Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2023, Vol. 14 Issue (8) : 560-578    https://doi.org/10.1093/procel/pwac064
REVIEW
Cellular polyploidy in organ homeostasis and regeneration
Juntao Fang1, Alain de Bruin2,3, Andreas Villunger4,5,6, Raymond Schiffelers7, Zhiyong Lei1,7(), Joost P.G. Sluijter1()
1. Department of Experimental Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
2. Department of Pediatrics, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
3. Department of Pathobiology, Dutch Molecular Pathology Center, Utrecht University, Yalelaan1, 3584 CL Utrecht, The Netherlands
4. Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
5. Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Lazarettgasse 14, AKH BT 25.3 c/o CeMM Research Building, Haupteingang Level 1, 1090 Wien, Österreich
6. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090 Vienna, Austria
7. CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
 Download: PDF(1228 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Polyploid cells, which contain more than one set of chromosome pairs, are very common in nature. Polyploidy can provide cells with several potential benefits over their diploid counterparts, including an increase in cell size, contributing to organ growth and tissue homeostasis, and improving cellular robustness via increased tolerance to genomic stress and apoptotic signals. Here, we focus on why polyploidy in the cell occurs and which stress responses and molecular signals trigger cells to become polyploid. Moreover, we discuss its crucial roles in cell growth and tissue regeneration in the heart, liver, and other tissues.

Keywords cellular polyploidy      tissue regeneration      cardiac regeneration      liver regeneration     
Corresponding Author(s): Zhiyong Lei,Joost P.G. Sluijter   
Issue Date: 26 September 2023
 Cite this article:   
Juntao Fang,Alain de Bruin,Andreas Villunger, et al. Cellular polyploidy in organ homeostasis and regeneration[J]. Protein Cell, 2023, 14(8): 560-578.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1093/procel/pwac064
https://academic.hep.com.cn/pac/EN/Y2023/V14/I8/560
1 CP Adler, H. Friedburg Myocardial DNA content, ploidy level and cell number in geriatric hearts: post-mortem examinations of human myocardium in old age. J Mol Cell Cardiol 1986;18:39–53.
https://doi.org/10.1016/S0022-2828(86)80981-6
2 CP Adler, H Friedburg, GW Herget et al. Variability of cardiomyocyte DNA content, ploidy level and nuclear number in mammalian hearts. Virchows Arch 1996;429:159–164.
https://doi.org/10.1007/BF00192438
3 P Ahuja, E Perriard, W Trimble et al. Probing the role of septins in cardiomyocytes. Exp Cell Res 2006;312:1598–1609.
https://doi.org/10.1016/j.yexcr.2006.01.029
4 E Aix, O Gutierrez-Gutierrez, C Sanchez-Ferrer et al. Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation. J Cell Biol 2016;213:571–583.
https://doi.org/10.1083/jcb.201510091
5 H Al-Hussaini, JH Kam, A Vugler et al. Mature retinal pigment epithelium cells are retained in the cell cycle and proliferate in vivo. Mol Vis 2008;14:1784–1791.
6 SR Ali, S Hippenmeyer, LV Saadat et al. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc Natl Acad Sci U S A 2014;111:8850–8855.
https://doi.org/10.1073/pnas.1408233111
7 OV Anatskaya, AE. Vinogradov Paradoxical relationship between protein content and nucleolar activity in mammalian cardiomyocytes. Genome 2004;47:565–578.
https://doi.org/10.1139/g04-015
8 OV Anatskaya, AE. Vinogradov Genome multiplication as adaptation to tissue survival: evidence from gene expression in mammalian heart and liver. Genomics 2007;89:70–80.
https://doi.org/10.1016/j.ygeno.2006.08.014
9 OV Anatskaya, AE Vinogradov, BN. Kudryavtsev Hepatocyte polyploidy and metabolism/life-history traits: hypotheses testing. J Theor Biol 1994;168:191–199.
https://doi.org/10.1006/jtbi.1994.1098
10 OV Anatskaya, AE Vinogradov, BN. Kudryavtsev Cardiomyocyte ploidy levels in birds with different growth rates. J Exp Zool 2001;289:48–58.
https://doi.org/10.1002/1097-010X(20010101/31)289:1<48::AID-JEZ5>3.0.CO;2-S
11 M Anti, G Marra, GL Rapaccini et al. DNA ploidy pattern in human chronic liver diseases and hepatic nodular lesions. Flow cytometric analysis on echo-guided needle liver biopsy. Cancer 1994;73:281–288.
https://doi.org/10.1002/1097-0142(19940115)73:2<281::AID-CNCR2820730208>3.0.CO;2-6
12 MR Banerjee, JE. Wagner Gene amplification in mammary gland at differentiation. Biochem Biophys Res Commun 1972;49:480–487.
https://doi.org/10.1016/0006-291X(72)90436-6
13 MR Banerjee, JE Wagner, DL. Kinder DNA synthesis in the absence of cell reproduction during functional differentiation of mouse mammary gland. Life Sci II 1971;10:867–877.
https://doi.org/10.1016/0024-3205(71)90199-8
14 A Barbera, GD Giraud, MD Reller et al. Right ventricular systolic pressure load alters myocyte maturation in fetal sheep. Am J Physiol Regul Integr Comp Physiol 2000;279:R1157–R1164.
https://doi.org/10.1152/ajpregu.2000.279.4.R1157
15 DR Barnard, B Lange, TA Alonzo et al. Acute myeloid leukemia and myelodysplastic syndrome in children treated for cancer: comparison with primary presentation. Blood 2002;100:427–434.
https://doi.org/10.1182/blood.V100.2.427
16 B Bartelds, H Knoester, GB Smid et al. Perinatal changes in myocardial metabolism in lambs. Circulation 2000;102:926–931.
https://doi.org/10.1161/01.CIR.102.8.926
17 AP Beltrami, K Urbanek, J Kajstura et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344:1750–1757.
https://doi.org/10.1056/NEJM200106073442303
18 JG Bensley, R De Matteo, R Harding et al. Three-dimensional direct measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections. Sci Rep 2016;6:23756.
https://doi.org/10.1038/srep23756
19 O Bergmann, RD Bhardwaj, S Bernard et al. Evidence for cardiomyocyte renewal in humans. Science 2009;324:98–102.
https://doi.org/10.1126/science.1164680
20 O Bergmann, S Zdunek, A Felker et al. Dynamics of Cell Generation and Turnover in the Human Heart. Cell 2015;161:1566–1575.
https://doi.org/10.1016/j.cell.2015.05.026
21 K Bersell, S Arab, B Haring et al. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 2009;138:257–270.
https://doi.org/10.1016/j.cell.2009.04.060
22 M Bettencourt-Dias, S Mittnacht, JP. Brockes Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. J Cell Sci 2003;116:4001–4009.
https://doi.org/10.1242/jcs.00698
23 KA Bicknell, CH Coxon, G. Brooks Forced expression of the cyclin B1-CDC2 complex induces proliferation in adult rat cardiomyocytes. Biochem J 2004;382:411–416.
https://doi.org/10.1042/BJ20031481
24 JP. Bogart Evolutionary implications of polyploidy in amphibians and reptiles. Basic Life Sci 1979;13:341–378.
https://doi.org/10.1007/978-1-4613-3069-1_18
25 DA Brito, CL. Rieder Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr Biol 2006;16:1194–1200.
https://doi.org/10.1016/j.cub.2006.04.043
26 V Brodsky, DS Sarkisov, AM Arefyeva et al. Polyploidy in cardiac myocytes of normal and hypertrophic human hearts; range of values. Virchows Arch 1994;424:429–435.
https://doi.org/10.1007/BF00190566
27 M Burigotto, A Mattivi, D Migliorati et al. Centriolar distal appendages activate the centrosome-PIDDosome-p53 signalling axis via ANKRD26. EMBO J 2021;40:e104844.
https://doi.org/10.15252/embj.2020104844
28 J Cao, J Wang, CP Jackman et al. Tension creates an endoreplication wavefront that leads regeneration of epicardial tissue. Dev Cell 2017;42:600–615
https://doi.org/10.1016/j.devcel.2017.08.024
29 JG Carlton, A Caballe, M Agromayor et al. ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 2012;336:220–225.
https://doi.org/10.1126/science.1217180
30 S Celton-Morizur, G Merlen, D Couton et al. The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J Clin Invest 2009;119:1880–1887.
https://doi.org/10.1172/JCI38677
31 S Celton-Morizur, G Merlen, D Couton et al. Polyploidy and liver proliferation: central role of insulin signaling. Cell Cycle 2010;9:460–466.
https://doi.org/10.4161/cc.9.3.10542
32 M Chandra, CH. Frith Spontaneous neoplasms in aged CD-1 mice. Toxicol Lett 1992;61:67–74.
https://doi.org/10.1016/0378-4274(92)90064-Q
33 NN Chattergoon, GD Giraud, S Louey et al. Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J 2012a;26:397–408.
https://doi.org/10.1096/fj.10-179895
34 NN Chattergoon, S Louey, P Stork et al. Mid-gestation ovine cardiomyocytes are vulnerable to mitotic suppression by thyroid hormone. Reprod Sci 2012b;19:642–649.
https://doi.org/10.1177/1933719111432860
35 HZ Chen, MM Ouseph, J Li et al. Canonical and atypical E2Fs regulate the mammalian endocycle. Nat Cell Biol 2012;14:1192–1202.
https://doi.org/10.1038/ncb2595
36 M Chen, D Rajapakse, M Fraczek et al. Retinal pigment epithelial cell multinucleation in the aging eye - a mechanism to repair damage and maintain homoeostasis. Aging Cell 2016;15:436–445.
https://doi.org/10.1111/acel.12447
37 Y Chen, T Hata, F Rehman et al. Visualization of Hepatocellular Regeneration in Mice After Partial Hepatectomy. J Surg Res 2019;235:494–500.
https://doi.org/10.1016/j.jss.2018.10.022
38 MD Chipchase, M O’Neill, DW. Melton Characterization of premature liver polyploidy in DNA repair (Ercc1)-deficient mice. Hepatology 2003;38:958–966.
https://doi.org/10.1002/hep.1840380422
39 FJ Jr. Clubb, SP. Bishop Formation of binucleated myocardial cells in the neonatal rat. An index for growth hypertrophy. Lab Invest 1984;50:571–577.
40 EA Conner, ER Lemmer, A Sanchez et al. E2F1 blocks and c-Myc accelerates hepatic ploidy in transgenic mouse models. Biochem Biophys Res Commun 2003;302:114–120.
https://doi.org/10.1016/S0006-291X(03)00125-6
41 SJ Cookson, A Radziejwoski, C. Granier Cell and leaf size plasticity in Arabidopsis: what is the role of endoreduplication? Plant Cell Environ 2006;29:1273–1283.
https://doi.org/10.1111/j.1365-3040.2006.01506.x
42 C Crosio, GM Fimia, R Loury et al. Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol Cell Biol 2002;22:874–885.
https://doi.org/10.1128/MCB.22.3.874-885.2002
43 G D’Uva, A Aharonov, M Lauriola et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol 2015;17:627–638.
https://doi.org/10.1038/ncb3149
44 T Davoli, EL Denchi, T. de Lange Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 2010;141:81–93.
https://doi.org/10.1016/j.cell.2010.01.031
45 M De Santis Puzzonia, AM Cozzolino, G Grassi et al. TGFbeta Induces Binucleation/Polyploidization in Hepatocytes through a Src-Dependent Cytokinesis Failure. PLoS One 2016;11:e0167158.
https://doi.org/10.1371/journal.pone.0167158
46 D Dikovskaya, D Schiffmann, IP Newton et al. Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. J Cell Biol 2007;176:183–195.
https://doi.org/10.1083/jcb.200610099
47 R Di Micco, M Fumagalli, A Cicalese et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006;444:638–642.
https://doi.org/10.1038/nature05327
48 MK Diril, CK Ratnacaram, VC Padmakumar et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc Natl Acad Sci U S A 2012;109:3826–3831.
https://doi.org/10.1073/pnas.1115201109
49 V Di Stefano, M Giacca, MC Capogrossi et al. Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle. J Biol Chem 2011;286:8644–8654.
https://doi.org/10.1074/jbc.M110.184549
50 JD Drenckhahn, J Strasen, K Heinecke et al. Impaired myocardial development resulting in neonatal cardiac hypoplasia alters postnatal growth and stress response in the heart. Cardiovasc Res 2015;106:43–54.
https://doi.org/10.1093/cvr/cvv028
51 M Duchrow, C Schluter, C Wohlenberg et al. Molecular characterization of the gene locus of the human cell proliferation-associated nuclear protein defined by monoclonal antibody Ki-67. Cell Prolif 1996;29:1–12.
https://doi.org/10.1111/j.1365-2184.1996.tb00090.x
52 AW Duncan, RD Hickey, NK Paulk et al. Ploidy reductions in murine fusion-derived hepatocytes. PLoS Genet 2009;5:e1000385.
https://doi.org/10.1371/journal.pgen.1000385
53 AW Duncan, MH Taylor, RD Hickey et al. The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 2010;467:707–710.
https://doi.org/10.1038/nature09414
54 AW Duncan, AE Hanlon Newell, W Bi et al. Aneuploidy as a mechanism for stress-induced liver adaptation. J Clin Invest 2012a;122:3307–3315.
https://doi.org/10.1172/JCI64026
55 AW Duncan, AE Hanlon Newell, L Smith et al. Frequent aneuploidy among normal human hepatocytes. Gastroenterology 2012b;142:25–28.
https://doi.org/10.1053/j.gastro.2011.10.029
56 FB Engel, M Schebesta, MT Duong et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 2005;19:1175–1187.
https://doi.org/10.1101/gad.1306705
57 FB Engel, M Schebesta, MT. Keating Anillin localization defect in cardiomyocyte binucleation. J Mol Cell Cardiol 2006;41:601–612.
https://doi.org/10.1016/j.yjmcc.2006.06.012
58 CJ. Epstein Cell size, nuclear content, and the development of polyploidy in the Mammalian liver. Proc Natl Acad Sci U S A 1967;57:327–334.
https://doi.org/10.1073/pnas.57.2.327
59 IL Erokhina, GV Selivanova, TD Vlasova et al. Ultrastructure and biosynthetic activity of polyploid atrial myocytes in patients with mitral valve disease. Acta Histochem Suppl 1992;42:293–299.
60 F Faggioli, MG Sacco, L Susani et al. Cell fusion is a physiological process in mouse liver. Hepatology 2008;48:1655–1664.
https://doi.org/10.1002/hep.22488
61 F Faggioli, P Vezzoni, C. Montagna Single-cell analysis of ploidy and centrosomes underscores the peculiarity of normal hepatocytes. PLoS One 2011;6:e26080.
https://doi.org/10.1371/journal.pone.0026080
62 C Fan, H Chen, K Liu et al. Fibrinogen-like protein 2 contributes to normal murine cardiomyocyte maturation and heart development. Exp Physiol 2021;106:1559–1571.
https://doi.org/10.1113/EP089450
63 LL Fava, F Schuler, V Sladky et al. The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev 2017;31:34–45.
https://doi.org/10.1101/gad.289728.116
64 DT Finegood, L Scaglia, S. Bonner-Weir Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 1995;44:249–256.
https://doi.org/10.2337/diab.44.3.249
65 J Font-Burgada, S Shalapour, S Ramaswamy et al. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell 2015;162:766–779.
https://doi.org/10.1016/j.cell.2015.07.026
66 A Freije, L Ceballos, M Coisy et al. Cyclin E drives human keratinocyte growth into differentiation. Oncogene 2012;31:5180–5192.
https://doi.org/10.1038/onc.2012.22
67 A Freije, R Molinuevo, L Ceballos et al. Inactivation of p53 in human keratinocytes leads to squamous differentiation and shedding via replication stress and mitotic slippage. Cell Rep 2014;9:1349–1360.
https://doi.org/10.1016/j.celrep.2014.10.012
68 T Fujiwara, M Bandi, M Nitta et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 2005;437:1043–1047.
https://doi.org/10.1038/nature04217
69 K Gabisonia, G Prosdocimo, GD Aquaro et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 2019;569:418–422.
https://doi.org/10.1038/s41586-019-1191-6
70 A Gandarillas, D Davies, JM. Blanchard Normal and c-Myc-promoted human keratinocyte differentiation both occur via a novel cell cycle involving cellular growth and endoreplication. Oncogene 2000;19:3278–3289.
https://doi.org/10.1038/sj.onc.1203630
71 A Gandillet, E Alexandre, C Royer et al. Hepatocyte ploidy in regenerating livers after partial hepatectomy, drug-induced necrosis, and cirrhosis. Eur Surg Res 2003;35:148–160.
https://doi.org/10.1159/000070044
72 NJ Ganem, Z Storchova, D. Pellman Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 2007;17:157–162.
https://doi.org/10.1016/j.gde.2007.02.011
73 NJ Ganem, SA Godinho, D. Pellman A mechanism linking extra centrosomes to chromosomal instability. Nature 2009;460:278–282.
https://doi.org/10.1038/nature08136
74 G Gentric, V Maillet, V Paradis et al. Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease. J Clin Invest 2015;125:981–992.
https://doi.org/10.1172/JCI73957
75 J Gerdes, U Schwab, H Lemke et al. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 1983;31:13–20.
https://doi.org/10.1002/ijc.2910310104
76 P Gerlyng, T Grotmol, B Erikstein et al. Reduced proliferative activity of polyploid cells in primary hepatocellular carcinoma. Carcinogenesis 1992;13:1795–1801.
https://doi.org/10.1093/carcin/13.10.1795
77 P Gerlyng, A Abyholm, T Grotmol et al. Binucleation and polyploidization patterns in developmental and regenerative rat liver growth. Cell Prolif 1993;26:557–565.
https://doi.org/10.1111/j.1365-2184.1993.tb00033.x
78 R Gilsbach, M Schwaderer, S Preissl et al. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nat Commun 2018;9:391.
https://doi.org/10.1038/s41467-017-02762-z
79 A Gimelbrant, JN Hutchinson, BR Thompson et al. Widespread monoallelic expression on human autosomes. Science 2007;318:1136–1140.
https://doi.org/10.1126/science.1148910
80 JM Gonzalez-Rosa, M Sharpe, D Field et al. Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Dev Cell 2018;44:433–446
https://doi.org/10.1016/j.devcel.2018.01.021
81 GR Gorla, H Malhi, S. Gupta Polyploidy associated with oxidative injury attenuates proliferative potential of cells. J Cell Sci 2001;114:2943–2951.
https://doi.org/10.1242/jcs.114.16.2943
82 J Grendler, S Lowgren, M Mills et al. Wound-induced polyploidization is driven by Myc and supports tissue repair in the presence of DNA damage. Development 2019;146.
https://doi.org/10.1242/dev.173005
83 M Guc-Scekic, J Milasin, M Stevanovic et al. Tetraploidy in a 26-month-old girl (cytogenetic and molecular studies). Clin Genet 2002;61:62–65.
https://doi.org/10.1034/j.1399-0004.2002.610112.x
84 JE Guidotti, O Bregerie, A Robert et al. Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J Biol Chem 1909278:5–19101.
85 N Gujabidze, R. Rukhadze Influence of experimental hyperthyreosis on hepatocytes’ cell cycle in white mice. Georgian Med News 2006;131:112–115.
86 S Hagemann, J Wohlschlaeger, S Bertram et al. Loss of Survivin influences liver regeneration and is associated with impaired Aurora B function. Cell Death Differ 2013;20:834–844.
https://doi.org/10.1038/cdd.2013.20
87 L Han, S Choudhury, JD Mich-Basso et al. Lamin B2 levels regulate polyploidization of cardiomyocyte nuclei and myocardial regeneration. Dev Cell 2020;53:42–59
https://doi.org/10.1016/j.devcel.2020.01.030
88 NJ Hanovice, LL Leach, K Slater et al. Regeneration of the zebrafish retinal pigment epithelium after widespread genetic ablation. PLoS Genet 2019;15:e1007939.
https://doi.org/10.1371/journal.pgen.1007939
89 M Hart, SD Adams, VM. Draviam Multinucleation associated DNA damage blocks proliferation in p53-compromised cells. Commun Biol 2021;4:451.
https://doi.org/10.1038/s42003-021-01979-5
90 P Heinke, F Rost, J Rode et al. Diploid hepatocytes drive physiological liver renewal in adult humans. Cell Syst 2022;13:499–507
https://doi.org/10.1016/j.cels.2022.05.001
91 GW Herget, M Neuburger, R Plagwitz et al. DNA content, ploidy level and number of nuclei in the human heart after myocardial infarction. Cardiovasc Res 1997;36:45–51.
https://doi.org/10.1016/S0008-6363(97)00140-5
92 M Hesse, A Raulf, GA Pilz et al. Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nat Commun 2012;3:1076.
https://doi.org/10.1038/ncomms2089
93 E Hightower, ME Cabanillas, GN Fuller et al. Phospho-histone H3 (pHH3) immuno-reactivity as a prognostic marker in non-functioning pituitary adenomas. Pituitary 2012;15:556–561.
https://doi.org/10.1007/s11102-011-0367-3
94 K Hirose, AY Payumo, S Cutie et al. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 2019;364:184–188.
https://doi.org/10.1126/science.aar2038
95 ML Hixon, C Muro-Cacho, MW Wagner et al. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization. J Clin Invest 2000;106:1011–1020.
https://doi.org/10.1172/JCI8252
96 SH Hsu, ER Delgado, PA Otero et al. MicroRNA-122 regulates polyploidization in the murine liver. Hepatology 2016;64:599–615.
https://doi.org/10.1002/hep.28573
97 B Huppertz, HG Frank, JC Kingdom et al. Villous cytotrophoblast regulation of the syncytial apoptotic cascade in the human placenta. Histochem Cell Biol 1998;110:495–508.
https://doi.org/10.1007/s004180050311
98 A Iglesias-Ara, O Zenarruzabeitia, L Buelta et al. E2F1 and E2F2 prevent replicative stress and subsequent p53-dependent organ involution. Cell Death Differ 2015;22:1577–1589.
https://doi.org/10.1038/cdd.2015.4
99 PA Jacobs, AE Szulman, J Funkhouser et al. Human triploidy: relationship between parental origin of the additional haploid complement and development of partial hydatidiform mole. Ann Hum Genet 1982;46:223–231.
https://doi.org/10.1111/j.1469-1809.1982.tb00714.x
100 YH Jiang, Y Zhu, S Chen et al. Re-enforcing hypoxia-induced polyploid cardiomyocytes enter cytokinesis through activation of beta-catenin. Sci Rep 2019;9:17865.
https://doi.org/10.1038/s41598-019-54334-4
101 YH Jiang, HL Wang, J Peng et al. Multinucleated polyploid cardiomyocytes undergo an enhanced adaptability to hypoxia via mitophagy. J Mol Cell Cardiol 2020;138:115–135.
https://doi.org/10.1016/j.yjmcc.2019.11.155
102 SS Jonker, L Zhang, S Louey et al. Myocyte enlargement, differentiation, and proliferation kinetics in the fetal sheep heart. J Appl Physiol (1985) 2007a;102:1130–1142.
https://doi.org/10.1152/japplphysiol.00937.2006
103 SS Jonker, JJ Faber, DF Anderson et al. Sequential growth of fetal sheep cardiac myocytes in response to simultaneous arterial and venous hypertension. Am J Physiol Regul Integr Comp Physiol 2007b;292:R913–R919.
https://doi.org/10.1152/ajpregu.00484.2006
104 SS Jonker, MK Giraud, GD Giraud et al. Cardiomyocyte enlargement, proliferation and maturation during chronic fetal anaemia in sheep. Exp Physiol 2010;95:131–139.
https://doi.org/10.1113/expphysiol.2009.049379
105 AB Jonsdottir, OA Stefansson, J Bjornsson et al. Tetraploidy in BRCA2 breast tumours. Eur J Cancer 2012;48:305–310.
https://doi.org/10.1016/j.ejca.2011.11.008
106 MJ Kang, JS Kim, SW Chae et al. Cyclins and cyclin dependent kinases during cardiac development. Mol Cells 1997;7:360–366.
107 J Kang, I Hwang, C Yoo et al. Nab-paclitaxel plus gemcitabine versus FOLFIRINOX as the first-line chemotherapy for patients with metastatic pancreatic cancer: retrospective analysis. Invest New Drugs 2018;36:732–741.
https://doi.org/10.1007/s10637-018-0598-5
108 Q Ke, L Gong, X Zhu et al. Multinucleated Retinal Pigment Epithelial Cells Adapt to Vision and Exhibit Increased DNA Damage Response. Cells 2022;11.
https://doi.org/10.3390/cells11091552
109 K Kemp, D Gordon, DC Wraith et al. Fusion between human mesenchymal stem cells and rodent cerebellar Purkinje cells. Neuropathol Appl Neurobiol 2011;37:166–178.
https://doi.org/10.1111/j.1365-2990.2010.01122.x
110 K Kemp, E Gray, A Wilkins et al. Purkinje cell fusion and binucleate heterokaryon formation in multiple sclerosis cerebellum. Brain 2012;135:2962–2972.
https://doi.org/10.1093/brain/aws226
111 LN Kent, JB Rakijas, SK Pandit et al. E2f8 mediates tumor suppression in postnatal liver development. J Clin Invest 2016;126:2955–2969.
https://doi.org/10.1172/JCI85506
112 L Kern, J Spreckels, A Nist et al. Altered glycogen metabolism causes hepatomegaly following an Atg7 deletion. Cell Tissue Res 2016;366:651–665.
https://doi.org/10.1007/s00441-016-2477-8
113 SH Kim, Y Jeon, HS Kim et al. Hepatocyte homeostasis for chromosome ploidization and liver function is regulated by Ssu72 protein phosphatase. Hepatology 2016;63:247–259.
https://doi.org/10.1002/hep.28281
114 B Klapholz, BH Dietrich, C Schaffner et al. CAF-1 is required for efficient replication of euchromatic DNA in Drosophila larval endocycling cells. Chromosoma 2009;118:235–248.
https://doi.org/10.1007/s00412-008-0192-2
115 KA Knouse, J Wu, CA Whittaker et al. Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc Natl Acad Sci U S A 2014 111:13409–13414.
https://doi.org/10.1073/pnas.1415287111
116 KA Knouse, KE Lopez, M Bachofner et al. Chromosome Segregation Fidelity in Epithelia Requires Tissue Architecture. Cell 2018;175:200–211
https://doi.org/10.1016/j.cell.2018.07.042
117 GJ Kops, DR Foltz, DW. Cleveland Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci U S A 2004;101:8699–8704.
https://doi.org/10.1073/pnas.0401142101
118 C Kreutz, S MacNelly, M Follo et al. Hepatocyte ploidy is a diversity factor for liver homeostasis. Front Physiol 2017;8:862.
https://doi.org/10.3389/fphys.2017.00862
119 K. Kriesten [Relative incidence of mitosis and binucleated cells, nuclear volume and nucleolar rate per nucleus in the mammary gland eipithelium of the mouse during differentiation in the gestational and lactation phase]. Gegenbaurs Morphol Jahrb 1984;130:307–314.
120 BN Kudryavtsev, MV Kudryavtseva, GA Sakuta et al. Human hepatocyte polyploidization kinetics in the course of life cycle. Virchows Arch B Cell Pathol Incl Mol Pathol 1993;64:387–393.
https://doi.org/10.1007/BF02915139
121 S Kurinna, SA Stratton, Z Coban et al. p53 regulates a mitotic transcription program and determines ploidy in normal mouse liver. Hepatology 2013;57:2004–2013.
https://doi.org/10.1002/hep.26233
122 SL Lai, R Marin-Juez, PL Moura et al. Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. Elife 2017;6:1–20.
https://doi.org/10.7554/eLife.25605
123 ZS Lamar, N Fino, J Palmer et al. Dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin (EPOCH) with or without rituximab as first-line therapy for aggressive non-Hodgkin lymphoma. Clin Lymphoma Myeloma Leuk 2016;16:76–81.
https://doi.org/10.1016/j.clml.2015.11.012
124 E Lazzerini Denchi, G Celli, T. de Lange Hepatocytes with extensive telomere deprotection and fusion remain viable and regenerate liver mass through endoreduplication. Genes Dev 2006;20:2648–2653.
https://doi.org/10.1101/gad.1453606
125 AR Leitch, IJ. Leitch Genomic plasticity and the diversity of polyploid plants. Science 2008;320:481–483.
https://doi.org/10.1126/science.1153585
126 M Leone, FB. Engel Pseudo-bipolar spindle formation and cell division in postnatal binucleated cardiomyocytes. J Mol Cell Cardiol 2019;134:69–73.
https://doi.org/10.1016/j.yjmcc.2019.07.005
127 B Levkau, M Schafers, J Wohlschlaeger et al. Survivin determines cardiac function by controlling total cardiomyocyte number. Circulation 2008;117:1583–1593.
https://doi.org/10.1161/CIRCULATIONAHA.107.734160
128 F Li, X Wang, JM Capasso et al. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 1996;28:1737–1746.
https://doi.org/10.1006/jmcc.1996.0163
129 D Li, J Cen, X Chen et al. Hepatic loss of survivin impairs postnatal liver development and promotes expansion of hepatic progenitor cells in mice. Hepatology 2013;58:2109–2121.
https://doi.org/10.1002/hep.26601
130 D Li, Y Liu, C Pei et al. miR-285-Yki/Mask double-negative feedback loop mediates blood-brain barrier integrity in Drosophila. Proc Natl Acad Sci U S A 2017;114:E2365–E2374.
https://doi.org/10.1073/pnas.1613233114
131 W Li, Y Dai, B Shi et al. LRPPRC sustains Yap-P27-mediated cell ploidy and P62-HDAC6-mediated autophagy maturation and suppresses genome instability and hepatocellular carcinomas. Oncogene 2020;39:3879–3892.
https://doi.org/10.1038/s41388-020-1257-9
132 MA Lilly, AC. Spradling The Drosophila endocycle is controlled by Cyclin E and lacks a checkpoint ensuring S-phase completion. Genes Dev 1996;10:2514–2526.
https://doi.org/10.1101/gad.10.19.2514
133 YH Lin, S Zhang, M Zhu et al. Mice with increased numbers of polyploid hepatocytes maintain regenerative capacity but develop fewer hepatocellular carcinomas following chronic liver injury. Gastroenterology 2020;158:1698–1712
https://doi.org/10.1053/j.gastro.2020.01.026
134 Z Liu, S Yue, X Chen et al. Regulation of cardiomyocyte polyploidy and multinucleation by CyclinG1. Circ Res 2010;106:1498–1506.
https://doi.org/10.1161/CIRCRESAHA.109.211888
135 VP Losick, DT Fox, AC. Spradling Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium. Curr Biol 2013;23:2224–2232.
https://doi.org/10.1016/j.cub.2013.09.029
136 VP Losick, AS Jun, AC. Spradling Wound-induced polyploidization: regulation by hippo and JNK signaling and conservation in mammals. PLoS One 2016;11:e0151251.
https://doi.org/10.1371/journal.pone.0151251
137 P Lu, S Prost, sH Caldwell et al. Microarray analysis of gene expression of mouse hepatocytes of different ploidy. Mamm Genome 2007;18:617–626.
https://doi.org/10.1007/s00335-007-9048-y
138 BK Mable, SP. Otto Masking and purging mutations following EMS treatment in haploid, diploid and tetraploid yeast (Saccharomyces cerevisiae). Genet Res 2001;77:9–26.
https://doi.org/10.1017/S0016672300004821
139 S Madra, J Styles, AG. Smith Perturbation of hepatocyte nuclear populations induced by iron and polychlorinated biphenyls in C57BL/10ScSn mice during carcinogenesis. Carcinogenesis 1995;16:719–727.
https://doi.org/10.1093/carcin/16.4.719
140 AI Mahmoud, F Kocabas, SA Muralidhar et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 2013;497:249–253.
https://doi.org/10.1038/nature12054
141 JZ Maines, LM Stevens, X Tong et al. Drosophila dMyc is required for ovary cell growth and endoreplication. Development 2004;131:775–786.
https://doi.org/10.1242/dev.00932
142 H Malhi, GR Gorla, AN Irani et al. Cell transplantation after oxidative hepatic preconditioning with radiation and ischemia-reperfusion leads to extensive liver repopulation. Proc Natl Acad Sci U S A 2002;99:13114–13119.
https://doi.org/10.1073/pnas.192365499
143 S Mansilla, W Priebe, J. Portugal Mitotic catastrophe results in cell death by caspase-dependent and caspase-independent mechanisms. Cell Cycle 2006;5:53–60.
https://doi.org/10.4161/cc.5.1.2267
144 G Margall-Ducos, S Celton-Morizur, D Couton et al. Liver tetraploidization is controlled by a new process of incomplete cytokinesis. J Cell Sci 2007;120:3633–3639.
https://doi.org/10.1242/jcs.016907
145 NC Martin, CT McCullough, PG Bush et al. Functional analysis of mouse hepatocytes differing in DNA content: volume, receptor expression, and effect of IFNgamma. J Cell Physiol 2002;191:138–144.
https://doi.org/10.1002/jcp.10057
146 MG Martynova, GV Selivanova, TD. Vlasova Ploidy levels and the number of nuclei in cardiomyocytes of the lamprey and fish. Tsitologiia 2002;44:387–391.
147 RB Matondo, E Moreno, MJM Toussaint et al. Atypical E2f functions are critical for pancreas polyploidization. PLoS One 2018;13:e0190899.
https://doi.org/10.1371/journal.pone.0190899
148 T Matsumoto, L Wakefield, BD Tarlow et al. In vivo lineage tracing of polyploid hepatocytes reveals extensive proliferation during liver regeneration. Cell Stem Cell 2020;26:34–47
https://doi.org/10.1016/j.stem.2019.11.014
149 D Maurici, A Perez-Atayde, HE Grier et al. Frequency and implications of chromosome 8 and 12 gains in Ewing sarcoma. Cancer Genet Cytogenet 1998;100:106–110.
https://doi.org/10.1016/S0165-4608(97)00028-9
150 CN Mayhew, EE Bosco, SR Fox et al. Liver-specific pRB loss results in ectopic cell cycle entry and aberrant ploidy. Cancer Res 2005;65:4568–4577.
https://doi.org/10.1158/0008-5472.CAN-04-4221
151 MJ McConnell, MR Lindberg, KJ Brennand et al. Mosaic copy number variation in human neurons. Science 2013;342:632–637.
https://doi.org/10.1126/science.1243472
152 PC Meckert, HG Rivello, C Vigliano et al. Endomitosis and polyploidization of myocardial cells in the periphery of human acute myocardial infarction. Cardiovasc Res 2005;67:116–123.
https://doi.org/10.1016/j.cardiores.2005.02.017
153 S Mehrotra, SB Maqbool, A Kolpakas et al. Endocycling cells do not apoptose in response to DNA rereplication genotoxic stress. Genes Dev 2008;22:3158–3171.
https://doi.org/10.1101/gad.1710208
154 HP. Meissner Electrophysiological evidence for coupling between beta cells of pancreatic islets. Nature 1976;262:502–504.
https://doi.org/10.1038/262502a0
155 L Michel, E Diaz-Rodriguez, G Narayan et al. Complete loss of the tumor suppressor MAD2 causes premature cyclin B degradation and mitotic failure in human somatic cells. Proc Natl Acad Sci U S A 2004;101:4459–4464.
https://doi.org/10.1073/pnas.0306069101
156 YA Minamishima, K Nakayama, K. Nakayama Recovery of liver mass without proliferation of hepatocytes after partial hepatectomy in Skp2-deficient mice. Cancer Res 2002;62:995–999.
157 Y Miyaoka, K Ebato, H Kato et al. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr Biol 2012;22:1166–1175.
https://doi.org/10.1016/j.cub.2012.05.016
158 M Mollova, K Bersell, S Walsh et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A 2013;110:1446–1451.
https://doi.org/10.1073/pnas.1214608110
159 Y Muramatsu, T Yamada, DH Moralejo et al. Increased polyploid incidence is associated with abnormal copper accumulation in the liver of LEC mutant rat. Res Commun Mol Pathol Pharmacol 2000;107:129–136.
160 T Nakatani, M Inouye, O. Mirochnitchenko Overexpression of antioxidant enzymes in transgenic mice decreases cellular ploidy during liver regeneration. Exp Cell Res 1997;236:137–146.
https://doi.org/10.1006/excr.1997.3715
161 YA Nevzorova, D Tschaharganeh, N Gassler et al. Aberrant cell cycle progression and endoreplication in regenerating livers of mice that lack a single E-type cyclin. Gastroenterology 2009;137:691–703
https://doi.org/10.1053/j.gastro.2009.05.003
162 JO Oberpriller, JC. Oberpriller Response of the adult newt ventricle to injury. J Exp Zool 1974;187:249–259.
https://doi.org/10.1002/jez.1401870208
163 H Ogawa, R Takyu, H Morimoto et al. Cell proliferation potency is independent of FGF4 signaling in trophoblast stem cells derived from androgenetic embryos. J Reprod Dev 2016;62:51–58.
https://doi.org/10.1262/jrd.2015-097
164 TG Oliver, E Meylan, GP Chang et al. Caspase-2-mediated cleavage of Mdm2 creates a p53-induced positive feedback loop. Mol Cell 2011;43:57–71.
https://doi.org/10.1016/j.molcel.2011.06.012
165 G Olivetti, E Cigola, R Maestri et al. Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J Mol Cell Cardiol 1996;28:1463–1477.
https://doi.org/10.1006/jmcc.1996.0137
166 S Oparil, SP Bishop, FJ Jr. Clubb Myocardial cell hypertrophy or hyperplasia. Hypertension 1984;6:III38–III43.
https://doi.org/10.1161/01.HYP.6.6_Pt_2.III38
167 S Ortica, N Tarantino, N Aulner et al. The 4 notch receptors play distinct and antagonistic roles in the proliferation and hepatocytic differentiation of liver progenitors. FASEB J 2014;28:603–614.
https://doi.org/10.1096/fj.13-235903
168 KH Ostergaard, UT Baandrup, T Wang et al. Left ventricular morphology of the giraffe heart examined by stereological methods. Anat Rec (Hoboken) 2013;296:611–621.
https://doi.org/10.1002/ar.22672
169 K Overturf, M Al-Dhalimy, R Tanguay et al. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nat Genet 1996;12:266–273.
https://doi.org/10.1038/ng0396-266
170 K Overturf, M Al-Dhalimy, M Finegold et al. The repopulation potential of hepatocyte populations differing in size and prior mitotic expansion. Am J Pathol 1999;155:2135–2143.
https://doi.org/10.1016/S0002-9440(10)65531-9
171 M Panattoni, L Maiorino, A Lukacs et al. The COP9 signalosome is a repressor of replicative stress responses and polyploidization in the regenerating liver. Hepatology 2014;59:2331–2343.
https://doi.org/10.1002/hep.27028
172 SK Pandit, B Westendorp, S Nantasanti et al. E2F8 is essential for polyploidization in mammalian cells. Nat Cell Biol 2012;14:1181–1191.
https://doi.org/10.1038/ncb2585
173 G Pascreau, ME Churchill, JL. Maller Centrosomal localization of cyclins E and A: structural similarities and functional differences. Cell Cycle 2011;10:199–205.
https://doi.org/10.4161/cc.10.2.14444
174 D Patel, A Incassati, N Wang et al. Human papillomavirus type 16 E6 and E7 cause polyploidy in human keratinocytes and up-regulation of G2-M-phase proteins. Cancer Res 2004;64:1299–1306.
https://doi.org/10.1158/0008-5472.CAN-03-2917
175 M Patterson, L Barske, B Van Handel et al. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 2017;49:1346–1353.
https://doi.org/10.1038/ng.3929
176 E Pedone, VA Olteanu, L Marucci et al. Modeling dynamics and function of bone marrow cells in mouse liver regeneration. Cell Rep 2017;18:107–121.
https://doi.org/10.1016/j.celrep.2016.12.008
177 I Perez de Castro, C Aguirre-Portoles, G Fernandez-Miranda et al. Requirements for Aurora-A in tissue regeneration and tumor development in adult mammals. Cancer Res 2013;73:6804–6815.
https://doi.org/10.1158/0008-5472.CAN-13-0586
178 ER Porrello, AI Mahmoud, E Simpson et al. Transient regenerative potential of the neonatal mouse heart. Science 2011;331:1078–1080.
https://doi.org/10.1126/science.1200708
179 KD Poss, LG Wilson, MT. Keating Heart regeneration in zebrafish. Science 2002;298:2188–2190.
https://doi.org/10.1126/science.1077857
180 J Post, J. Hoffman Further studies on the replication of rat liver cells in vivo. Exp Cell Res 1965;40:333–339.
https://doi.org/10.1016/0014-4827(65)90266-1
181 BN Puente, W Kimura, SA Muralidhar et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 2014;157:565–579.
https://doi.org/10.1016/j.cell.2014.03.032
182 P Rajvanshi, D Liu, M Ott et al. Fractionation of rat hepatocyte subpopulations with varying metabolic potential, proliferative capacity, and retroviral gene transfer efficiency. Exp Cell Res 1998;244:405–419.
https://doi.org/10.1006/excr.1998.4223
183 A Raulf, H Horder, L Tarnawski et al. Transgenic systems for unequivocal identification of cardiac myocyte nuclei and analysis of cardiomyocyte cell cycle status. Basic Res Cardiol 2015;110:33.
https://doi.org/10.1007/s00395-015-0489-2
184 BJ Reid, RC Haggitt, CE Rubin et al. Barrett’s esophagus. Correlation between flow cytometry and histology in detection of patients at risk for adenocarcinoma. Gastroenterology 1987;93:1–11.
https://doi.org/10.1016/0016-5085(87)90306-4
185 B Rengstl, S Newrzela, T Heinrich et al. Incomplete cytokinesis and re-fusion of small mononucleated Hodgkin cells lead to giant multinucleated Reed-Sternberg cells. Proc Natl Acad Sci U S A 2013;110:9–20734.
https://doi.org/10.1073/pnas.1312509110
186 AC Rios, NY Fu, PR Jamieson et al. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat Commun 2016;7:11400.
https://doi.org/10.1038/ncomms11400
187 S Rua, A Comino, A Fruttero et al. Flow cytometric DNA analysis of cirrhotic liver cells in patients with hepatocellular carcinoma can provide a new prognostic factor. Cancer 1996;78:1195–1202.
https://doi.org/10.1002/(SICI)1097-0142(19960915)78:6<1195::AID-CNCR5>3.0.CO;2-9
188 G Saeter, CZ Lee, PE Schwarze et al. Changes in ploidy distributions in human liver carcinogenesis. J Natl Cancer Inst 1988;80:1480–1485.
https://doi.org/10.1093/jnci/80.18.1480
189 D Sanges, N Romo, G Simonte et al. Wnt/beta-catenin signaling triggers neuron reprogramming and regeneration in the mouse retina. Cell Rep 2013;4:271–286.
https://doi.org/10.1016/j.celrep.2013.06.015
190 N Sanz, C Diez-Fernandez, L Fernandez-Simon et al. Relationship between antioxidant systems, intracellular thiols and DNA ploidy in liver of rats during experimental cirrhogenesis. Carcinogenesis 1995;16:1585–1593.
https://doi.org/10.1093/carcin/16.7.1585
191 KP Schoenfelder, DT. Fox The expanding implications of polyploidy. J Cell Biol 2015;209:485–491.
https://doi.org/10.1083/jcb.201502016
192 SE Senyo, ML Steinhauser, CL Pizzimenti et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 2013;493:433–436.
https://doi.org/10.1038/nature11682
193 SD Shapiro, AK Ranjan, Y Kawase et al. Cyclin A2 induces cardiac regeneration after myocardial infarction through cytokinesis of adult cardiomyocytes. Sci Transl Med 2014;6:224ra227.
https://doi.org/10.1126/scitranslmed.3007668
194 N Sher, JR Von Stetina, GW Bell et al. Fundamental differences in endoreplication in mammals and Drosophila revealed by analysis of endocycling and endomitotic cells. Proc Natl Acad Sci U S A 2013;110:9368–9373.
https://doi.org/10.1073/pnas.1304889110
195 SH Sigal, S Gupta, DF Jr. Gebhard et al. Evidence for a terminal differentiation process in the rat liver. Differentiation 1995;59:35–42.
https://doi.org/10.1046/j.1432-0436.1995.5910035.x
196 SH Sigal, P Rajvanshi, GR Gorla et al. Partial hepatectomy-induced polyploidy attenuates hepatocyte replication and activates cell aging events. Am J Physiol 1999;276:G1260–G1272.
https://doi.org/10.1152/ajpgi.1999.276.5.G1260
197 VC Sladky, A. Villunger Uncovering the PIDDosome and caspase-2 as regulators of organogenesis and cellular differentiation. Cell Death Differ 2020;27:2037–2047.
https://doi.org/10.1038/s41418-020-0556-6
198 VC Sladky, K Knapp, C Soratroi et al. E2F-family members engage the PIDDosome to limit hepatocyte ploidy in liver development and regeneration. Dev Cell 2020a;52:335–349
https://doi.org/10.1016/j.devcel.2019.12.016
199 VC Sladky, K Knapp, TG Szabo et al. PIDDosome-induced p53-dependent ploidy restriction facilitates hepatocarcinogenesis. EMBO Rep 2020b;21:e50893.
https://doi.org/10.15252/embr.202050893
200 VC Sladky, F Eichin, T Reiberger et al. Polyploidy control in hepatic health and disease. J Hepatol 2021;75:1177–1191.
https://doi.org/10.1016/j.jhep.2021.06.030
201 VC Sladky, H Akbari, D Tapias-Gomez et al. Centriole signaling restricts hepatocyte ploidy to maintain liver integrity. Genes Dev 2022;36:843–856.
https://doi.org/10.1101/gad.349727.122
202 GH Smith, D. Medina A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J Cell Sci 1988;90:173–183.
https://doi.org/10.1242/jcs.90.1.173
203 GH Smith, BK. Vonderhaar Functional differentiation in mouse mammary gland epithelium is attained through DNA synthesis, inconsequent of mitosis. Dev Biol 1981;88:167–179.
https://doi.org/10.1016/0012-1606(81)90227-X
204 MH Soonpaa, KK Kim, L Pajak et al. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 1996;271:H2183–H2189.
https://doi.org/10.1152/ajpheart.1996.271.5.H2183
205 MH Soonpaa, GY Koh, L Pajak et al. Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J Clin Invest 1997;99:2644–2654.
https://doi.org/10.1172/JCI119453
206 AC Starnes, C Huisingh, G Jr. McGwin et al. Multi-nucleate retinal pigment epithelium cells of the human macula exhibit a characteristic and highly specific distribution. Vis Neurosci 2016;33:e001.
https://doi.org/10.1017/S0952523815000310
207 P Steigemann, C Wurzenberger, MH Schmitz et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 2009;136:473–484.
https://doi.org/10.1016/j.cell.2008.12.020
208 S Stopp, M Grundl, M Fackler et al. Deletion of Gas2l3 in mice leads to specific defects in cardiomyocyte cytokinesis during development. Proc Natl Acad Sci U S A 2017;114:8029–8034.
https://doi.org/10.1073/pnas.1703406114
209 S Tanami, S Ben-Moshe, A Elkayam et al. Dynamic zonation of liver polyploidy. Cell Tissue Res 2017;368:405–410.
https://doi.org/10.1007/s00441-016-2427-5
210 S Tane, A Ikenishi, H Okayama et al. CDK inhibitors, p21(Cip1) and p27(Kip1), participate in cell cycle exit of mammalian cardiomyocytes. Biochem Biophys Res Commun 2014;443:1105–1109.
https://doi.org/10.1016/j.bbrc.2013.12.109
211 A Tinel, J. Tschopp The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 2004;304:843–846.
https://doi.org/10.1126/science.1095432
212 AM Tormos, A Arduini, R Talens-Visconti et al. Liver-specific p38alpha deficiency causes reduced cell growth and cytokinesis failure during chronic biliary cirrhosis in mice. Hepatology 2013;57:1950–1961.
https://doi.org/10.1002/hep.26174
213 AM Tormos, S Rius-Perez, M Jorques et al. p38alpha regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS One 2017;12:e0171738.
https://doi.org/10.1371/journal.pone.0171738
214 S Torres, BP Diaz, JJ Cabrera et al. Thyroid hormone regulation of rat hepatocyte proliferation and polyploidization. Am J Physiol 1999;276:G155–G163.
https://doi.org/10.1152/ajpgi.1999.276.1.G155
215 H Toyoda, O Bregerie, A Vallet et al. Changes to hepatocyte ploidy and binuclearity profiles during human chronic viral hepatitis. Gut 2005;54:297–302.
https://doi.org/10.1136/gut.2004.043893
216 H Toyoda, T Kumada, O Bregerie et al. Conserved balance of hepatocyte nuclear DNA content in mononuclear and binuclear hepatocyte populations during the course of chronic viral hepatitis. World J Gastroenterol 2006;12:4546–4548.
https://doi.org/10.3748/wjg.v12.i28.4546
217 MB Troadec, B Courselaud, L Detivaud et al. Iron overload promotes Cyclin D1 expression and alters cell cycle in mouse hepatocytes. J Hepatol 2006;44:391–399.
https://doi.org/10.1016/j.jhep.2005.07.033
218 MS Turker, JL Schwartz, R Jordan et al. Persistence of chromatid aberrations in the cells of solid mouse tissues exposed to 137Cs gamma radiation. Radiat Res 2004;162:357–364.
https://doi.org/10.1667/RR3240
219 Z Ullah, MJ Kohn, R Yagi et al. Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity. Genes Dev 2008;22:3024–3036.
https://doi.org/10.1101/gad.1718108
220 Y Unhavaithaya, TL. Orr-Weaver Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity. Genes Dev 2012;26:31–36.
https://doi.org/10.1101/gad.177436.111
221 AE Vinogradov, OV Anatskaya, BN. Kudryavtsev Relationship of hepatocyte ploidy levels with body size and growth rate in mammals. Genome 2001;44:350–360.
https://doi.org/10.1139/g01-015
222 HW Vliegen, A van der Laarse, CJ Cornelisse et al. Myocardial changes in pressure overload-induced left ventricular hypertrophy. A study on tissue composition, polyploidization and multinucleation. Eur Heart J 1991;12:488–494.
https://doi.org/10.1093/oxfordjournals.eurheartj.a059928
223 HW Vliegen, F Eulderink, AV Bruschke et al. Polyploidy of myocyte nuclei in pressure overloaded human hearts: a flow cytometric study in left and right ventricular myocardium. Am J Cardiovasc Pathol 1995;5:27–31.
224 BK Vonderhaar, GH Smith, RJ Pauley et al. Difference between mammary epithelial cells from mature virgin and primiparous mice. Cancer Res 1978;38:4059–4065.
225 JR Von Stetina, LE Frawley, Y Unhavaithaya et al. Variant cell cycles regulated by Notch signaling control cell size and ensure a functional blood-brain barrier. Development 2018;145.
https://doi.org/10.1242/dev.157115
226 A Vujic, C Lerchenmuller, TD Wu et al. Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nat Commun 2018;9:1659.
https://doi.org/10.1038/s41467-018-04083-1
227 MJ Wang, F Chen, JX Li et al. Reversal of hepatocyte senescence after continuous in vivo cell proliferation. Hepatology 2014;60:349–361.
https://doi.org/10.1002/hep.27094
228 B Wang, L Zhao, M Fish et al. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature 2015;524:180–185.
https://doi.org/10.1038/nature14863
229 WE Wang, L Li, X Xia et al. Dedifferentiation, proliferation, and redifferentiation of adult mammalian cardiomyocytes after ischemic injury. Circulation 2017;136:834–848.
https://doi.org/10.1161/CIRCULATIONAHA.116.024307
230 EM Webber, PJ Godowski, N. Fausto In vivo response of hepatocytes to growth factors requires an initial priming stimulus. Hepatology 1994;19:489–497.
https://doi.org/10.1002/hep.1840190230
231 EM Webber, J Bruix, RH Pierce et al. Tumor necrosis factor primes hepatocytes for DNA replication in the rat. Hepatology 1998;28:1226–1234.
https://doi.org/10.1002/hep.510280509
232 TC Weglarz, JL Degen, EP. Sandgren Hepatocyte transplantation into diseased mouse liver. Kinetics of parenchymal repopulation and identification of the proliferative capacity of tetraploid and octaploid hepatocytes. Am J Pathol 2000;157:1963–1974.
https://doi.org/10.1016/S0002-9440(10)64835-3
233 Q Wen, B Goldenson, SJ Silver et al. Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL. Cell 2012;150:575–589.
https://doi.org/10.1016/j.cell.2012.06.032
234 K Werle, J Chen, HG Xu et al. Liver kinase B1 regulates the centrosome via PLK1. Cell Death Dis 2014;5:e1157.
https://doi.org/10.1038/cddis.2014.135
235 DN. Wheatley Binucleation in mammalian liver. Studies on the control of cytokinesis in vivo. Exp Cell Res 1972;74:455–465.
https://doi.org/10.1016/0014-4827(72)90401-6
236 JW White, FJ Swartz, AF. Swartz Excess glucose intake induces accelerated beta-cell polyploidization in normal mice: a possible deleterious effect. J Nutr 1985;115:271–278.
https://doi.org/10.1093/jn/115.2.271
237 PD Wilkinson, F Alencastro, ER Delgado et al. Polyploid hepatocytes facilitate adaptation and regeneration to chronic liver injury. Am J Pathol 2019a;189:1241–1255.
https://doi.org/10.1016/j.ajpath.2019.02.008
238 PD Wilkinson, ER Delgado, F Alencastro et al. The polyploid state restricts hepatocyte proliferation and liver regeneration in mice. Hepatology 2019b;69:1242–1258.
https://doi.org/10.1002/hep.30286
239 H Willenbring, AS Bailey, M Foster et al. Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat Med 2004;10:744–748.
https://doi.org/10.1038/nm1062
240 AA Wills, JE Holdway, RJ Major et al. Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development 2008;135:183–192.
https://doi.org/10.1242/dev.010363
241 H Wu, M Wade, L Krall et al. Targeted in vivo expression of the cyclin- dependent kinase inhibitor p21 halts hepatocyte cell-cycle progression, postnatal liver development and regeneration. Genes Dev 1996;10:245–260.
https://doi.org/10.1101/gad.10.3.245
242 G Xiao, S Mao, G Baumgarten et al. Inducible activation of c-Myc in adult myocardium in vivo provokes cardiac myocyte hypertrophy and reactivation of DNA synthesis. Circ Res 2001;89:1122–1129.
https://doi.org/10.1161/hh2401.100742
243 K Yanger, D Knigin, Y Zong et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 2014;15:340–349.
https://doi.org/10.1016/j.stem.2014.06.003
244 L Ye, L Qiu, H Zhang et al. Cardiomyocytes in young infants with congenital heart disease: a three-month window of proliferation. Sci Rep 2016;6:23188.
https://doi.org/10.1038/srep23188
245 S Yoshida, S Bartolini, D. Pellman Mechanisms for concentrating Rho1 during cytokinesis. Genes Dev 2009;23:810–823.
https://doi.org/10.1101/gad.1785209
246 G Zajicek, R Oren, M Jr. Weinreb The streaming liver. Liver 1985;5:293–300.
https://doi.org/10.1111/j.1600-0676.1985.tb00252.x
247 J Zanet, A Freije, M Ruiz et al. A mitosis block links active cell cycle with human epidermal differentiation and results in endoreplication. PLoS One 2010;5:e15701.
https://doi.org/10.1371/journal.pone.0015701
248 DC Zebrowski, S Vergarajauregui, CC Wu et al. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes. Elife 2015;4.
https://doi.org/10.7554/eLife.05563
249 S Zhang, K Zhou, X Luo et al. The polyploid state plays a tumor-suppressive role in the liver. Dev Cell 2018a;44:447–459
https://doi.org/10.1016/j.devcel.2018.01.010
250 S Zhang, LH Nguyen, K Zhou et al. Knockdown of anillin actin binding protein blocks cytokinesis in hepatocytes and reduces liver tumor development in mice without affecting regeneration. Gastroenterology 2018b;154:1421–1434.
https://doi.org/10.1053/j.gastro.2017.12.013
251 L Zhong, S Georgia, SI Tschen et al. Essential role of Skp2-mediated p27 degradation in growth and adaptive expansion of pancreatic beta cells. J Clin Invest 2007;117:2869–2876.
https://doi.org/10.1172/JCI32198
252 J Zhou, F Ahmad, S Parikh et al. Loss of adult cardiac myocyte GSK-3 leads to mitotic catastrophe resulting in fatal dilated cardiomyopathy. Circ Res 2016;118:1208–1222.
https://doi.org/10.1161/CIRCRESAHA.116.308544
253 N Zielke, S Querings, C Rottig et al. The anaphase-promoting complex/ cyclosome (APC/C) is required for rereplication control in endoreplication cycles. Genes Dev 2008;22:1690–1703.
https://doi.org/10.1101/gad.469108
254 S Zulbahar, F Sieglitz, R Kottmeier et al. Differential expression of Obek controls ploidy in the Drosophila blood-brain barrier. Development 2018;145.
https://doi.org/10.1242/dev.164111
[1] Gang Xu, Zhaozhao Ding, Qiang Lu, Xiaoyi Zhang, Xiaozhong Zhou, Liying Xiao, Guozhong Lu, David L Kaplan. Electric field-driven building blocks for introducing multiple gradients to hydrogels[J]. Protein Cell, 2020, 11(4): 267-285.
[2] Yuewen Tang, Lin Cheng. Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury[J]. Protein Cell, 2017, 8(4): 273-283.
[3] Chenxia Hu,Lanjuan Li. In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration[J]. Protein Cell, 2015, 6(8): 562-574.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed