Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2023, Vol. 14 Issue (8) : 591-602    https://doi.org/10.1093/procel/pwad008
RESEARCH ARTICLE
Dual role of lipids for genome stability and pluripotency facilitates full potency of mouse embryonic stem cells
Liangwen Zhong1, Miriam Gordillo2, Xingyi Wang4, Yiren Qin1, Yuanyuan Huang1, Alexey Soshnev3,6, Ritu Kumar2,7, Gouri Nanjangud5, Daylon James1, C. David Allis3, Todd Evans2(), Bryce Carey3(), Duancheng Wen1()
1. Department of Reproductive Medicine, Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, USA
2. Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
3. Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
4. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
5. Molecular Cytogenetics Core. Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
6. Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
7. Gladstone Institutes, 1650 Owens St, San Francisco, CA 94158, USA
 Download: PDF(15600 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

While Mek1/2 and Gsk3β inhibition (“2i”) supports the maintenance of murine embryonic stem cells (ESCs) in a homogenous naïve state, prolonged culture in 2i results in aneuploidy and DNA hypomethylation that impairs developmental potential. Additionally, 2i fails to support derivation and culture of fully potent female ESCs. Here we find that mouse ESCs cultured in 2i/LIF supplemented with lipid-rich albumin (AlbuMAX) undergo pluripotency transition yet maintain genomic stability and full potency over long-term culture. Mechanistically, lipids in AlbuMAX impact intracellular metabolism including nucleotide biosynthesis, lipid biogenesis, and TCA cycle intermediates, with enhanced expression of DNMT3s that prevent DNA hypomethylation. Lipids induce a formative-like pluripotent state through direct stimulation of Erk2 phosphorylation, which also alleviates X chromosome loss in female ESCs. Importantly, both male and female “all-ESC” mice can be generated from de novo derived ESCs using AlbuMAX-based media. Our findings underscore the importance of lipids to pluripotency and link nutrient cues to genome integrity in early development.

Keywords mouse pluripotent stem cells      lipids      pluripotency transition      genomic stability      developmental potency      nucleotide pool depletion      2i medium      X chromosome loss      female all-ESC mice     
Corresponding Author(s): Todd Evans,Bryce Carey,Duancheng Wen   
Issue Date: 26 September 2023
 Cite this article:   
Liangwen Zhong,Miriam Gordillo,Xingyi Wang, et al. Dual role of lipids for genome stability and pluripotency facilitates full potency of mouse embryonic stem cells[J]. Protein Cell, 2023, 14(8): 591-602.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1093/procel/pwad008
https://academic.hep.com.cn/pac/EN/Y2023/V14/I8/591
1 DH. Anderson Role of lipids in the MAPK signaling pathway. Prog Lipid Res 2006;45:102–119.
https://doi.org/10.1016/j.plipres.2005.12.003
2 PK Arnold, BT Jackson, KI Paras, et al. A non-canonical tricarboxylic acid cycle underlies cellular identity. Nature 2022;603:477–481.
https://doi.org/10.1038/s41586-022-04475-w
3 J Brind’Amour, S Liu, M Hudson, et al. An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations. Nat Commun 2015;6:6033.
https://doi.org/10.1038/ncomms7033
4 M Buehr, S Meek, K Blair, et al. Capture of authentic embryonic stem cells from rat blastocysts. Cell 2008;135:1287–1298.
https://doi.org/10.1016/j.cell.2008.12.007
5 HX Chen, RP Guo, Q Zhang, et al. Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells. P Natl Acad Sci USA 2015;112:E5936–E5943.
https://doi.org/10.1073/pnas.1516319112
6 J Choi, AJ Huebner, K Clement, et al. Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature 2017;548:219–223.
https://doi.org/10.1038/nature23274
7 D Cornacchia, C Zhang, B Zimmer, et al. Lipid deprivation induces a stable, naive-to-primed intermediate state of pluripotency in human PSCs. Cell Stem Cell 2019;25:120–136.e10.
https://doi.org/10.1016/j.stem.2019.05.001
8 A Czechanski, C Byers, I Greenstein, et al. Derivation and characterization of mouse embryonic stem cells from permissive and nonpermissive strains. Nat Protoc 2014;9:559–574.
https://doi.org/10.1038/nprot.2014.030
9 K Eggan, H Akutsu, J Loring, et al. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA 2001;98:6209–6214.
https://doi.org/10.1073/pnas.101118898
10 MJ Evans, MH. Kaufman Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154–156.
https://doi.org/10.1038/292154a0
11 M Fasullo, L. Endres Nucleotide salvage deficiencies, DNA damage and neurodegeneration. Int J Mol Sci 2015;16:9431–9449.
https://doi.org/10.3390/ijms16059431
12 FR Garcia-Gonzalo, JCI. Belmonte Albumin-associated lipids regulate human embryonic stem cell self-renewal. PLoS One 2008;3.
https://doi.org/10.1371/journal.pone.0001384
13 SHL George, M Gertsenstein, K Vintersten, et al. Developmental and adult phenotyping directly from mutant embryonic stem cells. Proc Natl Acad Sci USA 2007;104:4455–4460.
https://doi.org/10.1073/pnas.0609277104
14 G Guo, F von Meyenn, F Santos, et al. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Rep 2016;6:437–446.
https://doi.org/10.1016/j.stemcr.2016.02.005
15 A Gupta, S Sharma, P Reichenbach, et al. Telomere length homeostasis responds to changes in intracellular dNTP pools. Genetics 2013;193:10951095–1095101105.
https://doi.org/10.1534/genetics.112.149120
16 JA Hackett, MA. Surani Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell 2014;15:416–430.
https://doi.org/10.1016/j.stem.2014.09.015
17 JA Halliwell, TJR Frith, O Laing, et al. Nucleosides rescue replication- mediated genome instability of human pluripotent stem cells. Stem Cell Rep 2020;14:1009–1017.
https://doi.org/10.1016/j.stemcr.2020.04.004
18 WB Hamilton, JM. Brickman Erk signaling suppresses embryonic stem cell self-renewal to specify endoderm. Cell Rep 2014;9:2056–2070.
https://doi.org/10.1016/j.celrep.2014.11.032
19 NR Han, S Baek, HY Kim, et al. Generation of embryonic stem cells derived from the inner cell mass of blastocysts of outbred ICR mice. Anim Cells Syst 2020;24:91–98.
https://doi.org/10.1080/19768354.2020.1752306
20 PF Kantor, A Lucien, R Kozak, et al. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 2000;86:580–588.
https://doi.org/10.1161/01.RES.86.5.580
21 YT Kruszynska, HSA. Sherratt Glucose kinetics during acute and chronic treatment of rats with 2[6(4-chlorophenoxy) hexyl]oxirane-2-carboxylate, Etomoxir. Biochem Pharmacol 1987;36:3917–3921.
https://doi.org/10.1016/0006-2952(87)90458-8
22 T Kunath, MK Saba-El-Leil, M Almousailleakh, et al. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 2007;134:2895–2902.
https://doi.org/10.1242/dev.02880
23 KH Lee, CK Chuang, SF Guo, et al. Simple and efficient derivation of mouse embryonic stem cell lines using differentiation inhibitors or proliferation stimulators. Stem Cells Dev 2012;21:373–383.
https://doi.org/10.1089/scd.2011.0021
24 M Leeb, S Dietmann, M Paramor, et al. Genetic exploration of the exit from self-renewal using haploid embryonic stem cells. Cell Stem Cell 2014;14:385–393.
https://doi.org/10.1016/j.stem.2013.12.008
25 S Li, YC Lu, BZ Peng, et al. Crystal structure of human phosphoribosylpyrophosphate synthetase 1 reveals a novel allosteric site. Biochem J 2007;401:39–47.
https://doi.org/10.1042/BJ20061066
26 P Li, C Tong, R Mehrian-Shai, et al. Germline competent embryonic stem cells derived from rat blastocysts. Cell 2008;135:1299–1310.
https://doi.org/10.1016/j.cell.2008.12.006
27 J Maciejowski, T. de Lange Telomeres in cancer: tumour suppression and genome instability (vol 18, pg 175, 2017). Nat Rev Mol Cell Biol 2019;20:259–259.
https://doi.org/10.1038/s41580-019-0113-7
28 I Magdalou, BS Lopez, P Pasero, et al. The causes of replication stress and their consequences on genome stability and cell fate. Semin Cell Dev Biol 2014;30:154–164.
https://doi.org/10.1016/j.semcdb.2014.04.035
29 GR. Martin Isolation of a pluripotent cell-line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem-cells. Proc Natl Acad Sci Biol 1981;78:7634–7638.
https://doi.org/10.1073/pnas.78.12.7634
30 A Nagy, J Rossant, R Nagy, et al. Derivation of completely cell culture- derived mice from early-passage embryonic stem-cells. Proc Natl Acad Sci USA 1993;90:8424–8428.
https://doi.org/10.1073/pnas.90.18.8424
31 CC Pai, SE. Kearsey A critical balance: dNTPs and the maintenance of genome stability. Genes Basel 2017;8:57.
https://doi.org/10.3390/genes8020057
32 T Shimizu, J Ueda, JC Ho, et al. Dual inhibition of Src and GSK3 maintains mouse embryonic stem cells, whose differentiation is mechanically regulated by Src signaling. Stem Cells 2012;30:1394–1404.
https://doi.org/10.1002/stem.1119
33 A. Smith Formative pluripotency: the executive phase in a developmental continuum. Development 2017;144:365–373.
https://doi.org/10.1242/dev.142679
34 WW Tee, SS Shen, O Oksuz, et al. Erk1/2 activity promotes chromatin features and RNAPII phosphorylation at developmental promoters in mouse ESCs. Cell 2014;156:678–690.
https://doi.org/10.1016/j.cell.2014.01.009
35 E Tsogtbaatar, C Landin, K Minter-Dykhouse, et al. Energy metabolism regulates stem cell pluripotency. Front Cell Dev Biol 2020;8.
https://doi.org/10.3389/fcell.2020.00087
36 M Van der Jeught, J Taelman, G Duggal, et al. Application of small molecules favoring naive pluripotency during human embryonic stem cell derivation. Cell Reprogram 2015;17:170–180.
https://doi.org/10.1089/cell.2014.0085
37 LP Visentin, S Hasnain, W Gallin, et al. Ribosomal-protein S1-S1a in bacteria. FEBS Lett 1977;79:258–263.
https://doi.org/10.1016/0014-5793(77)80799-0
38 CB Ware, AM Nelson, B Mecham, et al. Derivation of naive human embryonic stem cells. Proc Natl Acad Sci USA 2014;111:4484–4489.
https://doi.org/10.1073/pnas.1319738111
39 D Wen, N Saiz, Z Rosenwaks, et al. Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM) deficient blastocysts. PLoS One 2014;9:e94730.
https://doi.org/10.1371/journal.pone.0094730
40 F Xu, C Deng, Z Ren, et al. Lysophosphatidic acid shifts metabolic and transcriptional landscapes to induce a distinct cellular state in human pluripotent stem cells. Cell Rep 2021;37:110063.
https://doi.org/10.1016/j.celrep.2021.110063
41 M Yagi, S Kishigami, A Tanaka, et al. Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation. Nature 2017;548:224–227.
https://doi.org/10.1038/nature23286
42 QL Ying, J Wray, J Nichols, et al. The ground state of embryonic stem cell self-renewal. Nature 2008;453:519–523.
https://doi.org/10.1038/nature06968
43 L Yuan, JG Liu, MR Hoja, et al. Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 2002;296:1115–1118.
https://doi.org/10.1126/science.1070594
44 HL Zhang, YY Li, YJ Ma, et al. Epigenetic integrity of paternal imprints enhances the developmental potential of androgenetic haploid embryonic stem cells. Protein Cell 2022;13:102–119.
https://doi.org/10.1007/s13238-021-00890-3
[1] PAC-0591-22495-WDC_suppl_1 Download
[2] PAC-0591-22495-WDC_suppl_2 Download
[1] Jing Zhang, Peter ten Dijke, Manfred Wuhrer, Tao Zhang. Role of glycosylation in TGF-β signaling and epithelial-to-mesenchymal transition in cancer[J]. Protein Cell, 2021, 12(2): 89-106.
[2] John M. Dean, Irfan J. Lodhi. Structural and functional roles of ether lipids[J]. Protein Cell, 2018, 9(2): 196-206.
[3] Qun Zhang,Wenhua Zhang. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells[J]. Protein Cell, 2016, 7(2): 81-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed