1 |
MD Adams, SE Celniker, RA Holt et al. The genome sequence of Drosophila melanogaster. Science (New York, N.Y.) 2000; 287:2185–95.
|
2 |
P Adumeau, SK Sharma, C Brent et al. Site-specifically labeled immunoconjugates for molecular imaging—part 1: cysteine residues and glycans. Mol Imaging Biol 2016; 18:1–17.
https://doi.org/10.1007/s11307-015-0919-4
|
3 |
A Aemissegger, D. Hilvert Synthesis and application of an azobenzene amino acid as a light-switchable turn element in polypeptides. Nat Protocols 2007; 2:161–7.
https://doi.org/10.1038/nprot.2006.488
|
4 |
NJ Agard, JM Baskin, JA Prescher et al. A comparative study of bioorthogonal reactions with azides. ACS Chem Biol 2006; 1:644–8.
https://doi.org/10.1021/cb6003228
|
5 |
F Agostini, J-S Völler, B Koksch et al. Biocatalysis with unnatural amino acids: enzymology meets xenobiology. Angew Chem Int Ed Engl 2017; 56:9680–703.
https://doi.org/10.1002/anie.201610129
|
6 |
R Alexpandi, MI Prasanth, AV Ravi et al. Protective effect of neglected plant Diplocyclos palmatus on quorum sensing mediated infection of Serratia marcescens and UV-A induced photoaging in model Caenorhabditis elegans. J Photochem Photobiol B 2019; 201:111637.
https://doi.org/10.1016/j.jphotobiol.2019.111637
|
7 |
A Alouane, R Labruère, T Le Saux et al. Self-immolative spacers: kinetic aspects, structure–property relationships, and applications. Angew Chem Int Ed Engl 2015; 54:7492–509.
https://doi.org/10.1002/anie.201500088
|
8 |
E Arbely, J Torres-Kolbus, A Deiters et al. Photocontrol of tyrosine phosphorylation in mammalian cells via genetic encoding of photocaged tyrosine. J Am Chem Soc 2012; 134:11912–5.
https://doi.org/10.1021/ja3046958
|
9 |
M Asiful Islam, F Alam, MA Kamal et al. Therapeutic suppression of nonsense mutation: an emerging target in multiple diseases and thrombotic disorders. Curr Pharm Des 2017; 23:1598–609.
https://doi.org/10.2174/1381612823666161122142950
|
10 |
JY Axup, KM Bajjuri, M Ritland et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci USA 2012; 109:16101–6.
https://doi.org/10.1073/pnas.1211023109
|
11 |
TA. Baillie Targeted covalent inhibitors for drug design. Angew Chem Int Ed Engl 2016; 55:13408–21.
https://doi.org/10.1002/anie.201601091
|
12 |
KW Barber, J. Rinehart The ABCs of PTMs. Nat Chem Biol 2018; 14:188–92.
https://doi.org/10.1038/nchembio.2572
|
13 |
KE Beatty, JC Liu, F Xie et al. Fluorescence visualization of newly synthesized proteins in mammalian cells. Angew Chem Int Ed Engl 2006; 45:7364–7.
https://doi.org/10.1002/anie.200602114
|
14 |
AA Beharry, GA. Woolley Azobenzene photoswitches for biomolecules. Chem Soc Rev 2011; 40:4422–37.
https://doi.org/10.1039/c1cs15023e
|
15 |
V Beránek, CD Reinkemeier, MS Zhang et al. Genetically encoded protein phosphorylation in mammalian cells. Cell Chem Biol 2018; 25:1067–1074.e5.
https://doi.org/10.1016/j.chembiol.2018.05.013
|
16 |
A Bianco, FM Townsley, S Greiss et al. Expanding the genetic code of Drosophila melanogaster. Nat Chem Biol 2012; 8:748–50.
https://doi.org/10.1038/nchembio.1043
|
17 |
MAT. Blaskovich Unusual amino acids in medicinal chemistry. J Med Chem 2016; 59:10807–36.
https://doi.org/10.1021/acs.jmedchem.6b00319
|
18 |
M Bose, D Groff, J Xie et al. The incorporation of a photoisomerizable amino acid into proteins in E. coli. J Am Chem Soc 2006; 128:388–9.
https://doi.org/10.1021/ja055467u
|
19 |
W Brown, A. Deiters Light-activation of Cre recombinase in zebrafish embryos through genetic code expansion. Methods Enzymol 2019; 624:265–81.
https://doi.org/10.1016/bs.mie.2019.04.004
|
20 |
W Brown, JD Galpin, C Rosenblum et al. Chemically Acylated tRNAs are functional in zebrafish embryos. J Am Chem Soc 2023a; 145:2414–20.
https://doi.org/10.1021/jacs.2c11452
|
21 |
W Brown, J Wesalo, M Tsang et al. Engineering small molecule switches of protein function in zebrafish embryos. J Am Chem Soc 2023b; 145:2395–403.
https://doi.org/10.1021/jacs.2c11366
|
22 |
K Burnett, E Edsinger, DR. Albrecht Rapid and gentle hydrogel encapsulation of living organisms enables long-term microscopy over multiple hours. Commun Biol 2018; 1:73.
https://doi.org/10.1038/s42003-018-0079-6
|
23 |
Y Cao, JY Axup, JSY Ma et al. Multiformat T-cell-engaging bispecific antibodies targeting human breast cancers. Angew Chem Int Ed Engl 2015; 54:7022–7.
https://doi.org/10.1002/anie.201500799
|
24 |
Y Cao, DT Rodgers, J Du et al. Design of switchable chimeric antigen receptor T cells targeting breast cancer. Angew Chem Int Ed Engl 2016; 55:7520–4.
https://doi.org/10.1002/anie.201601902
|
25 |
YJ Cao, X Wang, Z Wang et al. Switchable CAR-T cells out-performed traditional antibody-redirected therapeutics targeting breast cancers. ACS Synth Biol 2021; 10:1176–83.
https://doi.org/10.1021/acssynbio.1c00007
|
26 |
H Chang, M Han, W Huang et al. Light-induced protein translocation by genetically encoded unnatural amino acid in Caenorhabditis elegans. Protein Cell 2013; 4:883–6.
https://doi.org/10.1007/s13238-013-3118-6
|
27 |
S-W Chang, W-C Liu, K-Y Liao et al. Phosphorylation of HPV-16 E2 at serine 243 enables binding to Brd4 and mitotic chromosomes. PLoS One 2014; 9:e110882.
https://doi.org/10.1371/journal.pone.0110882
|
28 |
A Chatterjee, J Guo, HS Lee et al. A genetically encoded fluorescent probe in mammalian cells. J Am Chem Soc 2013a; 135:12540–3.
https://doi.org/10.1021/ja4059553
|
29 |
A Chatterjee, H Xiao, M Bollong et al. Efficient viral delivery system for unnatural amino acid mutagenesis in mammalian cells. Proc Natl Acad Sci USA 2013b; 110:11803–8.
https://doi.org/10.1073/pnas.1309584110
|
30 |
Y Chemla, E Ozer, I Algov et al. Context effects of genetic code expansion by stop codon suppression. Curr Opin Chem Biol 2018; 46:146–55.
https://doi.org/10.1016/j.cbpa.2018.07.012
|
31 |
J Chen, Y-H. Tsai Applications of genetic code expansion in studying protein post-translational modification. J Mol Biol 2022; 434:167424.
https://doi.org/10.1016/j.jmb.2021.167424
|
32 |
S Chen, PG Schultz, A. Brock An improved system for the generation and analysis of mutant proteins containing unnatural amino acids in Saccharomyces cerevisiae. J Mol Biol 2007; 371:112–22.
https://doi.org/10.1016/j.jmb.2007.05.017
|
33 |
Y Chen, J Ma, W Lu et al. Heritable expansion of the genetic code in mouse and zebrafish. Cell Res 2017; 27:294–7.
https://doi.org/10.1038/cr.2016.145
|
34 |
Y Chen, A Loredo, A Gordon et al. A noncanonical amino acid-based relay system for site-specific protein labeling. Chem Commun (Cambridge, England) 2018; 54:7187–90.
https://doi.org/10.1039/C8CC03819H
|
35 |
Y Chen, K-L Wu, J Tang et al. Addition of isocyanide-containing amino acids to the genetic code for protein labeling and activation. ACS Chem Biol 2019; 14:2793–9.
https://doi.org/10.1021/acschembio.9b00678
|
36 |
L Chen, C Zhu, H Guo et al. Epitope-directed antibody selection by site-specific photocrosslinking. Sci Adv 2020; 6:eaaz7825.
https://doi.org/10.1126/sciadv.aaz7825
|
37 |
Y Chen, S Jin, M Zhang et al. Unleashing the potential of noncanonical amino acid biosynthesis to create cells with precision tyrosine sulfation. Nat Commun 2022a; 13:5434.
https://doi.org/10.1038/s41467-022-33111-4
|
38 |
C Chen, G Yu, Y Huang et al. Genetic-code-expanded cellbased therapy for treating diabetes in mice. Nat Chem Biol 2022b; 18:47–55.
https://doi.org/10.1038/s41589-021-00899-z
|
39 |
Y Chen, W-Q Liu, X Zheng et al. Cell-free biosynthesis of lysine-derived unnatural amino acids with chloro, alkene, and alkyne groups. ACS Synth Biol 2023; 12:1349–57.
https://doi.org/10.1021/acssynbio.3c00132
|
40 |
JW. Chin Modular approaches to expanding the functions of living matter. Nat Chem Biol 2006; 2:304–11.
https://doi.org/10.1038/nchembio789
|
41 |
JW Chin, AB Martin, DS King et al. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc Natl Acad Sci USA 2002; 99:11020–4.
https://doi.org/10.1073/pnas.172226299
|
42 |
JW Chin, TA Cropp, JC Anderson et al. An expanded eukaryotic genetic code. Science (New York, N.Y.) 2003; 301:964–7.
https://doi.org/10.1126/science.1084772
|
43 |
B-K Choi, P Bobrowicz, RC Davidson et al. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci USA 2003; 100:5022–7.
https://doi.org/10.1073/pnas.0931263100
|
44 |
C Chou, A. Deiters Light-activated gene editing with a photocaged zinc-finger nuclease. Angew Chem Int Ed Engl 2011; 50:6839–42.
https://doi.org/10.1002/anie.201101157
|
45 |
C Chou, DD Young, A. Deiters Photocaged t7 RNA polymerase for the light activation of transcription and gene function in pro- and eukaryotic cells. Chembiochem 2010; 11:972–7.
https://doi.org/10.1002/cbic.201000041
|
46 |
M Cigler, TG Müller, D Horn-Ghetko et al. Proximitytriggered covalent stabilization of low-affinity protein complexes in vitro and in vivo. Angew Chem Int Ed Engl 2017; 56:15737–41.
https://doi.org/10.1002/anie.201706927
|
47 |
I. Coin Application of non-canonical crosslinking amino acids to study protein-protein interactions in live cells. Curr Opin Chem Biol 2018; 46:156–63.
https://doi.org/10.1016/j.cbpa.2018.07.019
|
48 |
I Coin, MH Perrin, WW Vale et al. Photo-cross-linkers incorporated into G-protein-coupled receptors in mammalian cells: a ligand comparison. Angew Chem Int Ed Engl 2011; 50:8077–81.
https://doi.org/10.1002/anie.201102646
|
49 |
T Courtney, A. Deiters Recent advances in the optical control of protein function through genetic code expansion. Curr Opin Chem Biol 2018; 46:99–107.
https://doi.org/10.1016/j.cbpa.2018.07.011
|
50 |
TM Courtney, A. Deiters Optical control of protein phosphatase function. Nat Commun 2019; 10:4384.
https://doi.org/10.1038/s41467-019-12260-z
|
51 |
A Crnković, O Vargas-Rodriguez, D. Söll Plasticity and constraints of tRNA aminoacylation define directed evolution of aminoacyl-tRNA synthetases. Int J Mol Sci 2019; 20:2294.
https://doi.org/10.3390/ijms20092294
|
52 |
N Darby, TE. Creighton Disulfide bonds in protein folding and stability. Methods Mol Biol (Clifton, N.J.) 1995; 40:219–52.
https://doi.org/10.1385/0-89603-301-5:219
|
53 |
L Davis, I Radman, A Goutou et al. Precise optical control of gene expression in C. elegans using improved genetic code expansion and Cre recombinase. ELife 2021; 10:e67075.
https://doi.org/10.7554/eLife.67075
|
54 |
DC Dieterich, JJL Hodas, G Gouzer et al. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci 2010; 13:897–905.
https://doi.org/10.1038/nn.2580
|
55 |
A Dirksen, TM Hackeng, PE. Dawson Nucleophilic catalysis of oxime ligation. Angew Chem Int Ed Engl 2006; 45:7581–4.
https://doi.org/10.1002/anie.200602877
|
56 |
WF Edwards, DD Young, A. Deiters Light-activated Cre recombinase as a tool for the spatial and temporal control of gene function in mammalian cells. ACS Chem Biol 2009; 4:441–5.
https://doi.org/10.1021/cb900041s
|
57 |
N. Elia Using unnatural amino acids to selectively label proteins for cellular imaging: a cell biologist viewpoint. FEBS J 2021; 288:1107–17.
https://doi.org/10.1111/febs.15477
|
58 |
TS Elliott, FM Townsley, A Bianco et al. Proteome labeling and protein identification in specific tissues and at specific developmental stages in an animal. Nat Biotechnol 2014; 32:465–72.
https://doi.org/10.1038/nbt.2860
|
59 |
SJ Elsässer, RJ Ernst, OS Walker et al. Genetic code expansion in stable cell lines enables encoded chromatin modification. Nat Methods 2016; 13:158–64.
https://doi.org/10.1038/nmeth.3701
|
60 |
H Engelke, C Chou, R Uprety et al. Control of protein function through optochemical translocation. ACS Synth Biol 2014; 3:731–6.
https://doi.org/10.1021/sb400192a
|
61 |
RJ Ernst, TP Krogager, ES Maywood et al. Genetic code expansion in the mouse brain. Nat Chem Biol 2016; 12:776–8.
https://doi.org/10.1038/nchembio.2160
|
62 |
KM Esvelt, JC Carlson, DR. Liu A system for the continuous directed evolution of biomolecules. Nature 2011; 472:499–503.
https://doi.org/10.1038/nature09929
|
63 |
Y Fang, JC Judkins, SJ Boyd et al. Studies on the stability and stabilization of trans-Cyclooctenes through radical inhibition and silver (I) metal complexation. Tetrahedron 2019; 75:4307–17.
https://doi.org/10.1016/j.tet.2019.05.038
|
64 |
TE Fickel, C. Gilvarg Transport of impermeant substances in E. coli by way of oligopeptide permease. Nat New Biol 1973; 241:161–3.
https://doi.org/10.1038/newbio241161a0
|
65 |
JA Fok, C. Mayer Genetic-code-expansion strategies for vaccine development. Chembiochem 2020; 21:3291–300.
https://doi.org/10.1002/cbic.202000343
|
66 |
H Foster, L Popplewell, G. Dickson Genetic therapeutic approaches for Duchenne muscular dystrophy. Hum Gene Ther 2012; 23:676–87.
https://doi.org/10.1089/hum.2012.099
|
67 |
M Fottner, A-D Brunner, V Bittl et al. Site-specific ubiquitylation and SUMOylation using genetic-code expansion and sortase. Nat Chem Biol 2019; 15:276–84.
https://doi.org/10.1038/s41589-019-0227-4
|
68 |
M Friedrich, A. Aigner Therapeutic siRNA: state-of-the-art and future perspectives. BioDrugs 2022; 36:549–71.
https://doi.org/10.1007/s40259-022-00549-3
|
69 |
C Frøkjaer-Jensen, MW Davis, CE Hopkins et al. Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 2008; 40:1375–83.
https://doi.org/10.1038/ng.248
|
70 |
JL Furman, M Kang, S Choi et al. A genetically encoded aza- Michael acceptor for covalent cross-linking of protein -receptor complexes. J Am Chem Soc 2014; 136:8411–7.
https://doi.org/10.1021/ja502851h
|
71 |
D Garza, MM Medhora, DL. Hartl Drosophila nonsense suppressors: functional analysis in Saccharomyces cerevisiae, Drosophila tissue culture cells and Drosophila melanogaster. Genetics 1990; 126:625–37.
https://doi.org/10.1093/genetics/126.3.625
|
72 |
A Gautier, DP Nguyen, H Lusic et al. Genetically encoded photocontrol of protein localization in mammalian cells. J Am Chem Soc 2010; 132:4086–8.
https://doi.org/10.1021/ja910688s
|
73 |
A Gautier, A Deiters, JW. Chin Light-activated kinases enable temporal dissection of signaling networks in living cells. J Am Chem Soc 2011; 133:2124–7.
https://doi.org/10.1021/ja1109979
|
74 |
M Gehringer, SA. Laufer Emerging and re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology. J Med Chem 2019; 62:5673–724.
https://doi.org/10.1021/acs.jmedchem.8b01153
|
75 |
S Greiss, JW. Chin Expanding the genetic code of an animal. J Am Chem Soc 2011; 133:14196–9.
https://doi.org/10.1021/ja2054034
|
76 |
J Grünewald, M-L Tsao, R Perera et al. Immunochemical termination of self-tolerance. Proc Natl Acad Sci USA 2008; 105:11276–80.
https://doi.org/10.1073/pnas.0804157105
|
77 |
J Grünewald, GS Hunt, L Dong et al. Mechanistic studies of the immunochemical termination of self-tolerance with unnatural amino acids. Proc Natl Acad Sci USA 2009; 106:4337–42.
https://doi.org/10.1073/pnas.0900507106
|
78 |
K Gupta, GE Toombes, KJ. Swartz Exploring structural dynamics of a membrane protein by combining bioorthogonal chemistry and cysteine mutagenesis. ELife 2019; 8:e50776.
https://doi.org/10.7554/eLife.50776
|
79 |
SM Hacker, KM Backus, MR Lazear et al. Global profiling of lysine reactivity and ligandability in the human proteome. Nat Chem 2017; 9:1181–90.
https://doi.org/10.1038/nchem.2826
|
80 |
S Han, A Yang, S Lee et al. Expanding the genetic code of Mus musculus. Nat Commun 2017; 8:14568.
https://doi.org/10.1038/ncomms14568
|
81 |
SM Hancock, R Uprety, A Deiters et al. Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair. J Am Chem Soc 2010; 132:14819–24.
https://doi.org/10.1021/ja104609m
|
82 |
ED Hankore, L Zhang, Y Chen et al. Genetic incorporation of noncanonical amino acids using two mutually orthogonal quadruplet codons. ACS Synth Biol 2019; 8:1168–74.
https://doi.org/10.1021/acssynbio.9b00051
|
83 |
R Hao, K Ma, Y Ru et al. Amber codon is genetically unstable in generation of premature termination codon (PTC)-harbouring Foot-and-mouth disease virus (FMDV) via genetic code expansion. RNA Biol 2021; 18:2330–41.
https://doi.org/10.1080/15476286.2021.1907055
|
84 |
X He, Y Chen, DG Beltran et al. Functional genetic encoding of sulfotyrosine in mammalian cells. Nat Commun 2020; 11:4820.
https://doi.org/10.1038/s41467-020-18629-9
|
85 |
J He, Z Fan, Y Tian et al. Spatiotemporal activation of protein O-GlcNAcylation in living cells. J Am Chem Soc 2022; 144:4289–93.
https://doi.org/10.1021/jacs.1c11041
|
86 |
TG Heckler, Y Zama, T Naka et al. Dipeptide formation with misacylated tRNAPhes. J Biol Chem 1983; 258:4492–5.
https://doi.org/10.1016/S0021-9258(18)32650-4
|
87 |
J Hemphill, C Chou, JW Chin et al. Genetically encoded light-activated transcription for spatiotemporal control of gene expression and gene silencing in mammalian cells. J Am Chem Soc 2013; 135:13433–9.
https://doi.org/10.1021/ja4051026
|
88 |
J Hemphill, EK Borchardt, K Brown et al. Optical control of CRISPR/Cas9 gene editing. J Am Chem Soc 2015; 137:5642–5.
https://doi.org/10.1021/ja512664v
|
89 |
A Herner, J Marjanovic, TM Lewandowski et al. 2-Aryl-5-carboxytetrazole as a new photoaffinity label for drug target identification. J Am Chem Soc 2016; 138:14609–15.
https://doi.org/10.1021/jacs.6b06645
|
90 |
N Hino, M Oyama, A Sato et al. Genetic incorporation of a photo-crosslinkable amino acid reveals novel protein complexes with GRB2 in mammalian cells. J Mol Biol 2011; 406:343–53.
https://doi.org/10.1016/j.jmb.2010.12.022
|
91 |
DM Hoang, PT Pham, TQ Bach et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022; 7:272.
https://doi.org/10.1038/s41392-022-01134-4
|
92 |
J. Hodgkin Novel nematode amber suppressors. Genetics 1985; 111:287–310.
https://doi.org/10.1093/genetics/111.2.287
|
93 |
C Hoppmann, L. Wang Genetically encoding photoswitchable click amino acids for general optical control of conformation and function of proteins. Methods Enzymol 2019; 624:249–64.
https://doi.org/10.1016/bs.mie.2019.04.016
|
94 |
C Hoppmann, VK Lacey, GV Louie et al. Genetically encoding photoswitchable click amino acids in Escherichia coli and mammalian cells. Angew Chem Int Ed Engl 2014; 53:3932–6.
https://doi.org/10.1002/anie.201400001
|
95 |
C Hoppmann, I Maslennikov, S Choe et al. In Situ formation of an Azo Bridge on proteins controllable by visible light. J Am Chem Soc 2015; 137:11218–21.
https://doi.org/10.1021/jacs.5b06234
|
96 |
BM Hutchins, SA Kazane, K Staflin et al. Site-specific coupling and sterically controlled formation of multimeric antibody fab fragments with unnatural amino acids. J Mol Biol 2011a; 406:595–603.
https://doi.org/10.1016/j.jmb.2011.01.011
|
97 |
BM Hutchins, SA Kazane, K Staflin et al. Selective formation of covalent protein heterodimers with an unnatural amino acid. Chem Biol 2011b; 18:299–303.
https://doi.org/10.1016/j.chembiol.2011.01.006
|
98 |
JS Italia, PS Addy, CJJ Wrobel et al. An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes. Nat Chem Biol 2017a; 13:446–50.
https://doi.org/10.1038/nchembio.2312
|
99 |
JS Italia, Y Zheng, RE Kelemen et al. Expanding the genetic code of mammalian cells. Biochem Soc Trans 2017b; 45:555–62.
https://doi.org/10.1042/BST20160336
|
100 |
JS Italia, JC Peeler, CM Hillenbrand et al. Genetically encoded protein sulfation in mammalian cells. Nat Chem Biol 2020; 16:379–82.
https://doi.org/10.1038/s41589-020-0493-1
|
101 |
LH. Jones Recent advances in the molecular design of synthetic vaccines. Nat Chem 2015; 7:952–60.
https://doi.org/10.1038/nchem.2396
|
102 |
J-Y Kang, D Kawaguchi, I Coin et al. In vivo expression of a light-activatable potassium channel using unnatural amino acids. Neuron 2013; 80:358–70.
https://doi.org/10.1016/j.neuron.2013.08.016
|
103 |
J Karijolich, Y-T Yu. Therapeutic suppression of premature termination codons: mechanisms and clinical considerations (review). Int J Mol Med 2014; 34:355–62.
https://doi.org/10.3892/ijmm.2014.1809
|
104 |
SH Kim, JH Jeong, SH Lee et al. LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI. Bioconjug Chem 2008; 19:2156–62.
https://doi.org/10.1021/bc800249n
|
105 |
CH Kim, JY Axup, A Dubrovska et al. Synthesis of bispecific antibodies using genetically encoded unnatural amino acids. J Am Chem Soc 2012; 134:9918–21.
https://doi.org/10.1021/ja303904e
|
106 |
H Kim, M Kim, S-K Im et al. Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Lab Anim Res 2018; 34:147–59.
https://doi.org/10.5625/lar.2018.34.4.147
|
107 |
J Kimble, D. Hirsh The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 1979; 70:396–417.
https://doi.org/10.1016/0012-1606(79)90035-6
|
108 |
HE Kinser, Z. Pincus High-throughput screening in the C. elegans nervous system. Mol Cell Neurosci 2017; 80:192–7.
https://doi.org/10.1016/j.mcn.2016.06.001
|
109 |
T Kitada, B DiAndreth, B Teague et al. Programming gene and engineered-cell therapies with synthetic biology. Science (New York, N.Y.) 2018; 359:eaad1067.
https://doi.org/10.1126/science.aad1067
|
110 |
P Kleiner, W Heydenreuter, M Stahl et al. A whole proteome inventory of background photocrosslinker binding. Angew Chem Int Ed Engl 2017; 56:1396–401.
https://doi.org/10.1002/anie.201605993
|
111 |
V Klippenstein, C Hoppmann, SP YePaoletti, et al. Optocontrol of glutamate receptor activity by single side-chain photoisomerization. ELife 2017; 6:e25808.
https://doi.org/10.7554/eLife.25808
|
112 |
W Ko, R Kumar, S Kim et al. Construction of bacterial cells with an active transport system for unnatural amino acids. ACS Synth Biol 2019; 8:1195–203.
https://doi.org/10.1021/acssynbio.9b00076
|
113 |
EN Kozlova, C. Berens Guiding differentiation of stem cells in vivo by tetracycline-controlled expression of key transcription factors. Cell Transplant 2012; 21:2537–54.
https://doi.org/10.3727/096368911X637407
|
114 |
K Krawczyk, S Xue, P Buchmann et al. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science (New York, N.Y.) 2020; 368:993–1001.
https://doi.org/10.1126/science.aau7187
|
115 |
P Kumar, H-S Ban, S-S Kim et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008; 134:577–86.
https://doi.org/10.1016/j.cell.2008.06.034
|
116 |
VK Lacey, GV Louie, JP Noel et al. Expanding the library and substrate diversity of the pyrrolysyl-tRNA synthetase to incorporate unnatural amino acids containing conjugated rings. Chembiochem 2013; 14:2100–5.
https://doi.org/10.1002/cbic.201300400
|
117 |
K Lang, L Davis, S Wallace et al. Genetic encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels–Alder reactions. J Am Chem Soc 2012a; 134:10317–20.
https://doi.org/10.1021/ja302832g
|
118 |
K Lang, L Davis, J Torres-Kolbus et al. Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat Chem 2012b; 4:298–304.
https://doi.org/10.1038/nchem.1250
|
119 |
FA Laski, S Ganguly, PA Sharp et al. Construction, stable transformation, and function of an amber suppressor tRNA gene in Drosophila melanogaster. Proc Natl Acad Sci USA 1989; 86:6696–8.
https://doi.org/10.1073/pnas.86.17.6696
|
120 |
L Ledsgaard, A Ljungars, C Rimbault et al. Advances in antibody phage display technology. Drug Discov Today 2022; 27:2151–69.
https://doi.org/10.1016/j.drudis.2022.05.002
|
121 |
HS Lee, J Guo, EA Lemke et al. Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae. J Am Chem Soc 2009; 131:12921–3.
https://doi.org/10.1021/ja904896s
|
122 |
J Lee, K-S Yun, CS Choi et al. T cell-specific siRNA delivery using antibody-conjugated chitosan nanoparticles. Bioconjug Chem 2012; 23:1174–80.
https://doi.org/10.1021/bc2006219
|
123 |
JM Lee, HM Hammarén, MM Savitski et al. Control of protein stability by post-translational modifications. Nat Commun 2023; 14:201.
https://doi.org/10.1038/s41467-023-35795-8
|
124 |
EA Lemke, D Summerer, BH Geierstanger et al. Control of protein phosphorylation with a genetically encoded photocaged amino acid. Nat Chem Biol 2007; 3:769–72.
https://doi.org/10.1038/nchembio.2007.44
|
125 |
S Leong, HPJ Lam, Z Kirkham et al. Antibody drug conjugates for the treatment of multiple myeloma. Am J Hematol 2023; 98:S22–34.
https://doi.org/10.1002/ajh.26750
|
126 |
S Lepthien, MG Hoesl, L Merkel et al. Azatryptophans endow proteins with intrinsic blue fluorescence. Proc Natl Acad Sci USA 2008; 105:16095–100.
https://doi.org/10.1073/pnas.0802804105
|
127 |
GD Lewis Phillips, G Li, DL Dugger et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibodycytotoxic drug conjugate. Cancer Res 2008; 68:9280–90.
https://doi.org/10.1158/0008-5472.CAN-08-1776
|
128 |
F Li, H Zhang, Y Sun et al. Expanding the genetic code for photoclick chemistry in E. coli, mammalian cells, and A. thaliana. Angew Chem Int Ed Engl 2013; 52:9700–4.
https://doi.org/10.1002/anie.201303477
|
129 |
J Li, S Jia, PR. Chen Diels–Alder reaction-triggered bioorthogonal protein decaging in living cells. Nat Chem Biol 2014a; 10:1003–5.
https://doi.org/10.1038/nchembio.1656
|
130 |
J Li, J Yu, J Zhao et al. Palladium-triggered deprotection chemistry for protein activation in living cells. Nat Chem 2014b; 6:352–61.
https://doi.org/10.1038/nchem.1887
|
131 |
F Li, H Li, Q Zhai et al. A new vaccine targeting RANKL, prepared by incorporation of an unnatural amino acid into RANKL, prevents OVX-induced bone loss in mice. Biochem Biophys Res Commun 2018; 499:648–54.
https://doi.org/10.1016/j.bbrc.2018.03.205
|
132 |
Q Li, Q Chen, PC Klauser et al. Developing covalent protein drugs via proximity-enabled reactive therapeutics. Cell 2020; 182:85–97.e16.
https://doi.org/10.1016/j.cell.2020.05.028
|
133 |
A Liaunardy-Jopeace, BL Murton, M Mahesh et al. Encoding optical control in LCK kinase to quantitatively investigate its activity in live cells. Nat Struct Mol Biol 2017; 24:1155–63.
https://doi.org/10.1038/nsmb.3492
|
134 |
RKV Lim, S Yu, B Cheng et al. Targeted delivery of LXR agonist using a site-specific antibody-drug conjugate. Bioconjug Chem 2015; 26:2216–22.
https://doi.org/10.1021/acs.bioconjchem.5b00203
|
135 |
CC Liu, PG. Schultz Adding new chemistries to the genetic code. Annu Rev Biochem 2010; 79:413–44.
https://doi.org/10.1146/annurev.biochem.052308.105824
|
136 |
DR Liu, TJ Magliery, M Pastrnak et al. Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci USA 1997; 94:10092–7.
https://doi.org/10.1073/pnas.94.19.10092
|
137 |
J Liu, J Hemphill, S Samanta et al. Genetic code expansion in zebrafish embryos and its application to optical control of cell signaling. J Am Chem Soc 2017; 139:9100–3.
https://doi.org/10.1021/jacs.7b02145
|
138 |
J Liu, S Li, NA Aslam et al. Genetically encoding photocaged quinone methide to multitarget protein residues covalently in vivo. J Am Chem Soc 2019; 141:9458–62.
https://doi.org/10.1021/jacs.9b01738
|
139 |
J Liu, L Cao, PC Klauser et al. A genetically encoded fluorosulfonyloxybenzoyl-L-lysine for expansive covalent bonding of proteins via SuFEx chemistry. J Am Chem Soc 2021; 143:10341–51.
https://doi.org/10.1021/jacs.1c04259
|
140 |
J Liu, B Yang, L. Wang Residue selective crosslinking of proteins through photoactivatable or proximity-enabled reactivity. Curr Opin Chem Biol 2023; 74:102285.
https://doi.org/10.1016/j.cbpa.2023.102285
|
141 |
C Long, JR McAnally, JM Shelton et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science (New York, N.Y.) 2014; 345:1184–8.
https://doi.org/10.1126/science.1254445
|
142 |
H Lu, D Wang, S Kazane et al. Site-specific antibody-polymer conjugates for siRNA delivery. J Am Chem Soc 2013; 135:13885–91.
https://doi.org/10.1021/ja4059525
|
143 |
J Luo, R Uprety, Y Naro et al. Genetically encoded optochemical probes for simultaneous fluorescence reporting and light activation of protein function with two-photon excitation. J Am Chem Soc 2014; 136:15551–8.
https://doi.org/10.1021/ja5055862
|
144 |
J Luo, E Arbely, J Zhang et al. Genetically encoded optical activation of DNA recombination in human cells. Chem Commun (Cambridge, England) 2016a; 52:8529–32.
https://doi.org/10.1039/C6CC03934K
|
145 |
J Luo, Q Liu, K Morihiro et al. Small-molecule control of protein function through Staudinger reduction. Nat Chem 2016b; 8:1027–34.
https://doi.org/10.1038/nchem.2573
|
146 |
X Luo, G Fu, RE Wang et al. Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria. Nat Chem Biol 2017a; 13:845–9.
https://doi.org/10.1038/nchembio.2405
|
147 |
J Luo, J Torres-Kolbus, J Liu et al. Genetic encoding of photocaged tyrosines with improved light-activation properties for the optical control of protease function. Chembiochem 2017b; 18:1442–7.
https://doi.org/10.1002/cbic.201700147
|
148 |
JSY Ma, JY Kim, SA Kazane et al. Versatile strategy for controlling the specificity and activity of engineered T cells. Proc Natl Acad Sci USA 2016; 113:E450–8.
https://doi.org/10.1073/pnas.1524193113
|
149 |
KM Maalej, M Merhi, VP Inchakalody et al. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol Cancer 2023; 22:20.
https://doi.org/10.1186/s12943-023-01723-z
|
150 |
AE Mangubat-Medina, ZT. Ball Triggering biological processes: methods and applications of photocaged peptides and proteins. Chem Soc Rev 2021; 50:10403–21.
https://doi.org/10.1039/D0CS01434F
|
151 |
JM Mattheisen, JS Wollowitz, T Huber et al. Genetic code expansion to enable site-specific bioorthogonal labeling of functional G protein-coupled receptors in live cells. Protein Sci 2023; 32:e4550.
https://doi.org/10.1002/pro.4550
|
152 |
C. Mayer Selection, addiction and catalysis: emerging trends for the incorporation of noncanonical amino acids into peptides and proteins in vivo. Chembiochem 2019; 20:1357–64.
https://doi.org/10.1002/cbic.201800733
|
153 |
RA Mehl, JC Anderson, SW Santoro et al. Generation of a bacterium with a 21 amino acid genetic code. J Am Chem Soc 2003; 125:935–9.
https://doi.org/10.1021/ja0284153
|
154 |
CE Melançon, PG. Schultz One plasmid selection system for the rapid evolution of aminoacyl-tRNA synthetases. Bioorg Med Chem Lett 2009; 19:3845–7.
https://doi.org/10.1016/j.bmcl.2009.04.007
|
155 |
EM Mills, VL Barlow, AT Jones et al. Development of mammalian cell logic gates controlled by unnatural amino acids. Cell Rep Methods 2021; 1:100073.
https://doi.org/10.1016/j.crmeth.2021.100073
|
156 |
P Mitchell, D. Tollervey An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3′→5′ degradation. Mol Cell 2003; 11:1405–13.
https://doi.org/10.1016/S1097-2765(03)00190-4
|
157 |
T Mukai, T Kobayashi, N Hino et al. Adding L-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases. Biochem Biophys Res Commun 2008; 371:818–22.
https://doi.org/10.1016/j.bbrc.2008.04.164
|
158 |
T Mukai, MJ Lajoie, M Englert et al. Rewriting the genetic code. Annu Rev Microbiol 2017; 71:557–77.
https://doi.org/10.1146/annurev-micro-090816-093247
|
159 |
N Muranaka, T Hohsaka, M. Sisido Photoswitching of peroxidase activity by position-specific incorporation of a photoisomerizable non-natural amino acid into horseradish peroxidase. FEBS Lett 2002; 510:10–2.
https://doi.org/10.1016/S0014-5793(01)03211-2
|
160 |
T Narancic, SA Almahboub, KE. O’Connor Unnatural amino acids: production and biotechnological potential. World J Microbiol Biotechnol 2019; 35:67.
https://doi.org/10.1007/s11274-019-2642-9
|
161 |
H Neumann, K Wang, L Davis et al. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 2010; 464:441–4.
https://doi.org/10.1038/nature08817
|
162 |
DP Nguyen, M Mahesh, SJ Elsässer et al. Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J Am Chem Soc 2014; 136:2240–3.
https://doi.org/10.1021/ja412191m
|
163 |
T-A Nguyen, M Cigler, K. Lang Expanding the genetic code to study protein–protein interactions. Angew Chem Int Ed Engl 2018; 57:14350–61.
https://doi.org/10.1002/anie.201805869
|
164 |
I Nikić, EA. Lemke Genetic code expansion enabled site-specific dual-color protein labeling: superresolution microscopy and beyond. Curr Opin Chem Biol 2015; 28:164–73.
https://doi.org/10.1016/j.cbpa.2015.07.021
|
165 |
I Nikić, G Estrada Girona, JH Kang et al. Debugging eukaryotic genetic code expansion for site-specific click-PAINT super-resolution microscopy. Angew Chem Int Ed Engl 2016; 55:16172–6.
https://doi.org/10.1002/anie.201608284
|
166 |
W Niu, PG Schultz, J. Guo An expanded genetic code in mammalian cells with a functional quadruplet codon. ACS Chem Biol 2013; 8:1640–5.
https://doi.org/10.1021/cb4001662
|
167 |
AR Nödling, LA Spear, TL Williams et al. Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells. Essays Biochem 2019; 63:237–66.
https://doi.org/10.1042/EBC20180042
|
168 |
CJ Noren, SJ Anthony-Cahill, MC Griffith et al. A general method for site-specific incorporation of unnatural amino acids into proteins. Science (New York, N.Y.) 1989; 244:182–8.
https://doi.org/10.1126/science.2649980
|
169 |
AO Osgood, Y Zheng, SJS Roy et al. An efficient opal-suppressor tryptophanyl pair creates new routes for simultaneously incorporating up to three distinct noncanonical amino acids into proteins in mammalian cells. Angew Chem Int Ed Engl 2023; 62:e202219269.
https://doi.org/10.1002/anie.202219269
|
170 |
S Palzer, Y Bantel, F Kazenwadel et al. An expanded genetic code in Candida albicans to study protein–protein interactions in vivo. Eukaryot Cell 2013; 12:816–27.
https://doi.org/10.1128/EC.00075-13
|
171 |
S-H Park, W Ko, HS Lee et al. Analysis of protein–protein interaction in a single live cell by using a FRET system based on genetic code expansion technology. J Am Chem Soc 2019; 141:4273–81.
https://doi.org/10.1021/jacs.8b10098
|
172 |
S-H Park, W Ko, S-H Park et al. Evaluation of the interaction between Bax and Hsp70 in cells by using a FRET system consisting of a fluorescent amino acid and YFP as a FRET pair. Chembiochem 2020; 21:59–63.
https://doi.org/10.1002/cbic.201900293
|
173 |
AR Parrish, X She, Z Xiang et al. Expanding the genetic code of Caenorhabditis elegans using bacterial aminoacyl-tRNA synthetase/tRNA pairs. ACS Chem Biol 2012; 7:1292–302.
https://doi.org/10.1021/cb200542j
|
174 |
JC Peeler, JA Falco, RE Kelemen et al. Generation of recombinant mammalian selenoproteins through genetic code expansion with photocaged Selenocysteine. ACS Chem Biol 2020; 15:1535–40.
https://doi.org/10.1021/acschembio.0c00147
|
175 |
T Peng, HC. Hang Site-specific bioorthogonal labeling for fluorescence imaging of intracellular proteins in living cells. J Am Chem Soc 2016; 138:14423–33.
https://doi.org/10.1021/jacs.6b08733
|
176 |
L. Politano Read-through approach for stop mutations in Duchenne muscular dystrophy an update. Acta Myol 2021; 40:43–50.
|
177 |
MI Prasanth, S Gayathri, JP Bhaskar et al. Understanding the role of p38 and JNK mediated MAPK pathway in response to UV-A induced photoaging in Caenorhabditis elegans. J Photochem Photobiol B 2020; 205:111844.
https://doi.org/10.1016/j.jphotobiol.2020.111844
|
178 |
C. Rader Bispecific antibodies in cancer immunotherapy. Curr Opin Biotechnol 2020; 65:9–16.
https://doi.org/10.1016/j.copbio.2019.11.020
|
179 |
W Ren, A Ji, H-w Ai. Light activation of protein splicing with a photocaged fast intein. J Am Chem Soc 2015a; 137:2155–8.
https://doi.org/10.1021/ja508597d
|
180 |
W Ren, A Ji, MX Wang et al. Expanding the genetic code for a dinitrophenyl hapten. Chembiochem 2015b; 16:2007–10.
https://doi.org/10.1002/cbic.201500204
|
181 |
L Rong, RM Lim, X Yin et al. Site-specific dinitrophenylation of single-chain antibody fragments for redirecting a universal CAR-T cell against cancer antigens. J Mol Biol 2022; 434:167513.
https://doi.org/10.1016/j.jmb.2022.167513
|
182 |
G Roy, J Reier, A Garcia et al. Development of a high yielding expression platform for the introduction of non-natural amino acids in protein sequences. MAbs 2020; 12:1684749.
https://doi.org/10.1080/19420862.2019.1684749
|
183 |
A Ryan, CP Janosko, TM Courtney et al. Engineering SHP2 phosphatase for optical control. Biochemistry 2022; 61:2687–97.
https://doi.org/10.1021/acs.biochem.2c00387
|
184 |
J Sanders, SA Hoffmann, AP Green et al. New opportunities for genetic code expansion in synthetic yeast. Curr Opin Biotechnol 2022; 75:102691.
https://doi.org/10.1016/j.copbio.2022.102691
|
185 |
SW Santoro, PG. Schultz Directed evolution of the substrate specificities of a site-specific recombinase and an aminoacyl-tRNA synthetase using fluorescence-activated cell sorting (FACS). Methods Mol Biol (Clifton, N.J.) 2003; 230:291–312.
https://doi.org/10.1385/1-59259-396-8:291
|
186 |
SW Santoro, L Wang, B Herberich et al. An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nat Biotechnol 2002; 20:1044–8.
https://doi.org/10.1038/nbt742
|
187 |
D Schumacher, CPR Hackenberger, H Leonhardt et al. Current status: site-specific antibody drug conjugates. J Clin Immunol 2016; 36:100–7.
https://doi.org/10.1007/s10875-016-0265-6
|
188 |
I Segal, D Nachmias, A Konig et al. A straightforward approach for bioorthogonal labeling of proteins and organelles in live mammalian cells, using a short peptide tag. BMC Biol 2020; 18:5.
https://doi.org/10.1186/s12915-019-0708-7
|
189 |
R Serfling, L Seidel, A Bock et al. Quantitative single-residue bioorthogonal labeling of g protein-coupled receptors in live cells. ACS Chem Biol 2019; 14:1141–9.
https://doi.org/10.1021/acschembio.8b01115
|
190 |
MA Shandell, JR Quejada, M Yazawa et al. Detection of Nav15 conformational change in mammalian cells using the noncanonical amino acid ANAP. Biophys J 2019; 117:1352–63.
https://doi.org/10.1016/j.bpj.2019.08.028
|
191 |
N Shao, NS Singh, SE Slade et al. Site specific genetic incorporation of Azidophenylalanine in Schizosaccharomyces pombe. Sci Rep 2015; 5:17196.
https://doi.org/10.1038/srep17196
|
192 |
B Shen, Z Xiang, B Miller et al. Genetically encoding unnatural amino acids in neural stem cells and optically reporting voltage-sensitive domain changes in differentiated neurons. Stem Cells (Dayton, Ohio) 2011; 29:1231–40.
https://doi.org/10.1002/stem.679
|
193 |
N Shi, Q Yang, H Zhang et al. Restoration of dystrophin expression in mice by suppressing a nonsense mutation through the incorporation of unnatural amino acids. Nat Biomed Eng 2022; 6:195–206.
https://doi.org/10.1038/s41551-021-00774-1
|
194 |
L Si, H Xu, X Zhou et al. Generation of influenza A viruses as live but replication-incompetent virus vaccines. Science (New York, N.Y.) 2016; 354:1170–3.
https://doi.org/10.1126/science.aah5869
|
195 |
V Sibaud, M Beylot-Barry, C Protin et al. Dermatological toxicities of Bruton’s tyrosine kinase inhibitors. Am J Clin Dermatol 2020; 21:799–812.
https://doi.org/10.1007/s40257-020-00535-x
|
196 |
P Siman, A. Brik Chemical and semisynthesis of posttranslationally modified proteins. Org Biomol Chem 2012; 10:5684–97.
https://doi.org/10.1039/c2ob25149c
|
197 |
J Singh, RC Petter, TA Baillie et al. The resurgence of covalent drugs. Nat Rev Drug Discov 2011; 10:307–17.
https://doi.org/10.1038/nrd3410
|
198 |
EM Sletten, CR. Bertozzi From mechanism to mouse: a tale of two bioorthogonal reactions. Acc Chem Res 2011; 44:666–76.
https://doi.org/10.1021/ar200148z
|
199 |
S Smolskaya, YA. Andreev Site-specific incorporation of unnatural amino acids into Escherichia coli recombinant protein: methodology development and recent achievement. Biomolecules 2019; 9:255.
https://doi.org/10.3390/biom9070255
|
200 |
E Song, P Zhu, S-K Lee et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005; 23:709–17.
https://doi.org/10.1038/nbt1101
|
201 |
G Stokman, Y Qin, Z Rácz et al. Application of siRNA in targeting protein expression in kidney disease. Adv Drug Deliv Rev 2010; 62:1378–89.
https://doi.org/10.1016/j.addr.2010.07.005
|
202 |
JE Sulston, HR. Horvitz Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 1977; 56:110–56.
https://doi.org/10.1016/0012-1606(77)90158-0
|
203 |
J Syed, S Palani, ST Clarke et al. Expanding the zebrafish genetic code through site-specific introduction of azido-lysine, bicyclononyne-lysine, and diazirine-lysine. Int J Mol Sci 2019; 20:2577.
https://doi.org/10.3390/ijms20102577
|
204 |
JK Takimoto, KL Adams, Z Xiang et al. Improving orthogonal tRNA-synthetase recognition for efficient unnatural amino acid incorporation and application in mammalian cells. Mol Biosyst 2009; 5:931–4.
https://doi.org/10.1039/b904228h
|
205 |
JK Takimoto, Z Xiang, J-Y Kang et al. Esterification of an unnatural amino acid structurally deviating from canonical amino acids promotes its uptake and incorporation into proteins in mammalian cells. Chembiochem 2010; 11:2268–72.
https://doi.org/10.1002/cbic.201000436
|
206 |
Y Tanaka, MR Bond, JJ. Kohler Photocrosslinkers illuminate interactions in living cells. Mol Biosyst 2008; 4:473–80.
https://doi.org/10.1039/b803218a
|
207 |
JM Tharp, A Ehnbom, WR. Liu tRNAPyl: structure, function, and applications. RNA Biol 2018; 15:441–52.
https://doi.org/10.1080/15476286.2017.1356561
|
208 |
AP Teixeira, M. Fussenegger Engineering mammalian cells for disease diagnosis and treatment. Curr Opin Biotechnol 2019; 55:87–94.
https://doi.org/10.1016/j.copbio.2018.08.008
|
209 |
F Tian, Y Lu, A Manibusan et al. A general approach to site-specific antibody drug conjugates. Proc Natl Acad Sci USA 2014; 111:1766–71.
https://doi.org/10.1073/pnas.1321237111
|
210 |
Y Tian, MP Jacinto, Y Zeng et al. Genetically encoded 2-Aryl-5-carboxytetrazoles for site-selective protein photocross-linking. J Am Chem Soc 2017; 139:6078–81.
https://doi.org/10.1021/jacs.7b02615
|
211 |
X Tian, W-Q Liu, H Xu et al. Cell-free expression of NO synthase and P450 enzyme for the biosynthesis of an unnatural amino acid L-4-nitrotryptophan. Synth Syst Biotechnol 2022; 7:775–83.
https://doi.org/10.1016/j.synbio.2022.03.006
|
212 |
N Tir, L Heistinger, C Grünwald-Gruber et al. From strain engineering to process development: monoclonal antibody production with an unnatural amino acid in Pichia pastoris. Microb Cell Fact 2022; 21:157.
https://doi.org/10.1186/s12934-022-01882-6
|
213 |
MM Toteva, JP. Richard The generation and reactions of quinone methides. Adv Phys Org Chem 2011; 45:39–91.
https://doi.org/10.1016/B978-0-12-386047-7.00002-3
|
214 |
Y-H Tsai, S Essig, JR James et al. Selective, rapid and optically switchable regulation of protein function in live mammalian cells. Nat Chem 2015; 7:554–61.
https://doi.org/10.1038/nchem.2253
|
215 |
R Uprety, J Luo, J Liu et al. Genetic encoding of caged cysteine and caged homocysteine in bacterial and mammalian cells. Chembiochem 2014; 15:1793–9.
https://doi.org/10.1002/cbic.201400073
|
216 |
OS Walker, SJ Elsässer, M Mahesh et al. Photoactivation of mutant isocitrate dehydrogenase 2 reveals rapid cancer-associated metabolic and epigenetic changes. J Am Chem Soc 2016; 138:718–21.
https://doi.org/10.1021/jacs.5b07627
|
217 |
SJ Walsh, JD Bargh, FM Dannheim et al. Site-selective modification strategies in antibody-drug conjugates. Chem Soc Rev 2021; 50:1305–53.
https://doi.org/10.1039/D0CS00310G
|
218 |
W Wan, JM Tharp, WR. Liu Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim Biophys Acta 2014; 1844:1059–70.
https://doi.org/10.1016/j.bbapap.2014.03.002
|
219 |
L. Wang Engineering the genetic code in cells and animals: biological considerations and impacts. Acc Chem Res 2017; 50:2767–75.
https://doi.org/10.1021/acs.accounts.7b00376
|
220 |
L Wang, A. Audhya In vivo imaging of C. elegans endocytosis. Methods (San Diego, Calif.) 2014; 68:518–28.
https://doi.org/10.1016/j.ymeth.2014.03.028
|
221 |
Q Wang, L. Wang New methods enabling efficient incorporation of unnatural amino acids in yeast. J Am Chem Soc 2008; 130:6066–7.
https://doi.org/10.1021/ja800894n
|
222 |
Q Wang, L. Wang Genetic incorporation of unnatural amino acids into proteins in yeast. Methods Mol Biol (Clifton, N.J.) 2012; 794:199–213.
https://doi.org/10.1007/978-1-61779-331-8_12
|
223 |
N Wang, L. Wang Genetically encoding latent bioreactive amino acids and the development of covalent protein drugs. Curr Opin Chem Biol 2022; 66:102106.
https://doi.org/10.1016/j.cbpa.2021.102106
|
224 |
L Wang, A Brock, B Herberich et al. Expanding the genetic code of Escherichia coli. Science (New York, N.Y.) 2001; 292:498–500.
https://doi.org/10.1126/science.1060077
|
225 |
W Wang, JK Takimoto, GV Louie et al. Genetically encoding unnatural amino acids for cellular and neuronal studies. Nat Neurosci 2007; 10:1063–72.
https://doi.org/10.1038/nn1932
|
226 |
K Wang, WH Schmied, JW. Chin Reprogramming the genetic code: from triplet to quadruplet codes. Angew Chem Int Ed Engl 2012; 51:2288–97.
https://doi.org/10.1002/anie.201105016
|
227 |
RE Wang, T Liu, Y Wang et al. An immunosuppressive antibodydrug conjugate. J Am Chem Soc 2015; 137:3229–32.
https://doi.org/10.1021/jacs.5b00620
|
228 |
J Wang, S Zheng, Y Liu et al. Palladium-triggered chemical rescue of intracellular proteins via genetically encoded Allene-Caged tyrosine. J Am Chem Soc 2016a; 138:15118–21.
https://doi.org/10.1021/jacs.6b08933
|
229 |
WW Wang, Y Zeng, B Wu et al. A chemical biology approach to reveal Sirt6-targeted Histone H3 sites in nucleosomes. ACS Chem Biol 2016b; 11:1973–81.
https://doi.org/10.1021/acschembio.6b00243
|
230 |
N Wang, B Yang, C Fu et al. Genetically encoding Fluorosulfate-l-tyrosine to react with lysine, histidine, and tyrosine via SuFEx in proteins in vivo. J Am Chem Soc 2018; 140:4995–9.
https://doi.org/10.1021/jacs.8b01087
|
231 |
WW Wang, M Angulo-Ibanez, J Lyu et al. A click chemistry approach reveals the chromatin-dependent histone H3K36 Deacylase nature of SIRT7. J Am Chem Soc 2019; 141:2462–73.
https://doi.org/10.1021/jacs.8b12083
|
232 |
T-Y Wang, G-J Sang, Q Wang et al. Generation of premature termination codon (PTC)-harboring pseudorabies virus (PRV) via genetic code expansion technology. Viruses 2022; 14:572.
https://doi.org/10.3390/v14030572
|
233 |
T Washburn, JE. O’Tousa Nonsense suppression of the major rhodopsin gene of Drosophila. Genetics 1992; 130:585–95.
https://doi.org/10.1093/genetics/130.3.585
|
234 |
WO. Weigle The induction of autoimmunity in rabbits following injection of heterologous or altered homologous thyroglobulin. J Exp Med 1965; 121:289–308.
https://doi.org/10.1084/jem.121.2.289
|
235 |
JS Wesalo, J Luo, K Morihiro et al. Phosphine-activated lysine analogues for fast chemical control of protein subcellular localization and protein SUMOylation. Chembiochem 2020; 21:141–8.
https://doi.org/10.1002/cbic.201900464
|
236 |
AM. Wu Antibodies and antimatter: the resurgence of immuno-PET. J Nucl Med 2009; 50:2–5.
https://doi.org/10.2967/jnumed.108.056887
|
237 |
N Wu, A Deiters, TA Cropp et al. A genetically encoded photocaged amino acid. J Am Chem Soc 2004; 126:14306–7.
https://doi.org/10.1021/ja040175z
|
238 |
Y Wu, H Zhu, B Zhang et al. Synthesis of site-specific radiolabeled antibodies for radioimmunotherapy via genetic code expansion. Bioconjug Chem 2016; 27:2460–8.
https://doi.org/10.1021/acs.bioconjchem.6b00412
|
239 |
Y Wu, R-Y Zhu, LA Mitchell et al. In vitro DNA SCRaMbLE. Nat Commun 2018a; 9:1935.
https://doi.org/10.1038/s41467-018-03743-6
|
240 |
T Wu, F Li, X Sha et al. A novel recombinant RANKL vaccine prepared by incorporation of an unnatural amino acid into RANKL and its preventive effect in a murine model of collagen-induced arthritis. Int Immunopharmacol 2018b; 64:326–32.
https://doi.org/10.1016/j.intimp.2018.09.022
|
241 |
K-L Wu, JA Moore, MD Miller et al. Expanding the eukaryotic genetic code with a biosynthesized 21st amino acid. Protein Sci 2022a; 31:e4443.
https://doi.org/10.1002/pro.4443
|
242 |
D Wu, Y Zhang, Z Tang et al. Creation of a yeast strain with co-translationally acylated nucleosomes. Angew Chem Int Ed Engl 2022b; 61:e202205570.
https://doi.org/10.1002/anie.202205570
|
243 |
X-Y Wu, M-Y Li, S-J Yang et al. Controlled genetic encoding of unnatural amino acids in a protein nanopore. Angew Chem Int Ed Engl 2023; 62:e202300582.
https://doi.org/10.1002/anie.202300582
|
244 |
M Wulf, SA. Pless High-sensitivity fluorometry to resolve ion channel conformational dynamics. Cell Rep 2018; 22:1615–26.
https://doi.org/10.1016/j.celrep.2018.01.029
|
245 |
Z Xi, L Davis, K Baxter et al. Using a quadruplet codon to expand the genetic code of an animal. Nucleic Acids Res 2022; 50:4801–12.
https://doi.org/10.1093/nar/gkab1168
|
246 |
Z Xiang, H Ren, YS Hu et al. Adding an unnatural covalent bond to proteins through proximity-enhanced bioreactivity. Nat Methods 2013; 10:885–8.
https://doi.org/10.1038/nmeth.2595
|
247 |
Z Xiang, VK Lacey, H Ren et al. Proximity-enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angew Chem Int Ed Engl 2014; 53:2190–3.
https://doi.org/10.1002/anie.201308794
|
248 |
H Xiao, A Chatterjee, S-hyun Choi et al. Genetic incorporation of multiple unnatural amino acids into proteins in mammalian cells. Angew Chem Int Ed Engl 2013; 52:14080–3.
https://doi.org/10.1002/anie.201308137
|
249 |
Y-P Xue, C-H Cao, Y-G. Zheng Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 2018; 47:1516–61.
https://doi.org/10.1039/C7CS00253J
|
250 |
T Yanagisawa, N Hino, F Iraha et al. Wide-range protein photo-crosslinking achieved by a genetically encoded N(ϵ)- (benzyloxycarbonyl)lysine derivative with a diazirinyl moiety. Mol Biosyst 2012; 8:1131–5.
https://doi.org/10.1039/c2mb05321g
|
251 |
Y Yang, S Luo, J Huang et al. Photoactivation of innate immunity receptor TLR8 in live mammalian cells by genetic encoding of photocaged tyrosine. Chembiochem 2022; 23:e202100344.
https://doi.org/10.1002/cbic.202100344
|
252 |
J Yang, K Wang, S Zhang et al. Site-specific introduction of bioorthogonal handles to nanopores by genetic code expansion. Angew Chem Int Ed Engl 2023; 62:e202216115.
https://doi.org/10.1002/anie.202216115
|
253 |
Y-d Yao, T-meng Sun, S-yin Huang et al. Targeted delivery of PLK1-siRNA by ScFv suppresses Her2+ breast cancer growth and metastasis. Sci Transl Med 2012; 4:130ra48.
https://doi.org/10.1126/scitranslmed.3003601
|
254 |
TS Young, I Ahmad, A Brock et al. Expanding the genetic repertoire of the methylotrophic yeast Pichia pastoris. Biochemistry 2009; 48:2643–53.
https://doi.org/10.1021/bi802178k
|
255 |
TS Young, DD Young, I Ahmad et al. Evolution of cyclic peptide protease inhibitors. Proc Natl Acad Sci USA 2011; 108:11052–6.
https://doi.org/10.1073/pnas.1108045108
|
256 |
B Yu, S Li, T Tabata et al. Accelerating PERx reaction enables covalent nanobodies for potent neutralization of SARS-CoV-2 and variants. Chem 2022; 8:2766–83.
https://doi.org/10.1016/j.chempr.2022.07.012
|
257 |
Z Yuan, N Wang, G Kang et al. Controlling multicycle replication of live-attenuated HIV-1 using an unnatural genetic switch. ACS Synth Biol 2017; 6:721–31.
https://doi.org/10.1021/acssynbio.6b00373
|
258 |
J Zang, Y Chen, C Liu et al. Genetic code expansion reveals aminoacylated lysine ubiquitination mediated by UBE2W. Nat Struct Mol Biol 2023; 30:62–71.
https://doi.org/10.1038/s41594-022-00866-9
|
259 |
AN Zaykov, JP Mayer, RD. DiMarchi Pursuit of a perfect insulin. Nat Rev Drug Discov 2016; 15:425–39.
https://doi.org/10.1038/nrd.2015.36
|
260 |
Z Zhang, L Alfonta, F Tian et al. Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells. Proc Natl Acad Sci USA 2004; 101:8882–7.
https://doi.org/10.1073/pnas.0307029101
|
261 |
G Zhang, J Li, R Xie et al. Bioorthogonal chemical activation of kinases in living systems. ACS Cent Sci 2016; 2:325–31.
https://doi.org/10.1021/acscentsci.6b00024
|
262 |
S Zhao, J Shi, G Yu et al. Photosensitive tyrosine analogues unravel site-dependent phosphorylation in TrkA initiated MAPK/ERK signaling. Commun Biol 2020; 3:706.
https://doi.org/10.1038/s42003-020-01396-0
|
263 |
Y Zheng, TL Lewis, P Igo et al. Virus-enabled optimization and delivery of the genetic machinery for efficient unnatural amino acid mutagenesis in mammalian cells and tissues. ACS Synth Biol 2017; 6:13–8.
https://doi.org/10.1021/acssynbio.6b00092
|
264 |
C Zhu, L Xu, L Chen et al. Epitope-directed antibody elicitation by genetically encoded chemical cross-linking reactivity in the antigen. ACS Cent Sci 2023; 9:1229–40.
https://doi.org/10.1021/acscentsci.3c00265
|
265 |
C Zuany-Amorim, C Manlius, I Dalum et al. Induction of TNF-alpha autoantibody production by AutoVac TNF106: a novel therapeutic approach for the treatment of allergic diseases. Int Arch Allergy Immunol 2004; 133:154–63.
https://doi.org/10.1159/000076441
|