|
|
c-Jun, at the crossroad of the signaling network
Qinghang Meng, Ying Xia
Prot Cell. 2011, 2 (11): 889-898.
https://doi.org/10.1007/s13238-011-1113-3
c-Jun, the most extensively studied protein of the activator protein-1 (AP-1) complex, is involved in numerous cell activities, such as proliferation, apoptosis, survival, tumorigenesis and tissue morphogenesis. Earlier studies focused on the structure and function have led to the identification of c-Jun as a basic leucine zipper (bZIP) transcription factor that acts as homo- or hetero-dimer, binding to DNA and regulating gene transcription. Later on, it was shown that extracellular signals can induce post-translational modifications of c-Jun, resulting in altered transcriptional activity and target gene expression. More recent work has uncovered multiple layers of a complex regulatory scheme in which c-Jun is able to crosstalk, amplify and integrate different signals for tissue development and disease. One example of such scheme is the autocrine amplification loop, in which signal-induced AP-1 activates the c-Jun gene promoter, while increased c-Jun expression feedbacks to potentiate AP-1 activity. Another example of such scheme, based on recent characterization of gene knockout mice, is that c-Jun integrates signals of several developmental pathways, including EGFR-ERK, EGFR-RhoA-ROCK, and activin B-MAP3K1-JNK for embryonic eyelid closure. After more than two decades of extensive research, c-Jun remains at the center stage of a molecular network with mysterious functional properties, some of which are yet to be discovered. In this article, we will provide a brief historical overview of studies on c-Jun regulation and function, and use eyelid development as an example to illustrate the complexity of c-Jun crosstalking with signaling pathways.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
|
Mechanism involved in the modulation of photoreceptor-specific cyclic nucleotide- gated channel by the tyrosine kinase adapter protein Grb14
Vivek K. Gupta, Ammaji Rajala, Karla K. Rodgers, Raju V. S. Rajala
Prot Cell. 2011, 2 (11): 906-917.
https://doi.org/10.1007/s13238-011-1115-1
We recently found that growth factor receptor-bound (Grb) protein 14 is a novel physiological modulator of photoreceptor specific cyclic nucleotide-gated channel alpha subunit (CNGA1). Grb14 promotes the CNG channel closure through its Ras-associating (RA) domain. In the current study we show that this RA domain-mediated inhibition of rod CNG channel is electrostatic in nature. Grb14 competes with cGMP for the CNGA1 binding pocket and electrostatically interacts with Arg559 through a negatively charged β-turn at its RA domain. Moreover, the three Glu residues (180--182) in Grb14 are absolutely critical for electrostatic interaction with the cGMP binding pocket and resultant inhibition. Our study also demonstrates that substitution of Lys140 for Ala or in combination with polyglutamte mutants of Grb14 results in a significantly reduced binding with CNGA1. These results suggest that in addition to Glu180--182 and Lys140, other residues in Grb14 may be involved in the electrostatic interaction with CNGA1. The RA domain is highly conserved among the members of Grb7 family of proteins, which includes Grb7, Grb10 and Grb14. Further, only Grb14 is able to modulate the channel activity, but not Grb7 and Grb10. All together, it suggests the existence of a divergence in RA domains among the members of the Grb7 family.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
|
A genome-wide RNAi screen identifies genes regulating the formation of P bodies in C. elegans and their functions in NMD and RNAi
Yinyan Sun, Peiguo Yang, Yuxia Zhang, Xin Bao, Jun Li, Wenru Hou, Xiangyu Yao, Jinghua Han, Hong Zhang
Prot Cell. 2011, 2 (11): 918-939.
https://doi.org/10.1007/s13238-011-1119-x
Cytoplasmic processing bodies, termed P bodies, are involved in diverse post-transcriptional processes including mRNA decay, nonsense-mediated RNA decay (NMD), RNAi, miRNA-mediated translational repression and storage of translationally silenced mRNAs. Regulation of the formation of P bodies in the context of multicellular organisms is poorly understood. Here we describe a systematic RNAi screen in C. elegans that identified 224 genes with diverse cellular functions whose inactivations result in a dramatic increase in the number of P bodies. 83 of these genes form a complex functional interaction network regulating NMD. We demonstrate that NMD interfaces with many cellular processes including translation, ubiquitin-mediated protein degradation, intracellular trafficking and cytoskeleton structure. We also uncover an extensive link between translation and RNAi, with different steps in protein synthesis appearing to have distinct effects on RNAi efficiency. Moreover, the intracellular vesicular trafficking network plays an important role in the regulation of RNAi. A subset of genes enhancing P body formation also regulate the formation of stress granules in C.?elegans. Our study offers insights into the cellular mechanisms that regulate the formation of P bodies and also provides a framework for system-level understanding of NMD and RNAi in the context of the development of multicellular organisms.
Figures and Tables |
References |
Related Articles |
Metrics
|
9 articles
|