Cell biology of T cell receptor expression and regulation. Annu Rev Immunol 36:103–125
https://doi.org/10.1146/annurev-immunol-042617-053429
3 L Almeida, M Lochner, L Berod, T Sparwasser (2016) Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol 28:514–524
https://doi.org/10.1016/j.smim.2016.10.009
4 T Baumann, A Dunkel, C Schmid, S Schmitt, M Hiltensperger, K Lohr, V Laketa, S Donakonda, U Ahting, B Lorenz-Depiereuxet al. (2020) Regulatory myeloid cells paralyze T cells through cell-cell transfer of the metabolite methylglyoxal. Nat Immunol 21:555–566
https://doi.org/10.1038/s41590-020-0666-9
5 SJ Bensinger, MN Bradley, SB Joseph, N Zelcer, EM Janssen, MA Hausner, R Shih, JS Parks, PA Edwards, BD Jamieson, P Tontonoz (2008) LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134:97–111
https://doi.org/10.1016/j.cell.2008.04.052
6 Y Bian, W Li, DM Kremer, P Sajjakulnukit, S Li, J Crespo, ZC Nwosu, L Zhang, A Czerwonka, A Pawlowskaet al. (2020) Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature 585:277–282
https://doi.org/10.1038/s41586-020-2682-1
7 DJ Blom, T Hala, M Bolognese, MJ Lillestol, PD Toth, L Burgess, R Ceska, E Roth, MJ Koren, CM Ballantyneet al. (2014) A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med 370:1809–1819
https://doi.org/10.1056/NEJMoa1316222
8 T Brody, T Brody (2018) FDA’s drug review process and the package label: strategies for writing successful FDA submissions. Academic Press, London
9 L Bunse, S Pusch, T Bunse, F Sahm, K Sanghvi, M Friedrich, D Alansary, JK Sonner, E Green, K Deumelandtet al. (2018) Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med 24:1192–1203
https://doi.org/10.1038/s41591-018-0095-6
10 T Cascone, JA McKenzie, RM Mbofung, S Punt, Z Wang, C Xu, LJ Williams, Z Wang, CA Bristow, A Carugoet al. (2018) Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab 27:977–987
https://doi.org/10.1016/j.cmet.2018.02.024
11 CH Chang, J Qiu, D O’Sullivan, MD Buck, T Noguchi, JD Curtis, Q Chen, M Gindin, MM Gubin, GJ van der Windtet al. (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–1241
https://doi.org/10.1016/j.cell.2015.08.016
12 NM Chapman, MR Boothby, H Chi (2020) Metabolic coordination of T cell quiescence and activation. Nat Rev Immunol 20:55–70
https://doi.org/10.1038/s41577-019-0203-y
13 D Cunningham, DE Danley, KF Geoghegan, MC Griffor, JL Hawkins, TA Subashi, AH Varghese, MJ Ammirati, JS Culp, LR Hothet al. (2007) Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol 14:413–419
https://doi.org/10.1038/nsmb1235
14 O Draghiciu, J Lubbers, HW Nijman, T Daemen (2015) Myeloid derived suppressor cells-an overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology 4:e954829
https://doi.org/10.4161/21624011.2014.954829
15 E Dugnani, V Pasquale, C Bordignon, A Canu, L Piemonti, P Monti (2017) Integrating T cell metabolism in cancer immunotherapy. Cancer Lett 411:12–18
https://doi.org/10.1016/j.canlet.2017.09.039
16 C Ecker, L Guo, S Voicu, L Gil-de-Gomez, A Medvec, L Cortina, J Pajda, M Andolina, M Torres-Castillo, JL Donatoet al. (2018) Differential reliance on lipid metabolism as a salvage pathway underlies functional differences of T cell subsets in poor nutrient environments. Cell Rep 23:741–755
https://doi.org/10.1016/j.celrep.2018.03.084
17 CM Fu, AM Jiang (2018) Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front Immunol 9:3059
https://doi.org/10.3389/fimmu.2018.03059
18 K Gaus, E Chklovskaia, B Fazekas de St Groth, W Jessup, T Harder (2005) Condensation of the plasma membrane at the site of T lymphocyte activation. J Cell Biol 171:121–131
https://doi.org/10.1083/jcb.200505047
19 RIK Geltink, RL Kyle, EL Pearce (2018) Unraveling the complex interplay between T cell metabolism and function. Annu Rev Immunol 36:461–488
https://doi.org/10.1146/annurev-immunol-042617-053019
20 GW Go, A Mani (2012) Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med 85:19–28
21 BB He, WB Peng, J Huang, H Zhang, YS Zhou, XL Yang, J Liu, ZJ Li, CL Xu, MX Xueet al. (2020) Modulation of metabolic functions through Cas13d-mediated gene knockdown in liver. Protein Cell 11:518–524
https://doi.org/10.1007/s13238-020-00700-2
22 PC Ho, JD Bihuniak, AN Macintyre, M Staron, X Liu, R Amezquita, YC Tsui, G Cui, G Micevic, JC Peraleset al. (2015) Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162:1217–1228
https://doi.org/10.1016/j.cell.2015.08.012
23 HH Hobbs, DW Russell, MS Brown, JL Goldstein (1990) The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu Rev Genet 24:133–170
https://doi.org/10.1146/annurev.ge.24.120190.001025
24 Z Hu, PA Ott, CJ Wu (2018) Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol 18:168–182
https://doi.org/10.1038/nri.2017.131
25 Y Ishida, Y Agata, K Shibahara, T Honjo (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895
https://doi.org/10.1002/j.1460-2075.1992.tb05481.x
26 H Jeon, SC Blacklow (2005) Structure and physiologic function of the low-density lipoprotein receptor. Annu Rev Biochem 74:535–562
https://doi.org/10.1146/annurev.biochem.74.082803.133354
27 R Kalluri (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16:582–598
https://doi.org/10.1038/nrc.2016.73
28 Y Kidani, H Elsaesser, MB Hock, L Vergnes, KJ Williams, JP Argus, BN Marbois, E Komisopoulou, EB Wilson, TF Osborneet al. (2013) Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol 14:489–499
https://doi.org/10.1038/ni.2570
29 RJ Kishton, M Sukumar, NP Restifo (2017) Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab 26:94–109
https://doi.org/10.1016/j.cmet.2017.06.016
30 S Kuhnast, JW van der Hoorn, EJ Pieterman, AM van den Hoek, WJ Sasiela, V Gusarova, A Peyman, HL Schafer, U Schwahn, JW Jukema, HM Princen (2014) Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res 55:2103–2112
https://doi.org/10.1194/jlr.M051326
31 V Kumar, L Donthireddy, D Marvel, T Condamine, F Wang, S Lavilla-Alonso, A Hashimoto, P Vonteddu, R Behera, MA Goinset al. (2017) Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32:654–668.e655
https://doi.org/10.1016/j.ccell.2017.10.005
32 HJ Kwon, TA Lagace, MC McNutt, JD Horton, J Deisenhofer (2008) Molecular basis for LDL receptor recognition by PCSK9. Proc Natl Acad Sci USA 105:1820–1825
https://doi.org/10.1073/pnas.0712064105
33 DR Leach, MF Krummel, JP Allison (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736
https://doi.org/10.1126/science.271.5256.1734
34 RD Leone, L Zhao, JM Englert, IM Sun, MH Oh, IH Sun, ML Arwood, IA Bettencourt, CH Patel, J Wenet al. (2019) Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366:1013–1021
https://doi.org/10.1126/science.aav2588
35 NG Lintner, KF McClure, D Petersen, AT Londregan, DW Piotrowski, L Wei, J Xiao, M Bolt, PM Loria, B Maguireet al. (2017) Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biol 15:e2001882
https://doi.org/10.1371/journal.pbio.2001882
36 X Liu, X Bao, M Hu, H Chang, M Jiao, J Cheng, L Xie, Q Huang, F Li, CY Li (2020) Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature 588:693–698
https://doi.org/10.1038/s41586-020-2911-7
37 L Ma, L Wang, AT Nelson, C Han, S He, MA Henn, K Menon, JJ Chen, AE Baek, A Vardanyanet al. (2020) 27-Hydroxycholesterol acts on myeloid immune cells to induce T cell dysfunction, promoting breast cancer progression. Cancer Lett 493:266–283
https://doi.org/10.1016/j.canlet.2020.08.020
38 A Mantovani, F Marchesi, A Malesci, L Laghi, P Allavena (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14:399–416
https://doi.org/10.1038/nrclinonc.2016.217
39 SL Maude, N Frey, PA Shaw, R Aplenc, DM Barrett, NJ Bunin, A Chew, VE Gonzalez, Z Zheng, SF Laceyet al. (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371:1507–1517
https://doi.org/10.1056/NEJMoa1407222
40 KN Maxwell, EA Fisher, JL Breslow (2005) Overexpression of PCSK9 accelerates the degradation of the LDLR in a postendoplasmic reticulum compartment. Proc Natl Acad Sci USA 102:2069–2074
https://doi.org/10.1073/pnas.0409736102
41 RA Morgan, ME Dudley, JR Wunderlich, MS Hughes, JC Yang, RM Sherry, RE Royal, SL Topalian, US Kammula, NP Restifoet al. (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129
https://doi.org/10.1126/science.1129003
42 SS Neelapu, S Tummala, P Kebriaei, W Wierda, C Gutierrez, FL Locke, KV Komanduri, Y Lin, N Jain, N Daveret al. (2018) Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat Rev Clin Oncol 15:47–62
https://doi.org/10.1038/nrclinonc.2017.148
43 RH Newton, S Shrestha, JM Sullivan, KB Yates, EB Compeer, N Ron-Harel, BR Blazar, SJ Bensinger, WN Haining, ML Dustinet al. (2018) Maintenance of CD4 T cell fitness through regulation of Foxo1. Nat Immunol 19:838–848
https://doi.org/10.1038/s41590-018-0157-4
44 CH Patel, JD Powell (2017) Targeting Tcell metabolism to regulate T cell activation, differentiation and function in disease. Curr Opin Immunol 46:82–88
https://doi.org/10.1016/j.coi.2017.04.006
45 S Poirier, G Mayer, S Benjannet, E Bergeron, J Marcinkiewicz, N Nassoury, H Mayer, J Nimpf, A Prat, NG Seidah (2008) The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem 283:2363–2372
https://doi.org/10.1074/jbc.M708098200
46 JD Proto, AC Doran, M Subramanian, H Wang, M Zhang, E Sozen, CC Rymond, G Kuriakose, V D’Agati, R Winchesteret al. (2018) Hypercholesterolemia induces T cell expansion in humanized immune mice. J Clin Investig 128:2370–2375
https://doi.org/10.1172/JCI97785
47 FJ Raal, N Honarpour, DJ Blom, GK Hovingh, F Xu, R Scott, SM Wasserman, EA Stein (2015) Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet 385:341–350
https://doi.org/10.1016/S0140-6736(14)61374-X
48 FJ Raal, GK Hovingh, D Blom, RD Santos, M Harada-Shiba, E Bruckert, P Couture, H Soran, GF Watts, C Kurtzet al. (2017) Long-term treatment with evolocumab added to conventional drug therapy, with or without apheresis, in patients with homozygous familial hypercholesterolaemia: an interim subset analysis of the open-label TAUSSIG study. Lancet Diabetes Endocrinol 5:280–290
https://doi.org/10.1016/S2213-8587(17)30044-X
49 S Rafiq, CS Hackett, RJ Brentjens (2020) Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 17:147–167
https://doi.org/10.1038/s41571-019-0297-y
50 SR Riddell, PD Greenberg (1990) The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. J Immunol Methods 128:189–201
https://doi.org/10.1016/0022-1759(90)90210-M
51 NA Rizvi, MD Hellmann, A Snyder, P Kvistborg, V Makarov, JJ Havel, W Lee, J Yuan, P Wong, TS Hoet al. (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128
https://doi.org/10.1126/science.aaa1348
52 X Shi, Y Bi, W Yang, X Guo, Y Jiang, C Wan, L Li, Y Bai, J Guo, Y Wanget al. (2013) Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 493:111–115
https://doi.org/10.1038/nature11699
53 SM Stanford, N Rapini, N Bottini (2012) Regulation of TCR signalling by tyrosine phosphatases: from immune homeostasis to autoimmunity. Immunology 137:1–19
https://doi.org/10.1111/j.1365-2567.2012.03591.x
54 EA Stein, N Honarpour, SM Wasserman, F Xu, R Scott, FJ Raal (2013) Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation 128:2113–2120
https://doi.org/10.1161/CIRCULATIONAHA.113.004678
55 M Sukumar, J Liu, Y Ji, M Subramanian, JG Crompton, Z Yu, R Roychoudhuri, DC Palmer, P Muranski, ED Karolyet al. (2013) Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Investig 123:4479–4488
https://doi.org/10.1172/JCI69589
56 D Sun, J Wang, Y Han, X Dong, J Ge, R Zheng, X Shi, B Wang, Z Li, P Renet al. (2020) TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res.
https://doi.org/10.1093/nar/gkaa1020
57 Y Togashi, K Shitara, H Nishikawa (2019) Regulatory T cells in cancer immunosuppression- implications for anticancer therapy. Nat Rev Clin Oncol 16:356–371
https://doi.org/10.1038/s41571-019-0175-7
58 PA van der Merwe, O Dushek (2011) Mechanisms for T cell receptor triggering. Nat Rev Immunol 11:47–55
https://doi.org/10.1038/nri2887
59 F Wang, K Beck-García, C Zorzin, WW Schamel, MM Davis (2016) Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol. Nat Immunol 17:844–850
https://doi.org/10.1038/ni.3462
60 W Wang, W Zou (2020) Amino acids and their transporters in T cell immunity and cancer therapy. Mol Cell 80:384–395
https://doi.org/10.1016/j.molcel.2020.09.006
61 JD Wolchok, H Kluger, MK Callahan, MA Postow, NA Rizvi, AM Lesokhin, NH Segal, CE Ariyan, RA Gordon, K Reedet al. (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133
https://doi.org/10.1056/NEJMoa1302369
62 W Wu, X Shi, C Xu (2016) Regulation of T cell signalling by membrane lipids. Nat Rev Immunol 16:690–701
https://doi.org/10.1038/nri.2016.103
63 CQ Xu, E Gagnon, ME Call, JR Schnell, CD Schwieters, CV Carman, JJ Chou, KW Wucherpfennig (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3 epsilon cytoplasmic tyrosine-based motif. Cell 135:702–713
https://doi.org/10.1016/j.cell.2008.09.044
64 W Yang, Y Bai, Y Xiong, J Zhang, S Chen, X Zheng, X Meng, L Li, J Wang, C Xuet al. (2016) Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature 531:651–655
https://doi.org/10.1038/nature17412
65 T Zech, CS Ejsing, K Gaus, B de Wet, A Shevchenko, K Simons, T Harder (2009) Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J 28:466–476
https://doi.org/10.1038/emboj.2009.6
66 N Zelcer, C Hong, R Boyadjian, P Tontonoz (2009) LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 325:100–104
https://doi.org/10.1126/science.1168974
67 DW Zhang, TA Lagace, R Garuti, Z Zhao, M McDonald, JD Horton, JC Cohen, HH Hobbs (2007) Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 282:18602–18612
https://doi.org/10.1074/jbc.M702027200
68 Y Zhang, HC Ertl (2016) Starved and asphyxiated: how can CD8(+) T cells within a tumor microenvironment prevent tumor progression. Front Immunol 7:32
https://doi.org/10.3389/fimmu.2016.00032
69 Y Zhang, R Kurupati, L Liu, XY Zhou, G Zhang, A Hudaihed, F Filisio, W Giles-Davis, X Xu, GC Karakousiset al. (2017) Enhancing CD8 (+) T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32:377–391
https://doi.org/10.1016/j.ccell.2017.08.004
[1] PAC-0240-20084-YW_suppl_1 Download
[1] Phei Er Saw, Er-Wei Song. Phage display screening of therapeutic peptide for cancer targeting and therapy[J]. Protein Cell, 2019, 10(11): 787-807.
[2] Boyi Zhang, Fei Chen, Qixia Xu, Liu Han, Jiaqian Xu, Libin Gao, Xiaochen Sun, Yiwen Li, Yan Li, Min Qian, Yu Sun. Revisiting ovarian cancer microenvironment: a friend or a foe?[J]. Protein Cell, 2018, 9(8): 674-692.
[3] Yu Ping, Chaojun Liu, Yi Zhang. T-cell receptor-engineered T cells for cancer treatment: current status and future directions[J]. Protein Cell, 2018, 9(3): 254-266.
[4] Peipei Liu,Di Liu,Xi Yang,Jing Gao,Yan Chen,Xue Xiao,Fei Liu,Jing Zou,Jun Wu,Juncai Ma,Fangqing Zhao,Xuyu Zhou,George F. Gao,Baoli Zhu. Characterization of human αβTCR repertoire and discovery of D-D fusion in TCRβ chains[J]. Protein Cell, 2014, 5(8): 603-615.
[5] Fei Chen,Xinyi Qi,Min Qian,Yue Dai,Yu Sun. Tackling the tumor microenvironment: what challenge does it pose to anticancer therapies?[J]. Protein Cell, 2014, 5(11): 816-826.
[6] Meng Xu, Xuexiang Du, Mingyue Liu, Sirui Li, Xiaozhu Li, Yang-Xin Fu, Shengdian Wang. The tumor immunosuppressive microenvironment impairs the therapy of anti-HER2/neu antibody[J]. Prot Cell, 2012, 3(6): 441-449.
[7] Ruth K. Moysey, Yi Li, Samantha J. Paston, Emma E. Baston, Malkit S. Sami, Brian J. Cameron, Jessie Gavarret, Penio Todorov, Annelise Vuidepot, Steven M. Dunn, Nicholas J. Pumphrey, Katherine J. Adams, Fang Yuan, Rebecca E. Dennis, Deborah H. Sutton, Andy D. Johnson, Joanna E. Brewer, Rebecca Ashfield, Nikolai M. Lissin, Bent K. Jakobsen. High affinity soluble ILT2 receptor: a potent inhibitor of CD8+ T cell activation[J]. Prot Cell, 2010, 1(12): 1118-1127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed