Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant Biol    2013, Vol. 1 Issue (3) : 192-200    https://doi.org/10.1007/s40484-013-0019-x
MINI REVIEW
Automated interpretation of metabolic capacity from genome and metagenome sequences
Minoru Kanehisa()
Institute for Chemical Research, Kyoto University, Uji Kyoto 611-0011, Japan
 Download: PDF(375 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The KEGG pathway maps are widely used as a reference data set for inferring high-level functions of the organism or the ecosystem from its genome or metagenome sequence data. The KEGG modules, which are tighter functional units often corresponding to subpathways in the KEGG pathway maps, are designed for better automation of genome interpretation. Each KEGG module is represented by a simple Boolean expression of KEGG Orthology (KO) identifiers (K numbers), enabling automatic evaluation of the completeness of genes in the genome. Here we focus on metabolic functions and introduce reaction modules for improving annotation and signature modules for inferring metabolic capacity. We also describe how genome annotation is performed in KEGG using the manually created KO database and the computationally generated SSDB database. The resulting KEGG GENES database with KO (K number) annotation is a reference sequence database to be compared for automated annotation and interpretation of newly determined genomes.

Keywords metabolic pathway      functional module      genome annotation      genome interpretation      KEGG database     
Corresponding Author(s): Kanehisa Minoru,Email:kanehisa@kuicr.kyoto-u.ac.jp   
Issue Date: 05 September 2013
 Cite this article:   
Minoru Kanehisa. Automated interpretation of metabolic capacity from genome and metagenome sequences[J]. Quant Biol, 2013, 1(3): 192-200.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-013-0019-x
https://academic.hep.com.cn/qb/EN/Y2013/V1/I3/192
Fig.1  The pathway maps of citrate cycle for (A) , (B) , (C) , and (D) are generated by matching the genomic content of enzymes genes against the KEGG reference pathway map (http://www.kegg.jp/pathway/map00020). The KEGG module M00010 is defined for the first segment of citrate cycle from oxaloacetate to 2-oxoglutarate, because has only this segment, lacks this segment, and has only this segment encoded by adjacent genes in an operon-like structure.
Fig.2  The reaction module RM001 is a characteristic reaction sequence involving tricarboxylic acids for extension of 2-oxocarboxylic chain using acetyl-CoA derived carbon. It is shown in pink boxes (A) from oxaloacetate to 2-oxoglutaratein in citrate cycle, (B) from 2-oxoglutarate to 2-oxoadipate in lysine biosynthesis, (C) from pyruvate to 2-oxobutanoate and from 2-oxoisovalerate to 2-oxoisocaproate in valine, leucine and isoleucine biosynthesis.
Fig.3  Linking genomes to molecular networks for interpretation of metabolic capacities.
Fig.4  The KEGG pathway map does not contain all substrates and products defined in the reaction formula. Instead, it uses a simplified representation as shown in the reaction map formula for main compounds. Reactant pairs are defined from the reaction formula as one-to-one relationships of substrate-product pairs. Those on the pathway map are called main reactant pairs. Reaction class corresponds to a set of main reactant pairs that have the same chemical structure transformation patterns defined as RDM patterns.
Fig.5  This is a simplified version of the KEGG pathway map (http://www.kegg.jp/pathway/map01210), where 2-oxocarboxylic acids are denoted by red circles. The chain elongation module RM001 is shown in the vertical direction, and chain modification modules and other reactions are shown in the horizontal direction. The correspondence of RM001 to KEGG modules (M00010, etc.) is also shown.
ModulePathwayOrganism groupSynthaseDehydrataseDehydrogenase
M00433LysineFungiK01655 (LYS21)K17450 (ACO2)K01705 (LYS4)K05824 (LYS12)
M00433LysineGreen non-sulfur bacteriaDeinococcus-ThermusK01655 (LYS21)K16792 (aksD) + K16793 (aksE)K05824 (LYS12)
M00608Lysine,Coenzyme BMethanogenic archaeaK10977(aksA)K16792 (aksD) + K16793 (aksE)K10978 (aksF)
M00432LeucinePyrococcusK01649 (leuA)K01703 (leuC) + K01704 (leuD)K00052 (leuB)K10978 (aksF)
Tab.1  Combination of paralogous genes in 2-oxocarboxylic acid chain extension.
Metabolic capacitySignature moduleDefinition
Carbon fixation in plants and cyanobacteria(M00161,M00163) + M00165M00161 Photosystem IIM00163 Photosystem IM00165 Reductive pentose phosphate cycle (Calvin cycle)
Carbon fixation in alphaproteobacteriaM00597+ M00165M00597 Anoxygenic photosystem IIM00165 Reductive pentose phosphate cycle (Calvin cycle)
Carbon fixation in green nonsulfur bacteriaM00597+ M00376M00597 Anoxygenic photosystem IIM00376 3-Hydroxypropionate bi-cycle
Carbon fixation in green sulfur bacteriaM00598+ M00161M00598 Anoxygenic photosystem IM00173 Reductive citrate cycle (Arnon-Buchanan cycle)
Nitrate assimilation(K02575,M00438) + M00531K02575 MFS transporter, NNP family, nitrate/nitrite transporterM00438 ABC transporter, nitrate/nitrite transport systemM00531 Assimilatory nitrate reduction, nitrate=>ammonia
Sulfate assimilation(K14708,M00185) + M00176K14708 SLC family 26, sodium-independent sulfate transporterM00185 ABC transporter, sulfate transport systemM00176 Assimilatory sulfate reduction, sulfate=>H2S
MethanogenesisM00567,M00357,M00356,M00563M00567 Methanogenesis, CO2=>methaneM00357 Methanogenesis, acetate=>methaneM00356 Methanogenesis, methanol=>methaneM00563 Methanogenesis, methylamine=>methane
AcetogenesisM00377+ M00579M00377 Reductive acetyl-CoA pathway (Wood-Ljungdahl pathway)M00579 Phosphate acetyltransferase-acetate kinase pathway
Tab.2  Examples of signature modules.
1 Kanehisa, M., Goto,S., Sato, Y., Furumichi, M. and Tanabe, M. (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. , 40, D109-D114
doi: 10.1093/nar/gkr988 pmid:.22080510
2 Gene Ontology Consortium. (2013) Gene Ontology annotations and resources. Nucleic Acids Res. , 41, D530-D535
doi: 10.1093/nar/gks1050 pmid:.23161678
3 Papin, J. A., Reed,J. L. and Palsson, B. O. (2004) Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem. Sci. , 29, 641-647
doi: 10.1016/j.tibs.2004.10.001 pmid:.15544950
4 Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. and Barabási, A. L. (2002) Hierarchical organization of modularity in metabolic networks. Science , 297, 1551-1555
doi: 10.1126/science.1073374 pmid:.12202830
5 Schuster, S., Pfeiffer, T., Moldenhauer, F., Koch, I. and Dandekar, T. (2002) Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics , 18, 351-361
doi: 10.1093/bioinformatics/18.2.351 pmid:.11847093
6 Yamada, T., Kanehisa, M. and Goto, S. (2006) Extraction of phylogenetic network modules from the metabolic network. BMC Bioinformatics , 7, 130
doi: 10.1186/1471-2105-7-130 pmid:.16533389
7 Ogata, H., Fujibuchi, W., Goto, S. and Kanehisa, M. (2000) A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. Nucleic Acids Res. , 28, 4021-4028
doi: 10.1093/nar/28.20.4021 pmid:.11024183
8 Muto, A., Kotera, M., Tokimatsu, T., Nakagawa, Z., Goto,S. and Kanehisa, M. (2013) Modular architecture of metabolic pathways revealed by conserved sequences of reactions. J. Chem. Inf. Model. , 53, 613-622
doi: 10.1021/ci3005379 pmid:.23384306
9 Kanehisa, M. (2013) Chemical and genomic evolution of enzyme-catalyzed reaction networks. FEBS Lett. ,
doi: 10.1016/j.febslet.2013.06.026 pmid:.23816707
10 Maeder, D. L., Weiss,R. B., Dunn, D. M., Cherry, J. L., González, J. M., DiRuggiero, J. and Robb, F. T. (1999) Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences. Genetics , 152, 1299-1305
pmid:10430560.
11 Pruitt, K. D., Tatusova, T., Brown, G. R. and Maglott, D. R. (2012) NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. , 40, D130-D135
doi: 10.1093/nar/gkr1079 pmid:.22121212
12 McDonald, A. G., Boyce,S. and Tipton, K. F. (2009) ExplorEnz: the primary source of the IUBMB enzyme list. Nucleic Acids Res. , 37, D593-D597
doi: 10.1093/nar/gkn582 pmid:.18776214
13 Howell, D. M., Harich, K., Xu, H. and White, R. H. (1998) α-keto acid chain elongation reactions involved in the biosynthesis of coenzyme B (7-mercaptoheptanoyl threonine phosphate) in methanogenic Archaea. Biochemistry , 37, 10108-10117
doi: 10.1021/bi980662p pmid:.9665716
14 Drevland, R. M., Jia,Y., Palmer, D. R. and Graham, D. E. (2008) Methanogen homoaconitase catalyzes both hydrolyase reactions in coenzyme B biosynthesis. J. Biol. Chem. , 283, 28888-28896
doi: 10.1074/jbc.M802159200 pmid:.18765671
15 Howell, D. M., Graupner, M., Xu, H. and White, R. H. (2000) Identification of enzymes homologous to isocitrate dehydrogenase that are involved in coenzyme B and leucine biosynthesis in methanoarchaea. J. Bacteriol. , 182, 5013-5016
doi: 10.1128/JB.182.17.5013-5016.2000 pmid:.10940051
16 Fazius, F., Shelest, E., Gebhardt, P. and Brock, M. (2012) The fungal α-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate. Mol. Microbiol. , 86, 1508-1530
doi: 10.1111/mmi.12076 pmid:.23106124
17 Berg, I. A., Kockelkorn, D., Ramos-Vera, W. H., Say, R. F., Zarzycki, J., Hügler, M., Alber, B. E. and Fuchs, G. (2010) Autotrophic carbon fixation in archaea. Nat. Rev. Microbiol. , 8, 447-460
doi: 10.1038/nrmicro2365 pmid:.20453874
18 Ohashi, Y., Shi,W., Takatani, N., Aichi, M., Maeda, S., Watanabe, S., Yoshikawa, H. and Omata, T. (2011) Regulation of nitrate assimilation in cyanobacteria. J. Exp. Bot. , 62, 1411-1424
doi: 10.1093/jxb/erq427 pmid:.21282331
19 van der Ploeg, J. R., Eichhorn, E. and Leisinger, T. (2001) Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Arch. Microbiol. , 176, 1-8
doi: 10.1007/s002030100298 pmid:.11479697
20 Liu, Y. and Whitman, W. B. (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci. , 1125, 171-189
doi: 10.1196/annals.1419.019 pmid:.18378594
[1] Abraham A. Labena, Yi-Zhou Gao, Chuan Dong, Hong-li Hua, Feng-Biao Guo. Metabolic pathway databases and model repositories[J]. Quant. Biol., 2018, 6(1): 30-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed