Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

   Online First

Administered by

, Volume 15 Issue 2

For Selected: View Abstracts Toggle Thumbnails
Radiation injury and gut microbiota-based treatment
Weihong Wang, Bota Cui, Yongzhan Nie, Lijuan Sun, Faming Zhang
Protein Cell. 2024, 15 (2): 83-97.  
https://doi.org/10.1093/procel/pwad044

Abstract   PDF (7959KB)

The exposure to either medical sources or accidental radiation can cause varying degrees of radiation injury (RI). RI is a common disease involving multiple human body parts and organs, yet effective treatments are currently limited. Accumulating evidence suggests gut microbiota are closely associated with the development and prevention of various RI. This article summarizes 10 common types of RI and their possible mechanisms. It also highlights the changes and potential microbiota-based treatments for RI, including probiotics, metabolites, and microbiota transplantation. Additionally, a 5P-Framework is proposed to provide a comprehensive strategy for managing RI.

References | Related Articles | Metrics
A single-nucleus transcriptomic atlas of primate liver aging uncovers the pro-senescence role of SREBP2 in hepatocytes
Shanshan Yang, Chengyu Liu, Mengmeng Jiang, Xiaoqian Liu, Lingling Geng, Yiyuan Zhang, Shuhui Sun, Kang Wang, Jian Yin, Shuai Ma, Si Wang, Juan Carlos Izpisua Belmonte, Weiqi Zhang, Jing Qu, Guang-Hui Liu
Protein Cell. 2024, 15 (2): 98-120.  
https://doi.org/10.1093/procel/pwad039

Abstract   PDF (31096KB)

Aging increases the risk of liver diseases and systemic susceptibility to aging-related diseases. However, cell type-specific changes and the underlying mechanism of liver aging in higher vertebrates remain incompletely characterized. Here, we constructed the first single-nucleus transcriptomic landscape of primate liver aging, in which we resolved cell type-specific gene expression fluctuation in hepatocytes across three liver zonations and detected aberrant cell–cell interactions between hepatocytes and niche cells. Upon in-depth dissection of this rich dataset, we identified impaired lipid metabolism and upregulation of chronic inflammation-related genes prominently associated with declined liver functions during aging. In particular, hyperactivated sterol regulatory element-binding protein (SREBP) signaling was a hallmark of the aged liver, and consequently, forced activation of SREBP2 in human primary hepatocytes recapitulated in vivo aging phenotypes, manifesting as impaired detoxification and accelerated cellular senescence. This study expands our knowledge of primate liver aging and informs the development of diagnostics and therapeutic interventions for liver aging and associated diseases.

References | Supplementary Material | Related Articles | Metrics
Two antibodies show broad, synergistic neutralization against SARS-CoV-2 variants by inducing conformational change within the RBD
Hui Sun, Tingting Deng, Yali Zhang, Yanling Lin, Yanan Jiang, Yichao Jiang, Yang Huang, Shuo Song, Lingyan Cui, Tingting Li, Hualong Xiong, Miaolin Lan, Liqin Liu, Yu Li, Qianjiao Fang, Kunyu Yu, Wenling Jiang, Lizhi Zhou, Yuqiong Que, Tianying Zhang, Quan Yuan, Tong Cheng, Zheng Zhang, Hai Yu, Jun Zhang, Wenxin Luo, Shaowei Li, Qingbing Zheng, Ying Gu, Ningshao Xia
Protein Cell. 2024, 15 (2): 121-134.  
https://doi.org/10.1093/procel/pwad040

Abstract   PDF (14320KB)

Continual evolution of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus has allowed for its gradual evasion of neutralizing antibodies (nAbs) produced in response to natural infection or vaccination. The rapid nature of these changes has incited a need for the development of superior broad nAbs (bnAbs) and/or the rational design of an antibody cocktail that can protect against the mutated virus strain. Here, we report two angiotensin-converting enzyme 2 competing nAbs—8H12 and 3E2—with synergistic neutralization but evaded by some Omicron subvariants. Cryo-electron microscopy reveals the two nAbs synergistic neutralizing virus through a rigorous pairing permitted by rearrangement of the 472–489 loop in the receptor-binding domain to avoid steric clashing. Bispecific antibodies based on these two nAbs tremendously extend the neutralizing breadth and restore neutralization against recent variants including currently dominant XBB.1.5. Together, these findings expand our understanding of the potential strategies for the neutralization of SARS-CoV-2 variants toward the design of broad-acting antibody therapeutics and vaccines.

References | Supplementary Material | Related Articles | Metrics
Anthrax lethal toxin and tumor necrosis factor-α synergize on intestinal epithelia to induce mouse death
Xinhe Gao, Teng Teng, Yifei Liu, Tingting Ai, Rui Zhao, Yilong Fu, Peipei Zhang, Jiahuai Han, Yingying Zhang
Protein Cell. 2024, 15 (2): 135-148.  
https://doi.org/10.1093/procel/pwad050

Abstract   PDF (9951KB)

Bacillus anthracis lethal toxin (LT) is a determinant of lethal anthrax. Its function in myeloid cells is required for bacterial dissemination, and LT itself can directly trigger dysfunction of the cardiovascular system. The interplay between LT and the host responses is important in the pathogenesis, but our knowledge on this interplay remains limited. Tumor necrosis factor-α (TNF-α) is a pleiotropic pro-inflammatory cytokine induced by bacterial infections. Since LT accumulates and cytokines, predominantly TNF, amass during B. anthracis infection, co-treatment of TNF + LT in mice was used to mimic in vivo conditions for LT to function in inflamed hosts. Bone marrow transplantation and genetically engineered mice showed unexpectedly that the death of intestinal epithelial cells (IECs) rather than that of hematopoietic cells led to LT + TNF-induced lethality. Inhibition of p38α mitogen-activated protein kinase (MAPK) signaling by LT in IECs promoted TNF-induced apoptosis and necroptosis of IECs, leading to intestinal damage and mouse death. Consistently, p38α inhibition by LT enhanced TNF-mediated cell death in human colon epithelial HT-29 cells. As intestinal damage is one of the leading causes of lethality in anthrax patients, the IEC damage caused by LT + TNF would most likely be a mechanism underneath this clinical manifestation and could be a target for interventions.

References | Supplementary Material | Related Articles | Metrics
Correction to: Enhancing prime editing efficiency and flexibility with tethered and split pegRNAs
Ying Feng, Siyuan Liu, Qiqin Mo, Pengpeng Liu, Xiao Xiao, Hanhui Ma
Protein Cell. 2024, 15 (2): 156-.  
https://doi.org/10.1093/procel/pwad025

Abstract   PDF (44KB)
References | Related Articles | Metrics
7 articles