Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2024, Vol. 15 Issue (5) : 331-363    https://doi.org/10.1093/procel/pwad051
Applications of genetic code expansion technology in eukaryotes
Qiao-ru Guo1, Yu J. Cao1,2()
1. State Key Laboratory of Chemical Oncogenomic, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
2. Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
 Download: PDF(5277 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Unnatural amino acids (UAAs) have gained significant attention in protein engineering and drug development owing to their ability to introduce new chemical functionalities to proteins. In eukaryotes, genetic code expansion (GCE) enables the incorporation of UAAs and facilitates posttranscriptional modification (PTM), which is not feasible in prokaryotic systems. GCE is also a powerful tool for cell or animal imaging, the monitoring of protein interactions in target cells, drug development, and switch regulation. Therefore, there is keen interest in utilizing GCE in eukaryotic systems. This review provides an overview of the application of GCE in eukaryotic systems and discusses current challenges that need to be addressed.

Keywords genetic code expansion      unnatural amino acid      eukaryotes      basic research      therapeutic applications     
Corresponding Author(s): Yu J. Cao   
Issue Date: 27 May 2024
 Cite this article:   
Qiao-ru Guo,Yu J. Cao. Applications of genetic code expansion technology in eukaryotes[J]. Protein Cell, 2024, 15(5): 331-363.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1093/procel/pwad051
https://academic.hep.com.cn/pac/EN/Y2024/V15/I5/331
1 MD Adams, SE Celniker, RA Holt et al. The genome sequence of Drosophila melanogaster. Science (New York, N.Y.) 2000; 287:2185–95.
2 P Adumeau, SK Sharma, C Brent et al. Site-specifically labeled immunoconjugates for molecular imaging—part 1: cysteine residues and glycans. Mol Imaging Biol 2016; 18:1–17.
https://doi.org/10.1007/s11307-015-0919-4
3 A Aemissegger, D. Hilvert Synthesis and application of an azobenzene amino acid as a light-switchable turn element in polypeptides. Nat Protocols 2007; 2:161–7.
https://doi.org/10.1038/nprot.2006.488
4 NJ Agard, JM Baskin, JA Prescher et al. A comparative study of bioorthogonal reactions with azides. ACS Chem Biol 2006; 1:644–8.
https://doi.org/10.1021/cb6003228
5 F Agostini, J-S Völler, B Koksch et al. Biocatalysis with unnatural amino acids: enzymology meets xenobiology. Angew Chem Int Ed Engl 2017; 56:9680–703.
https://doi.org/10.1002/anie.201610129
6 R Alexpandi, MI Prasanth, AV Ravi et al. Protective effect of neglected plant Diplocyclos palmatus on quorum sensing mediated infection of Serratia marcescens and UV-A induced photoaging in model Caenorhabditis elegans. J Photochem Photobiol B 2019; 201:111637.
https://doi.org/10.1016/j.jphotobiol.2019.111637
7 A Alouane, R Labruère, T Le Saux et al. Self-immolative spacers: kinetic aspects, structure–property relationships, and applications. Angew Chem Int Ed Engl 2015; 54:7492–509.
https://doi.org/10.1002/anie.201500088
8 E Arbely, J Torres-Kolbus, A Deiters et al. Photocontrol of tyrosine phosphorylation in mammalian cells via genetic encoding of photocaged tyrosine. J Am Chem Soc 2012; 134:11912–5.
https://doi.org/10.1021/ja3046958
9 M Asiful Islam, F Alam, MA Kamal et al. Therapeutic suppression of nonsense mutation: an emerging target in multiple diseases and thrombotic disorders. Curr Pharm Des 2017; 23:1598–609.
https://doi.org/10.2174/1381612823666161122142950
10 JY Axup, KM Bajjuri, M Ritland et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci USA 2012; 109:16101–6.
https://doi.org/10.1073/pnas.1211023109
11 TA. Baillie Targeted covalent inhibitors for drug design. Angew Chem Int Ed Engl 2016; 55:13408–21.
https://doi.org/10.1002/anie.201601091
12 KW Barber, J. Rinehart The ABCs of PTMs. Nat Chem Biol 2018; 14:188–92.
https://doi.org/10.1038/nchembio.2572
13 KE Beatty, JC Liu, F Xie et al. Fluorescence visualization of newly synthesized proteins in mammalian cells. Angew Chem Int Ed Engl 2006; 45:7364–7.
https://doi.org/10.1002/anie.200602114
14 AA Beharry, GA. Woolley Azobenzene photoswitches for biomolecules. Chem Soc Rev 2011; 40:4422–37.
https://doi.org/10.1039/c1cs15023e
15 V Beránek, CD Reinkemeier, MS Zhang et al. Genetically encoded protein phosphorylation in mammalian cells. Cell Chem Biol 2018; 25:1067–1074.e5.
https://doi.org/10.1016/j.chembiol.2018.05.013
16 A Bianco, FM Townsley, S Greiss et al. Expanding the genetic code of Drosophila melanogaster. Nat Chem Biol 2012; 8:748–50.
https://doi.org/10.1038/nchembio.1043
17 MAT. Blaskovich Unusual amino acids in medicinal chemistry. J Med Chem 2016; 59:10807–36.
https://doi.org/10.1021/acs.jmedchem.6b00319
18 M Bose, D Groff, J Xie et al. The incorporation of a photoisomerizable amino acid into proteins in E. coli. J Am Chem Soc 2006; 128:388–9.
https://doi.org/10.1021/ja055467u
19 W Brown, A. Deiters Light-activation of Cre recombinase in zebrafish embryos through genetic code expansion. Methods Enzymol 2019; 624:265–81.
https://doi.org/10.1016/bs.mie.2019.04.004
20 W Brown, JD Galpin, C Rosenblum et al. Chemically Acylated tRNAs are functional in zebrafish embryos. J Am Chem Soc 2023a; 145:2414–20.
https://doi.org/10.1021/jacs.2c11452
21 W Brown, J Wesalo, M Tsang et al. Engineering small molecule switches of protein function in zebrafish embryos. J Am Chem Soc 2023b; 145:2395–403.
https://doi.org/10.1021/jacs.2c11366
22 K Burnett, E Edsinger, DR. Albrecht Rapid and gentle hydrogel encapsulation of living organisms enables long-term microscopy over multiple hours. Commun Biol 2018; 1:73.
https://doi.org/10.1038/s42003-018-0079-6
23 Y Cao, JY Axup, JSY Ma et al. Multiformat T-cell-engaging bispecific antibodies targeting human breast cancers. Angew Chem Int Ed Engl 2015; 54:7022–7.
https://doi.org/10.1002/anie.201500799
24 Y Cao, DT Rodgers, J Du et al. Design of switchable chimeric antigen receptor T cells targeting breast cancer. Angew Chem Int Ed Engl 2016; 55:7520–4.
https://doi.org/10.1002/anie.201601902
25 YJ Cao, X Wang, Z Wang et al. Switchable CAR-T cells out-performed traditional antibody-redirected therapeutics targeting breast cancers. ACS Synth Biol 2021; 10:1176–83.
https://doi.org/10.1021/acssynbio.1c00007
26 H Chang, M Han, W Huang et al. Light-induced protein translocation by genetically encoded unnatural amino acid in Caenorhabditis elegans. Protein Cell 2013; 4:883–6.
https://doi.org/10.1007/s13238-013-3118-6
27 S-W Chang, W-C Liu, K-Y Liao et al. Phosphorylation of HPV-16 E2 at serine 243 enables binding to Brd4 and mitotic chromosomes. PLoS One 2014; 9:e110882.
https://doi.org/10.1371/journal.pone.0110882
28 A Chatterjee, J Guo, HS Lee et al. A genetically encoded fluorescent probe in mammalian cells. J Am Chem Soc 2013a; 135:12540–3.
https://doi.org/10.1021/ja4059553
29 A Chatterjee, H Xiao, M Bollong et al. Efficient viral delivery system for unnatural amino acid mutagenesis in mammalian cells. Proc Natl Acad Sci USA 2013b; 110:11803–8.
https://doi.org/10.1073/pnas.1309584110
30 Y Chemla, E Ozer, I Algov et al. Context effects of genetic code expansion by stop codon suppression. Curr Opin Chem Biol 2018; 46:146–55.
https://doi.org/10.1016/j.cbpa.2018.07.012
31 J Chen, Y-H. Tsai Applications of genetic code expansion in studying protein post-translational modification. J Mol Biol 2022; 434:167424.
https://doi.org/10.1016/j.jmb.2021.167424
32 S Chen, PG Schultz, A. Brock An improved system for the generation and analysis of mutant proteins containing unnatural amino acids in Saccharomyces cerevisiae. J Mol Biol 2007; 371:112–22.
https://doi.org/10.1016/j.jmb.2007.05.017
33 Y Chen, J Ma, W Lu et al. Heritable expansion of the genetic code in mouse and zebrafish. Cell Res 2017; 27:294–7.
https://doi.org/10.1038/cr.2016.145
34 Y Chen, A Loredo, A Gordon et al. A noncanonical amino acid-based relay system for site-specific protein labeling. Chem Commun (Cambridge, England) 2018; 54:7187–90.
https://doi.org/10.1039/C8CC03819H
35 Y Chen, K-L Wu, J Tang et al. Addition of isocyanide-containing amino acids to the genetic code for protein labeling and activation. ACS Chem Biol 2019; 14:2793–9.
https://doi.org/10.1021/acschembio.9b00678
36 L Chen, C Zhu, H Guo et al. Epitope-directed antibody selection by site-specific photocrosslinking. Sci Adv 2020; 6:eaaz7825.
https://doi.org/10.1126/sciadv.aaz7825
37 Y Chen, S Jin, M Zhang et al. Unleashing the potential of noncanonical amino acid biosynthesis to create cells with precision tyrosine sulfation. Nat Commun 2022a; 13:5434.
https://doi.org/10.1038/s41467-022-33111-4
38 C Chen, G Yu, Y Huang et al. Genetic-code-expanded cellbased therapy for treating diabetes in mice. Nat Chem Biol 2022b; 18:47–55.
https://doi.org/10.1038/s41589-021-00899-z
39 Y Chen, W-Q Liu, X Zheng et al. Cell-free biosynthesis of lysine-derived unnatural amino acids with chloro, alkene, and alkyne groups. ACS Synth Biol 2023; 12:1349–57.
https://doi.org/10.1021/acssynbio.3c00132
40 JW. Chin Modular approaches to expanding the functions of living matter. Nat Chem Biol 2006; 2:304–11.
https://doi.org/10.1038/nchembio789
41 JW Chin, AB Martin, DS King et al. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc Natl Acad Sci USA 2002; 99:11020–4.
https://doi.org/10.1073/pnas.172226299
42 JW Chin, TA Cropp, JC Anderson et al. An expanded eukaryotic genetic code. Science (New York, N.Y.) 2003; 301:964–7.
https://doi.org/10.1126/science.1084772
43 B-K Choi, P Bobrowicz, RC Davidson et al. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci USA 2003; 100:5022–7.
https://doi.org/10.1073/pnas.0931263100
44 C Chou, A. Deiters Light-activated gene editing with a photocaged zinc-finger nuclease. Angew Chem Int Ed Engl 2011; 50:6839–42.
https://doi.org/10.1002/anie.201101157
45 C Chou, DD Young, A. Deiters Photocaged t7 RNA polymerase for the light activation of transcription and gene function in pro- and eukaryotic cells. Chembiochem 2010; 11:972–7.
https://doi.org/10.1002/cbic.201000041
46 M Cigler, TG Müller, D Horn-Ghetko et al. Proximitytriggered covalent stabilization of low-affinity protein complexes in vitro and in vivo. Angew Chem Int Ed Engl 2017; 56:15737–41.
https://doi.org/10.1002/anie.201706927
47 I. Coin Application of non-canonical crosslinking amino acids to study protein-protein interactions in live cells. Curr Opin Chem Biol 2018; 46:156–63.
https://doi.org/10.1016/j.cbpa.2018.07.019
48 I Coin, MH Perrin, WW Vale et al. Photo-cross-linkers incorporated into G-protein-coupled receptors in mammalian cells: a ligand comparison. Angew Chem Int Ed Engl 2011; 50:8077–81.
https://doi.org/10.1002/anie.201102646
49 T Courtney, A. Deiters Recent advances in the optical control of protein function through genetic code expansion. Curr Opin Chem Biol 2018; 46:99–107.
https://doi.org/10.1016/j.cbpa.2018.07.011
50 TM Courtney, A. Deiters Optical control of protein phosphatase function. Nat Commun 2019; 10:4384.
https://doi.org/10.1038/s41467-019-12260-z
51 A Crnković, O Vargas-Rodriguez, D. Söll Plasticity and constraints of tRNA aminoacylation define directed evolution of aminoacyl-tRNA synthetases. Int J Mol Sci 2019; 20:2294.
https://doi.org/10.3390/ijms20092294
52 N Darby, TE. Creighton Disulfide bonds in protein folding and stability. Methods Mol Biol (Clifton, N.J.) 1995; 40:219–52.
https://doi.org/10.1385/0-89603-301-5:219
53 L Davis, I Radman, A Goutou et al. Precise optical control of gene expression in C. elegans using improved genetic code expansion and Cre recombinase. ELife 2021; 10:e67075.
https://doi.org/10.7554/eLife.67075
54 DC Dieterich, JJL Hodas, G Gouzer et al. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci 2010; 13:897–905.
https://doi.org/10.1038/nn.2580
55 A Dirksen, TM Hackeng, PE. Dawson Nucleophilic catalysis of oxime ligation. Angew Chem Int Ed Engl 2006; 45:7581–4.
https://doi.org/10.1002/anie.200602877
56 WF Edwards, DD Young, A. Deiters Light-activated Cre recombinase as a tool for the spatial and temporal control of gene function in mammalian cells. ACS Chem Biol 2009; 4:441–5.
https://doi.org/10.1021/cb900041s
57 N. Elia Using unnatural amino acids to selectively label proteins for cellular imaging: a cell biologist viewpoint. FEBS J 2021; 288:1107–17.
https://doi.org/10.1111/febs.15477
58 TS Elliott, FM Townsley, A Bianco et al. Proteome labeling and protein identification in specific tissues and at specific developmental stages in an animal. Nat Biotechnol 2014; 32:465–72.
https://doi.org/10.1038/nbt.2860
59 SJ Elsässer, RJ Ernst, OS Walker et al. Genetic code expansion in stable cell lines enables encoded chromatin modification. Nat Methods 2016; 13:158–64.
https://doi.org/10.1038/nmeth.3701
60 H Engelke, C Chou, R Uprety et al. Control of protein function through optochemical translocation. ACS Synth Biol 2014; 3:731–6.
https://doi.org/10.1021/sb400192a
61 RJ Ernst, TP Krogager, ES Maywood et al. Genetic code expansion in the mouse brain. Nat Chem Biol 2016; 12:776–8.
https://doi.org/10.1038/nchembio.2160
62 KM Esvelt, JC Carlson, DR. Liu A system for the continuous directed evolution of biomolecules. Nature 2011; 472:499–503.
https://doi.org/10.1038/nature09929
63 Y Fang, JC Judkins, SJ Boyd et al. Studies on the stability and stabilization of trans-Cyclooctenes through radical inhibition and silver (I) metal complexation. Tetrahedron 2019; 75:4307–17.
https://doi.org/10.1016/j.tet.2019.05.038
64 TE Fickel, C. Gilvarg Transport of impermeant substances in E. coli by way of oligopeptide permease. Nat New Biol 1973; 241:161–3.
https://doi.org/10.1038/newbio241161a0
65 JA Fok, C. Mayer Genetic-code-expansion strategies for vaccine development. Chembiochem 2020; 21:3291–300.
https://doi.org/10.1002/cbic.202000343
66 H Foster, L Popplewell, G. Dickson Genetic therapeutic approaches for Duchenne muscular dystrophy. Hum Gene Ther 2012; 23:676–87.
https://doi.org/10.1089/hum.2012.099
67 M Fottner, A-D Brunner, V Bittl et al. Site-specific ubiquitylation and SUMOylation using genetic-code expansion and sortase. Nat Chem Biol 2019; 15:276–84.
https://doi.org/10.1038/s41589-019-0227-4
68 M Friedrich, A. Aigner Therapeutic siRNA: state-of-the-art and future perspectives. BioDrugs 2022; 36:549–71.
https://doi.org/10.1007/s40259-022-00549-3
69 C Frøkjaer-Jensen, MW Davis, CE Hopkins et al. Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 2008; 40:1375–83.
https://doi.org/10.1038/ng.248
70 JL Furman, M Kang, S Choi et al. A genetically encoded aza- Michael acceptor for covalent cross-linking of protein -receptor complexes. J Am Chem Soc 2014; 136:8411–7.
https://doi.org/10.1021/ja502851h
71 D Garza, MM Medhora, DL. Hartl Drosophila nonsense suppressors: functional analysis in Saccharomyces cerevisiae, Drosophila tissue culture cells and Drosophila melanogaster. Genetics 1990; 126:625–37.
https://doi.org/10.1093/genetics/126.3.625
72 A Gautier, DP Nguyen, H Lusic et al. Genetically encoded photocontrol of protein localization in mammalian cells. J Am Chem Soc 2010; 132:4086–8.
https://doi.org/10.1021/ja910688s
73 A Gautier, A Deiters, JW. Chin Light-activated kinases enable temporal dissection of signaling networks in living cells. J Am Chem Soc 2011; 133:2124–7.
https://doi.org/10.1021/ja1109979
74 M Gehringer, SA. Laufer Emerging and re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology. J Med Chem 2019; 62:5673–724.
https://doi.org/10.1021/acs.jmedchem.8b01153
75 S Greiss, JW. Chin Expanding the genetic code of an animal. J Am Chem Soc 2011; 133:14196–9.
https://doi.org/10.1021/ja2054034
76 J Grünewald, M-L Tsao, R Perera et al. Immunochemical termination of self-tolerance. Proc Natl Acad Sci USA 2008; 105:11276–80.
https://doi.org/10.1073/pnas.0804157105
77 J Grünewald, GS Hunt, L Dong et al. Mechanistic studies of the immunochemical termination of self-tolerance with unnatural amino acids. Proc Natl Acad Sci USA 2009; 106:4337–42.
https://doi.org/10.1073/pnas.0900507106
78 K Gupta, GE Toombes, KJ. Swartz Exploring structural dynamics of a membrane protein by combining bioorthogonal chemistry and cysteine mutagenesis. ELife 2019; 8:e50776.
https://doi.org/10.7554/eLife.50776
79 SM Hacker, KM Backus, MR Lazear et al. Global profiling of lysine reactivity and ligandability in the human proteome. Nat Chem 2017; 9:1181–90.
https://doi.org/10.1038/nchem.2826
80 S Han, A Yang, S Lee et al. Expanding the genetic code of Mus musculus. Nat Commun 2017; 8:14568.
https://doi.org/10.1038/ncomms14568
81 SM Hancock, R Uprety, A Deiters et al. Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair. J Am Chem Soc 2010; 132:14819–24.
https://doi.org/10.1021/ja104609m
82 ED Hankore, L Zhang, Y Chen et al. Genetic incorporation of noncanonical amino acids using two mutually orthogonal quadruplet codons. ACS Synth Biol 2019; 8:1168–74.
https://doi.org/10.1021/acssynbio.9b00051
83 R Hao, K Ma, Y Ru et al. Amber codon is genetically unstable in generation of premature termination codon (PTC)-harbouring Foot-and-mouth disease virus (FMDV) via genetic code expansion. RNA Biol 2021; 18:2330–41.
https://doi.org/10.1080/15476286.2021.1907055
84 X He, Y Chen, DG Beltran et al. Functional genetic encoding of sulfotyrosine in mammalian cells. Nat Commun 2020; 11:4820.
https://doi.org/10.1038/s41467-020-18629-9
85 J He, Z Fan, Y Tian et al. Spatiotemporal activation of protein O-GlcNAcylation in living cells. J Am Chem Soc 2022; 144:4289–93.
https://doi.org/10.1021/jacs.1c11041
86 TG Heckler, Y Zama, T Naka et al. Dipeptide formation with misacylated tRNAPhes. J Biol Chem 1983; 258:4492–5.
https://doi.org/10.1016/S0021-9258(18)32650-4
87 J Hemphill, C Chou, JW Chin et al. Genetically encoded light-activated transcription for spatiotemporal control of gene expression and gene silencing in mammalian cells. J Am Chem Soc 2013; 135:13433–9.
https://doi.org/10.1021/ja4051026
88 J Hemphill, EK Borchardt, K Brown et al. Optical control of CRISPR/Cas9 gene editing. J Am Chem Soc 2015; 137:5642–5.
https://doi.org/10.1021/ja512664v
89 A Herner, J Marjanovic, TM Lewandowski et al. 2-Aryl-5-carboxytetrazole as a new photoaffinity label for drug target identification. J Am Chem Soc 2016; 138:14609–15.
https://doi.org/10.1021/jacs.6b06645
90 N Hino, M Oyama, A Sato et al. Genetic incorporation of a photo-crosslinkable amino acid reveals novel protein complexes with GRB2 in mammalian cells. J Mol Biol 2011; 406:343–53.
https://doi.org/10.1016/j.jmb.2010.12.022
91 DM Hoang, PT Pham, TQ Bach et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022; 7:272.
https://doi.org/10.1038/s41392-022-01134-4
92 J. Hodgkin Novel nematode amber suppressors. Genetics 1985; 111:287–310.
https://doi.org/10.1093/genetics/111.2.287
93 C Hoppmann, L. Wang Genetically encoding photoswitchable click amino acids for general optical control of conformation and function of proteins. Methods Enzymol 2019; 624:249–64.
https://doi.org/10.1016/bs.mie.2019.04.016
94 C Hoppmann, VK Lacey, GV Louie et al. Genetically encoding photoswitchable click amino acids in Escherichia coli and mammalian cells. Angew Chem Int Ed Engl 2014; 53:3932–6.
https://doi.org/10.1002/anie.201400001
95 C Hoppmann, I Maslennikov, S Choe et al. In Situ formation of an Azo Bridge on proteins controllable by visible light. J Am Chem Soc 2015; 137:11218–21.
https://doi.org/10.1021/jacs.5b06234
96 BM Hutchins, SA Kazane, K Staflin et al. Site-specific coupling and sterically controlled formation of multimeric antibody fab fragments with unnatural amino acids. J Mol Biol 2011a; 406:595–603.
https://doi.org/10.1016/j.jmb.2011.01.011
97 BM Hutchins, SA Kazane, K Staflin et al. Selective formation of covalent protein heterodimers with an unnatural amino acid. Chem Biol 2011b; 18:299–303.
https://doi.org/10.1016/j.chembiol.2011.01.006
98 JS Italia, PS Addy, CJJ Wrobel et al. An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes. Nat Chem Biol 2017a; 13:446–50.
https://doi.org/10.1038/nchembio.2312
99 JS Italia, Y Zheng, RE Kelemen et al. Expanding the genetic code of mammalian cells. Biochem Soc Trans 2017b; 45:555–62.
https://doi.org/10.1042/BST20160336
100 JS Italia, JC Peeler, CM Hillenbrand et al. Genetically encoded protein sulfation in mammalian cells. Nat Chem Biol 2020; 16:379–82.
https://doi.org/10.1038/s41589-020-0493-1
101 LH. Jones Recent advances in the molecular design of synthetic vaccines. Nat Chem 2015; 7:952–60.
https://doi.org/10.1038/nchem.2396
102 J-Y Kang, D Kawaguchi, I Coin et al. In vivo expression of a light-activatable potassium channel using unnatural amino acids. Neuron 2013; 80:358–70.
https://doi.org/10.1016/j.neuron.2013.08.016
103 J Karijolich, Y-T Yu. Therapeutic suppression of premature termination codons: mechanisms and clinical considerations (review). Int J Mol Med 2014; 34:355–62.
https://doi.org/10.3892/ijmm.2014.1809
104 SH Kim, JH Jeong, SH Lee et al. LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI. Bioconjug Chem 2008; 19:2156–62.
https://doi.org/10.1021/bc800249n
105 CH Kim, JY Axup, A Dubrovska et al. Synthesis of bispecific antibodies using genetically encoded unnatural amino acids. J Am Chem Soc 2012; 134:9918–21.
https://doi.org/10.1021/ja303904e
106 H Kim, M Kim, S-K Im et al. Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Lab Anim Res 2018; 34:147–59.
https://doi.org/10.5625/lar.2018.34.4.147
107 J Kimble, D. Hirsh The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 1979; 70:396–417.
https://doi.org/10.1016/0012-1606(79)90035-6
108 HE Kinser, Z. Pincus High-throughput screening in the C. elegans nervous system. Mol Cell Neurosci 2017; 80:192–7.
https://doi.org/10.1016/j.mcn.2016.06.001
109 T Kitada, B DiAndreth, B Teague et al. Programming gene and engineered-cell therapies with synthetic biology. Science (New York, N.Y.) 2018; 359:eaad1067.
https://doi.org/10.1126/science.aad1067
110 P Kleiner, W Heydenreuter, M Stahl et al. A whole proteome inventory of background photocrosslinker binding. Angew Chem Int Ed Engl 2017; 56:1396–401.
https://doi.org/10.1002/anie.201605993
111 V Klippenstein, C Hoppmann, SP YePaoletti, et al. Optocontrol of glutamate receptor activity by single side-chain photoisomerization. ELife 2017; 6:e25808.
https://doi.org/10.7554/eLife.25808
112 W Ko, R Kumar, S Kim et al. Construction of bacterial cells with an active transport system for unnatural amino acids. ACS Synth Biol 2019; 8:1195–203.
https://doi.org/10.1021/acssynbio.9b00076
113 EN Kozlova, C. Berens Guiding differentiation of stem cells in vivo by tetracycline-controlled expression of key transcription factors. Cell Transplant 2012; 21:2537–54.
https://doi.org/10.3727/096368911X637407
114 K Krawczyk, S Xue, P Buchmann et al. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science (New York, N.Y.) 2020; 368:993–1001.
https://doi.org/10.1126/science.aau7187
115 P Kumar, H-S Ban, S-S Kim et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008; 134:577–86.
https://doi.org/10.1016/j.cell.2008.06.034
116 VK Lacey, GV Louie, JP Noel et al. Expanding the library and substrate diversity of the pyrrolysyl-tRNA synthetase to incorporate unnatural amino acids containing conjugated rings. Chembiochem 2013; 14:2100–5.
https://doi.org/10.1002/cbic.201300400
117 K Lang, L Davis, S Wallace et al. Genetic encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels–Alder reactions. J Am Chem Soc 2012a; 134:10317–20.
https://doi.org/10.1021/ja302832g
118 K Lang, L Davis, J Torres-Kolbus et al. Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat Chem 2012b; 4:298–304.
https://doi.org/10.1038/nchem.1250
119 FA Laski, S Ganguly, PA Sharp et al. Construction, stable transformation, and function of an amber suppressor tRNA gene in Drosophila melanogaster. Proc Natl Acad Sci USA 1989; 86:6696–8.
https://doi.org/10.1073/pnas.86.17.6696
120 L Ledsgaard, A Ljungars, C Rimbault et al. Advances in antibody phage display technology. Drug Discov Today 2022; 27:2151–69.
https://doi.org/10.1016/j.drudis.2022.05.002
121 HS Lee, J Guo, EA Lemke et al. Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae. J Am Chem Soc 2009; 131:12921–3.
https://doi.org/10.1021/ja904896s
122 J Lee, K-S Yun, CS Choi et al. T cell-specific siRNA delivery using antibody-conjugated chitosan nanoparticles. Bioconjug Chem 2012; 23:1174–80.
https://doi.org/10.1021/bc2006219
123 JM Lee, HM Hammarén, MM Savitski et al. Control of protein stability by post-translational modifications. Nat Commun 2023; 14:201.
https://doi.org/10.1038/s41467-023-35795-8
124 EA Lemke, D Summerer, BH Geierstanger et al. Control of protein phosphorylation with a genetically encoded photocaged amino acid. Nat Chem Biol 2007; 3:769–72.
https://doi.org/10.1038/nchembio.2007.44
125 S Leong, HPJ Lam, Z Kirkham et al. Antibody drug conjugates for the treatment of multiple myeloma. Am J Hematol 2023; 98:S22–34.
https://doi.org/10.1002/ajh.26750
126 S Lepthien, MG Hoesl, L Merkel et al. Azatryptophans endow proteins with intrinsic blue fluorescence. Proc Natl Acad Sci USA 2008; 105:16095–100.
https://doi.org/10.1073/pnas.0802804105
127 GD Lewis Phillips, G Li, DL Dugger et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibodycytotoxic drug conjugate. Cancer Res 2008; 68:9280–90.
https://doi.org/10.1158/0008-5472.CAN-08-1776
128 F Li, H Zhang, Y Sun et al. Expanding the genetic code for photoclick chemistry in E. coli, mammalian cells, and A. thaliana. Angew Chem Int Ed Engl 2013; 52:9700–4.
https://doi.org/10.1002/anie.201303477
129 J Li, S Jia, PR. Chen Diels–Alder reaction-triggered bioorthogonal protein decaging in living cells. Nat Chem Biol 2014a; 10:1003–5.
https://doi.org/10.1038/nchembio.1656
130 J Li, J Yu, J Zhao et al. Palladium-triggered deprotection chemistry for protein activation in living cells. Nat Chem 2014b; 6:352–61.
https://doi.org/10.1038/nchem.1887
131 F Li, H Li, Q Zhai et al. A new vaccine targeting RANKL, prepared by incorporation of an unnatural amino acid into RANKL, prevents OVX-induced bone loss in mice. Biochem Biophys Res Commun 2018; 499:648–54.
https://doi.org/10.1016/j.bbrc.2018.03.205
132 Q Li, Q Chen, PC Klauser et al. Developing covalent protein drugs via proximity-enabled reactive therapeutics. Cell 2020; 182:85–97.e16.
https://doi.org/10.1016/j.cell.2020.05.028
133 A Liaunardy-Jopeace, BL Murton, M Mahesh et al. Encoding optical control in LCK kinase to quantitatively investigate its activity in live cells. Nat Struct Mol Biol 2017; 24:1155–63.
https://doi.org/10.1038/nsmb.3492
134 RKV Lim, S Yu, B Cheng et al. Targeted delivery of LXR agonist using a site-specific antibody-drug conjugate. Bioconjug Chem 2015; 26:2216–22.
https://doi.org/10.1021/acs.bioconjchem.5b00203
135 CC Liu, PG. Schultz Adding new chemistries to the genetic code. Annu Rev Biochem 2010; 79:413–44.
https://doi.org/10.1146/annurev.biochem.052308.105824
136 DR Liu, TJ Magliery, M Pastrnak et al. Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci USA 1997; 94:10092–7.
https://doi.org/10.1073/pnas.94.19.10092
137 J Liu, J Hemphill, S Samanta et al. Genetic code expansion in zebrafish embryos and its application to optical control of cell signaling. J Am Chem Soc 2017; 139:9100–3.
https://doi.org/10.1021/jacs.7b02145
138 J Liu, S Li, NA Aslam et al. Genetically encoding photocaged quinone methide to multitarget protein residues covalently in vivo. J Am Chem Soc 2019; 141:9458–62.
https://doi.org/10.1021/jacs.9b01738
139 J Liu, L Cao, PC Klauser et al. A genetically encoded fluorosulfonyloxybenzoyl-L-lysine for expansive covalent bonding of proteins via SuFEx chemistry. J Am Chem Soc 2021; 143:10341–51.
https://doi.org/10.1021/jacs.1c04259
140 J Liu, B Yang, L. Wang Residue selective crosslinking of proteins through photoactivatable or proximity-enabled reactivity. Curr Opin Chem Biol 2023; 74:102285.
https://doi.org/10.1016/j.cbpa.2023.102285
141 C Long, JR McAnally, JM Shelton et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science (New York, N.Y.) 2014; 345:1184–8.
https://doi.org/10.1126/science.1254445
142 H Lu, D Wang, S Kazane et al. Site-specific antibody-polymer conjugates for siRNA delivery. J Am Chem Soc 2013; 135:13885–91.
https://doi.org/10.1021/ja4059525
143 J Luo, R Uprety, Y Naro et al. Genetically encoded optochemical probes for simultaneous fluorescence reporting and light activation of protein function with two-photon excitation. J Am Chem Soc 2014; 136:15551–8.
https://doi.org/10.1021/ja5055862
144 J Luo, E Arbely, J Zhang et al. Genetically encoded optical activation of DNA recombination in human cells. Chem Commun (Cambridge, England) 2016a; 52:8529–32.
https://doi.org/10.1039/C6CC03934K
145 J Luo, Q Liu, K Morihiro et al. Small-molecule control of protein function through Staudinger reduction. Nat Chem 2016b; 8:1027–34.
https://doi.org/10.1038/nchem.2573
146 X Luo, G Fu, RE Wang et al. Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria. Nat Chem Biol 2017a; 13:845–9.
https://doi.org/10.1038/nchembio.2405
147 J Luo, J Torres-Kolbus, J Liu et al. Genetic encoding of photocaged tyrosines with improved light-activation properties for the optical control of protease function. Chembiochem 2017b; 18:1442–7.
https://doi.org/10.1002/cbic.201700147
148 JSY Ma, JY Kim, SA Kazane et al. Versatile strategy for controlling the specificity and activity of engineered T cells. Proc Natl Acad Sci USA 2016; 113:E450–8.
https://doi.org/10.1073/pnas.1524193113
149 KM Maalej, M Merhi, VP Inchakalody et al. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol Cancer 2023; 22:20.
https://doi.org/10.1186/s12943-023-01723-z
150 AE Mangubat-Medina, ZT. Ball Triggering biological processes: methods and applications of photocaged peptides and proteins. Chem Soc Rev 2021; 50:10403–21.
https://doi.org/10.1039/D0CS01434F
151 JM Mattheisen, JS Wollowitz, T Huber et al. Genetic code expansion to enable site-specific bioorthogonal labeling of functional G protein-coupled receptors in live cells. Protein Sci 2023; 32:e4550.
https://doi.org/10.1002/pro.4550
152 C. Mayer Selection, addiction and catalysis: emerging trends for the incorporation of noncanonical amino acids into peptides and proteins in vivo. Chembiochem 2019; 20:1357–64.
https://doi.org/10.1002/cbic.201800733
153 RA Mehl, JC Anderson, SW Santoro et al. Generation of a bacterium with a 21 amino acid genetic code. J Am Chem Soc 2003; 125:935–9.
https://doi.org/10.1021/ja0284153
154 CE Melançon, PG. Schultz One plasmid selection system for the rapid evolution of aminoacyl-tRNA synthetases. Bioorg Med Chem Lett 2009; 19:3845–7.
https://doi.org/10.1016/j.bmcl.2009.04.007
155 EM Mills, VL Barlow, AT Jones et al. Development of mammalian cell logic gates controlled by unnatural amino acids. Cell Rep Methods 2021; 1:100073.
https://doi.org/10.1016/j.crmeth.2021.100073
156 P Mitchell, D. Tollervey An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3′→5′ degradation. Mol Cell 2003; 11:1405–13.
https://doi.org/10.1016/S1097-2765(03)00190-4
157 T Mukai, T Kobayashi, N Hino et al. Adding L-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases. Biochem Biophys Res Commun 2008; 371:818–22.
https://doi.org/10.1016/j.bbrc.2008.04.164
158 T Mukai, MJ Lajoie, M Englert et al. Rewriting the genetic code. Annu Rev Microbiol 2017; 71:557–77.
https://doi.org/10.1146/annurev-micro-090816-093247
159 N Muranaka, T Hohsaka, M. Sisido Photoswitching of peroxidase activity by position-specific incorporation of a photoisomerizable non-natural amino acid into horseradish peroxidase. FEBS Lett 2002; 510:10–2.
https://doi.org/10.1016/S0014-5793(01)03211-2
160 T Narancic, SA Almahboub, KE. O’Connor Unnatural amino acids: production and biotechnological potential. World J Microbiol Biotechnol 2019; 35:67.
https://doi.org/10.1007/s11274-019-2642-9
161 H Neumann, K Wang, L Davis et al. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 2010; 464:441–4.
https://doi.org/10.1038/nature08817
162 DP Nguyen, M Mahesh, SJ Elsässer et al. Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J Am Chem Soc 2014; 136:2240–3.
https://doi.org/10.1021/ja412191m
163 T-A Nguyen, M Cigler, K. Lang Expanding the genetic code to study protein–protein interactions. Angew Chem Int Ed Engl 2018; 57:14350–61.
https://doi.org/10.1002/anie.201805869
164 I Nikić, EA. Lemke Genetic code expansion enabled site-specific dual-color protein labeling: superresolution microscopy and beyond. Curr Opin Chem Biol 2015; 28:164–73.
https://doi.org/10.1016/j.cbpa.2015.07.021
165 I Nikić, G Estrada Girona, JH Kang et al. Debugging eukaryotic genetic code expansion for site-specific click-PAINT super-resolution microscopy. Angew Chem Int Ed Engl 2016; 55:16172–6.
https://doi.org/10.1002/anie.201608284
166 W Niu, PG Schultz, J. Guo An expanded genetic code in mammalian cells with a functional quadruplet codon. ACS Chem Biol 2013; 8:1640–5.
https://doi.org/10.1021/cb4001662
167 AR Nödling, LA Spear, TL Williams et al. Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells. Essays Biochem 2019; 63:237–66.
https://doi.org/10.1042/EBC20180042
168 CJ Noren, SJ Anthony-Cahill, MC Griffith et al. A general method for site-specific incorporation of unnatural amino acids into proteins. Science (New York, N.Y.) 1989; 244:182–8.
https://doi.org/10.1126/science.2649980
169 AO Osgood, Y Zheng, SJS Roy et al. An efficient opal-suppressor tryptophanyl pair creates new routes for simultaneously incorporating up to three distinct noncanonical amino acids into proteins in mammalian cells. Angew Chem Int Ed Engl 2023; 62:e202219269.
https://doi.org/10.1002/anie.202219269
170 S Palzer, Y Bantel, F Kazenwadel et al. An expanded genetic code in Candida albicans to study protein–protein interactions in vivo. Eukaryot Cell 2013; 12:816–27.
https://doi.org/10.1128/EC.00075-13
171 S-H Park, W Ko, HS Lee et al. Analysis of protein–protein interaction in a single live cell by using a FRET system based on genetic code expansion technology. J Am Chem Soc 2019; 141:4273–81.
https://doi.org/10.1021/jacs.8b10098
172 S-H Park, W Ko, S-H Park et al. Evaluation of the interaction between Bax and Hsp70 in cells by using a FRET system consisting of a fluorescent amino acid and YFP as a FRET pair. Chembiochem 2020; 21:59–63.
https://doi.org/10.1002/cbic.201900293
173 AR Parrish, X She, Z Xiang et al. Expanding the genetic code of Caenorhabditis elegans using bacterial aminoacyl-tRNA synthetase/tRNA pairs. ACS Chem Biol 2012; 7:1292–302.
https://doi.org/10.1021/cb200542j
174 JC Peeler, JA Falco, RE Kelemen et al. Generation of recombinant mammalian selenoproteins through genetic code expansion with photocaged Selenocysteine. ACS Chem Biol 2020; 15:1535–40.
https://doi.org/10.1021/acschembio.0c00147
175 T Peng, HC. Hang Site-specific bioorthogonal labeling for fluorescence imaging of intracellular proteins in living cells. J Am Chem Soc 2016; 138:14423–33.
https://doi.org/10.1021/jacs.6b08733
176 L. Politano Read-through approach for stop mutations in Duchenne muscular dystrophy an update. Acta Myol 2021; 40:43–50.
177 MI Prasanth, S Gayathri, JP Bhaskar et al. Understanding the role of p38 and JNK mediated MAPK pathway in response to UV-A induced photoaging in Caenorhabditis elegans. J Photochem Photobiol B 2020; 205:111844.
https://doi.org/10.1016/j.jphotobiol.2020.111844
178 C. Rader Bispecific antibodies in cancer immunotherapy. Curr Opin Biotechnol 2020; 65:9–16.
https://doi.org/10.1016/j.copbio.2019.11.020
179 W Ren, A Ji, H-w Ai. Light activation of protein splicing with a photocaged fast intein. J Am Chem Soc 2015a; 137:2155–8.
https://doi.org/10.1021/ja508597d
180 W Ren, A Ji, MX Wang et al. Expanding the genetic code for a dinitrophenyl hapten. Chembiochem 2015b; 16:2007–10.
https://doi.org/10.1002/cbic.201500204
181 L Rong, RM Lim, X Yin et al. Site-specific dinitrophenylation of single-chain antibody fragments for redirecting a universal CAR-T cell against cancer antigens. J Mol Biol 2022; 434:167513.
https://doi.org/10.1016/j.jmb.2022.167513
182 G Roy, J Reier, A Garcia et al. Development of a high yielding expression platform for the introduction of non-natural amino acids in protein sequences. MAbs 2020; 12:1684749.
https://doi.org/10.1080/19420862.2019.1684749
183 A Ryan, CP Janosko, TM Courtney et al. Engineering SHP2 phosphatase for optical control. Biochemistry 2022; 61:2687–97.
https://doi.org/10.1021/acs.biochem.2c00387
184 J Sanders, SA Hoffmann, AP Green et al. New opportunities for genetic code expansion in synthetic yeast. Curr Opin Biotechnol 2022; 75:102691.
https://doi.org/10.1016/j.copbio.2022.102691
185 SW Santoro, PG. Schultz Directed evolution of the substrate specificities of a site-specific recombinase and an aminoacyl-tRNA synthetase using fluorescence-activated cell sorting (FACS). Methods Mol Biol (Clifton, N.J.) 2003; 230:291–312.
https://doi.org/10.1385/1-59259-396-8:291
186 SW Santoro, L Wang, B Herberich et al. An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nat Biotechnol 2002; 20:1044–8.
https://doi.org/10.1038/nbt742
187 D Schumacher, CPR Hackenberger, H Leonhardt et al. Current status: site-specific antibody drug conjugates. J Clin Immunol 2016; 36:100–7.
https://doi.org/10.1007/s10875-016-0265-6
188 I Segal, D Nachmias, A Konig et al. A straightforward approach for bioorthogonal labeling of proteins and organelles in live mammalian cells, using a short peptide tag. BMC Biol 2020; 18:5.
https://doi.org/10.1186/s12915-019-0708-7
189 R Serfling, L Seidel, A Bock et al. Quantitative single-residue bioorthogonal labeling of g protein-coupled receptors in live cells. ACS Chem Biol 2019; 14:1141–9.
https://doi.org/10.1021/acschembio.8b01115
190 MA Shandell, JR Quejada, M Yazawa et al. Detection of Nav15 conformational change in mammalian cells using the noncanonical amino acid ANAP. Biophys J 2019; 117:1352–63.
https://doi.org/10.1016/j.bpj.2019.08.028
191 N Shao, NS Singh, SE Slade et al. Site specific genetic incorporation of Azidophenylalanine in Schizosaccharomyces pombe. Sci Rep 2015; 5:17196.
https://doi.org/10.1038/srep17196
192 B Shen, Z Xiang, B Miller et al. Genetically encoding unnatural amino acids in neural stem cells and optically reporting voltage-sensitive domain changes in differentiated neurons. Stem Cells (Dayton, Ohio) 2011; 29:1231–40.
https://doi.org/10.1002/stem.679
193 N Shi, Q Yang, H Zhang et al. Restoration of dystrophin expression in mice by suppressing a nonsense mutation through the incorporation of unnatural amino acids. Nat Biomed Eng 2022; 6:195–206.
https://doi.org/10.1038/s41551-021-00774-1
194 L Si, H Xu, X Zhou et al. Generation of influenza A viruses as live but replication-incompetent virus vaccines. Science (New York, N.Y.) 2016; 354:1170–3.
https://doi.org/10.1126/science.aah5869
195 V Sibaud, M Beylot-Barry, C Protin et al. Dermatological toxicities of Bruton’s tyrosine kinase inhibitors. Am J Clin Dermatol 2020; 21:799–812.
https://doi.org/10.1007/s40257-020-00535-x
196 P Siman, A. Brik Chemical and semisynthesis of posttranslationally modified proteins. Org Biomol Chem 2012; 10:5684–97.
https://doi.org/10.1039/c2ob25149c
197 J Singh, RC Petter, TA Baillie et al. The resurgence of covalent drugs. Nat Rev Drug Discov 2011; 10:307–17.
https://doi.org/10.1038/nrd3410
198 EM Sletten, CR. Bertozzi From mechanism to mouse: a tale of two bioorthogonal reactions. Acc Chem Res 2011; 44:666–76.
https://doi.org/10.1021/ar200148z
199 S Smolskaya, YA. Andreev Site-specific incorporation of unnatural amino acids into Escherichia coli recombinant protein: methodology development and recent achievement. Biomolecules 2019; 9:255.
https://doi.org/10.3390/biom9070255
200 E Song, P Zhu, S-K Lee et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005; 23:709–17.
https://doi.org/10.1038/nbt1101
201 G Stokman, Y Qin, Z Rácz et al. Application of siRNA in targeting protein expression in kidney disease. Adv Drug Deliv Rev 2010; 62:1378–89.
https://doi.org/10.1016/j.addr.2010.07.005
202 JE Sulston, HR. Horvitz Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 1977; 56:110–56.
https://doi.org/10.1016/0012-1606(77)90158-0
203 J Syed, S Palani, ST Clarke et al. Expanding the zebrafish genetic code through site-specific introduction of azido-lysine, bicyclononyne-lysine, and diazirine-lysine. Int J Mol Sci 2019; 20:2577.
https://doi.org/10.3390/ijms20102577
204 JK Takimoto, KL Adams, Z Xiang et al. Improving orthogonal tRNA-synthetase recognition for efficient unnatural amino acid incorporation and application in mammalian cells. Mol Biosyst 2009; 5:931–4.
https://doi.org/10.1039/b904228h
205 JK Takimoto, Z Xiang, J-Y Kang et al. Esterification of an unnatural amino acid structurally deviating from canonical amino acids promotes its uptake and incorporation into proteins in mammalian cells. Chembiochem 2010; 11:2268–72.
https://doi.org/10.1002/cbic.201000436
206 Y Tanaka, MR Bond, JJ. Kohler Photocrosslinkers illuminate interactions in living cells. Mol Biosyst 2008; 4:473–80.
https://doi.org/10.1039/b803218a
207 JM Tharp, A Ehnbom, WR. Liu tRNAPyl: structure, function, and applications. RNA Biol 2018; 15:441–52.
https://doi.org/10.1080/15476286.2017.1356561
208 AP Teixeira, M. Fussenegger Engineering mammalian cells for disease diagnosis and treatment. Curr Opin Biotechnol 2019; 55:87–94.
https://doi.org/10.1016/j.copbio.2018.08.008
209 F Tian, Y Lu, A Manibusan et al. A general approach to site-specific antibody drug conjugates. Proc Natl Acad Sci USA 2014; 111:1766–71.
https://doi.org/10.1073/pnas.1321237111
210 Y Tian, MP Jacinto, Y Zeng et al. Genetically encoded 2-Aryl-5-carboxytetrazoles for site-selective protein photocross-linking. J Am Chem Soc 2017; 139:6078–81.
https://doi.org/10.1021/jacs.7b02615
211 X Tian, W-Q Liu, H Xu et al. Cell-free expression of NO synthase and P450 enzyme for the biosynthesis of an unnatural amino acid L-4-nitrotryptophan. Synth Syst Biotechnol 2022; 7:775–83.
https://doi.org/10.1016/j.synbio.2022.03.006
212 N Tir, L Heistinger, C Grünwald-Gruber et al. From strain engineering to process development: monoclonal antibody production with an unnatural amino acid in Pichia pastoris. Microb Cell Fact 2022; 21:157.
https://doi.org/10.1186/s12934-022-01882-6
213 MM Toteva, JP. Richard The generation and reactions of quinone methides. Adv Phys Org Chem 2011; 45:39–91.
https://doi.org/10.1016/B978-0-12-386047-7.00002-3
214 Y-H Tsai, S Essig, JR James et al. Selective, rapid and optically switchable regulation of protein function in live mammalian cells. Nat Chem 2015; 7:554–61.
https://doi.org/10.1038/nchem.2253
215 R Uprety, J Luo, J Liu et al. Genetic encoding of caged cysteine and caged homocysteine in bacterial and mammalian cells. Chembiochem 2014; 15:1793–9.
https://doi.org/10.1002/cbic.201400073
216 OS Walker, SJ Elsässer, M Mahesh et al. Photoactivation of mutant isocitrate dehydrogenase 2 reveals rapid cancer-associated metabolic and epigenetic changes. J Am Chem Soc 2016; 138:718–21.
https://doi.org/10.1021/jacs.5b07627
217 SJ Walsh, JD Bargh, FM Dannheim et al. Site-selective modification strategies in antibody-drug conjugates. Chem Soc Rev 2021; 50:1305–53.
https://doi.org/10.1039/D0CS00310G
218 W Wan, JM Tharp, WR. Liu Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim Biophys Acta 2014; 1844:1059–70.
https://doi.org/10.1016/j.bbapap.2014.03.002
219 L. Wang Engineering the genetic code in cells and animals: biological considerations and impacts. Acc Chem Res 2017; 50:2767–75.
https://doi.org/10.1021/acs.accounts.7b00376
220 L Wang, A. Audhya In vivo imaging of C. elegans endocytosis. Methods (San Diego, Calif.) 2014; 68:518–28.
https://doi.org/10.1016/j.ymeth.2014.03.028
221 Q Wang, L. Wang New methods enabling efficient incorporation of unnatural amino acids in yeast. J Am Chem Soc 2008; 130:6066–7.
https://doi.org/10.1021/ja800894n
222 Q Wang, L. Wang Genetic incorporation of unnatural amino acids into proteins in yeast. Methods Mol Biol (Clifton, N.J.) 2012; 794:199–213.
https://doi.org/10.1007/978-1-61779-331-8_12
223 N Wang, L. Wang Genetically encoding latent bioreactive amino acids and the development of covalent protein drugs. Curr Opin Chem Biol 2022; 66:102106.
https://doi.org/10.1016/j.cbpa.2021.102106
224 L Wang, A Brock, B Herberich et al. Expanding the genetic code of Escherichia coli. Science (New York, N.Y.) 2001; 292:498–500.
https://doi.org/10.1126/science.1060077
225 W Wang, JK Takimoto, GV Louie et al. Genetically encoding unnatural amino acids for cellular and neuronal studies. Nat Neurosci 2007; 10:1063–72.
https://doi.org/10.1038/nn1932
226 K Wang, WH Schmied, JW. Chin Reprogramming the genetic code: from triplet to quadruplet codes. Angew Chem Int Ed Engl 2012; 51:2288–97.
https://doi.org/10.1002/anie.201105016
227 RE Wang, T Liu, Y Wang et al. An immunosuppressive antibodydrug conjugate. J Am Chem Soc 2015; 137:3229–32.
https://doi.org/10.1021/jacs.5b00620
228 J Wang, S Zheng, Y Liu et al. Palladium-triggered chemical rescue of intracellular proteins via genetically encoded Allene-Caged tyrosine. J Am Chem Soc 2016a; 138:15118–21.
https://doi.org/10.1021/jacs.6b08933
229 WW Wang, Y Zeng, B Wu et al. A chemical biology approach to reveal Sirt6-targeted Histone H3 sites in nucleosomes. ACS Chem Biol 2016b; 11:1973–81.
https://doi.org/10.1021/acschembio.6b00243
230 N Wang, B Yang, C Fu et al. Genetically encoding Fluorosulfate-l-tyrosine to react with lysine, histidine, and tyrosine via SuFEx in proteins in vivo. J Am Chem Soc 2018; 140:4995–9.
https://doi.org/10.1021/jacs.8b01087
231 WW Wang, M Angulo-Ibanez, J Lyu et al. A click chemistry approach reveals the chromatin-dependent histone H3K36 Deacylase nature of SIRT7. J Am Chem Soc 2019; 141:2462–73.
https://doi.org/10.1021/jacs.8b12083
232 T-Y Wang, G-J Sang, Q Wang et al. Generation of premature termination codon (PTC)-harboring pseudorabies virus (PRV) via genetic code expansion technology. Viruses 2022; 14:572.
https://doi.org/10.3390/v14030572
233 T Washburn, JE. O’Tousa Nonsense suppression of the major rhodopsin gene of Drosophila. Genetics 1992; 130:585–95.
https://doi.org/10.1093/genetics/130.3.585
234 WO. Weigle The induction of autoimmunity in rabbits following injection of heterologous or altered homologous thyroglobulin. J Exp Med 1965; 121:289–308.
https://doi.org/10.1084/jem.121.2.289
235 JS Wesalo, J Luo, K Morihiro et al. Phosphine-activated lysine analogues for fast chemical control of protein subcellular localization and protein SUMOylation. Chembiochem 2020; 21:141–8.
https://doi.org/10.1002/cbic.201900464
236 AM. Wu Antibodies and antimatter: the resurgence of immuno-PET. J Nucl Med 2009; 50:2–5.
https://doi.org/10.2967/jnumed.108.056887
237 N Wu, A Deiters, TA Cropp et al. A genetically encoded photocaged amino acid. J Am Chem Soc 2004; 126:14306–7.
https://doi.org/10.1021/ja040175z
238 Y Wu, H Zhu, B Zhang et al. Synthesis of site-specific radiolabeled antibodies for radioimmunotherapy via genetic code expansion. Bioconjug Chem 2016; 27:2460–8.
https://doi.org/10.1021/acs.bioconjchem.6b00412
239 Y Wu, R-Y Zhu, LA Mitchell et al. In vitro DNA SCRaMbLE. Nat Commun 2018a; 9:1935.
https://doi.org/10.1038/s41467-018-03743-6
240 T Wu, F Li, X Sha et al. A novel recombinant RANKL vaccine prepared by incorporation of an unnatural amino acid into RANKL and its preventive effect in a murine model of collagen-induced arthritis. Int Immunopharmacol 2018b; 64:326–32.
https://doi.org/10.1016/j.intimp.2018.09.022
241 K-L Wu, JA Moore, MD Miller et al. Expanding the eukaryotic genetic code with a biosynthesized 21st amino acid. Protein Sci 2022a; 31:e4443.
https://doi.org/10.1002/pro.4443
242 D Wu, Y Zhang, Z Tang et al. Creation of a yeast strain with co-translationally acylated nucleosomes. Angew Chem Int Ed Engl 2022b; 61:e202205570.
https://doi.org/10.1002/anie.202205570
243 X-Y Wu, M-Y Li, S-J Yang et al. Controlled genetic encoding of unnatural amino acids in a protein nanopore. Angew Chem Int Ed Engl 2023; 62:e202300582.
https://doi.org/10.1002/anie.202300582
244 M Wulf, SA. Pless High-sensitivity fluorometry to resolve ion channel conformational dynamics. Cell Rep 2018; 22:1615–26.
https://doi.org/10.1016/j.celrep.2018.01.029
245 Z Xi, L Davis, K Baxter et al. Using a quadruplet codon to expand the genetic code of an animal. Nucleic Acids Res 2022; 50:4801–12.
https://doi.org/10.1093/nar/gkab1168
246 Z Xiang, H Ren, YS Hu et al. Adding an unnatural covalent bond to proteins through proximity-enhanced bioreactivity. Nat Methods 2013; 10:885–8.
https://doi.org/10.1038/nmeth.2595
247 Z Xiang, VK Lacey, H Ren et al. Proximity-enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angew Chem Int Ed Engl 2014; 53:2190–3.
https://doi.org/10.1002/anie.201308794
248 H Xiao, A Chatterjee, S-hyun Choi et al. Genetic incorporation of multiple unnatural amino acids into proteins in mammalian cells. Angew Chem Int Ed Engl 2013; 52:14080–3.
https://doi.org/10.1002/anie.201308137
249 Y-P Xue, C-H Cao, Y-G. Zheng Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 2018; 47:1516–61.
https://doi.org/10.1039/C7CS00253J
250 T Yanagisawa, N Hino, F Iraha et al. Wide-range protein photo-crosslinking achieved by a genetically encoded N(ϵ)- (benzyloxycarbonyl)lysine derivative with a diazirinyl moiety. Mol Biosyst 2012; 8:1131–5.
https://doi.org/10.1039/c2mb05321g
251 Y Yang, S Luo, J Huang et al. Photoactivation of innate immunity receptor TLR8 in live mammalian cells by genetic encoding of photocaged tyrosine. Chembiochem 2022; 23:e202100344.
https://doi.org/10.1002/cbic.202100344
252 J Yang, K Wang, S Zhang et al. Site-specific introduction of bioorthogonal handles to nanopores by genetic code expansion. Angew Chem Int Ed Engl 2023; 62:e202216115.
https://doi.org/10.1002/anie.202216115
253 Y-d Yao, T-meng Sun, S-yin Huang et al. Targeted delivery of PLK1-siRNA by ScFv suppresses Her2+ breast cancer growth and metastasis. Sci Transl Med 2012; 4:130ra48.
https://doi.org/10.1126/scitranslmed.3003601
254 TS Young, I Ahmad, A Brock et al. Expanding the genetic repertoire of the methylotrophic yeast Pichia pastoris. Biochemistry 2009; 48:2643–53.
https://doi.org/10.1021/bi802178k
255 TS Young, DD Young, I Ahmad et al. Evolution of cyclic peptide protease inhibitors. Proc Natl Acad Sci USA 2011; 108:11052–6.
https://doi.org/10.1073/pnas.1108045108
256 B Yu, S Li, T Tabata et al. Accelerating PERx reaction enables covalent nanobodies for potent neutralization of SARS-CoV-2 and variants. Chem 2022; 8:2766–83.
https://doi.org/10.1016/j.chempr.2022.07.012
257 Z Yuan, N Wang, G Kang et al. Controlling multicycle replication of live-attenuated HIV-1 using an unnatural genetic switch. ACS Synth Biol 2017; 6:721–31.
https://doi.org/10.1021/acssynbio.6b00373
258 J Zang, Y Chen, C Liu et al. Genetic code expansion reveals aminoacylated lysine ubiquitination mediated by UBE2W. Nat Struct Mol Biol 2023; 30:62–71.
https://doi.org/10.1038/s41594-022-00866-9
259 AN Zaykov, JP Mayer, RD. DiMarchi Pursuit of a perfect insulin. Nat Rev Drug Discov 2016; 15:425–39.
https://doi.org/10.1038/nrd.2015.36
260 Z Zhang, L Alfonta, F Tian et al. Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells. Proc Natl Acad Sci USA 2004; 101:8882–7.
https://doi.org/10.1073/pnas.0307029101
261 G Zhang, J Li, R Xie et al. Bioorthogonal chemical activation of kinases in living systems. ACS Cent Sci 2016; 2:325–31.
https://doi.org/10.1021/acscentsci.6b00024
262 S Zhao, J Shi, G Yu et al. Photosensitive tyrosine analogues unravel site-dependent phosphorylation in TrkA initiated MAPK/ERK signaling. Commun Biol 2020; 3:706.
https://doi.org/10.1038/s42003-020-01396-0
263 Y Zheng, TL Lewis, P Igo et al. Virus-enabled optimization and delivery of the genetic machinery for efficient unnatural amino acid mutagenesis in mammalian cells and tissues. ACS Synth Biol 2017; 6:13–8.
https://doi.org/10.1021/acssynbio.6b00092
264 C Zhu, L Xu, L Chen et al. Epitope-directed antibody elicitation by genetically encoded chemical cross-linking reactivity in the antigen. ACS Cent Sci 2023; 9:1229–40.
https://doi.org/10.1021/acscentsci.3c00265
265 C Zuany-Amorim, C Manlius, I Dalum et al. Induction of TNF-alpha autoantibody production by AutoVac TNF106: a novel therapeutic approach for the treatment of allergic diseases. Int Arch Allergy Immunol 2004; 133:154–63.
https://doi.org/10.1159/000076441
[1] Ling Jin, Xiaoming Shi, Jing Yang, Yangyu Zhao, Lixiang Xue, Li Xu, Jun Cai. Gut microbes in cardiovascular diseases and their potential therapeutic applications[J]. Protein Cell, 2021, 12(5): 346-359.
[2] Jinhu Guo, Yi Liu. Molecular mechanism of the Neurospora circadian oscillator[J]. Prot Cell, 2010, 1(4): 331-341.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed