Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2018, Vol. 6 Issue (1) : 30-39    https://doi.org/10.1007/s40484-017-0108-3
REVIEW
Metabolic pathway databases and model repositories
Abraham A. Labena1,2, Yi-Zhou Gao1, Chuan Dong3, Hong-li Hua3, Feng-Biao Guo3()
1. School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
2. College of Computational and Natural Sciences, Dilla University, Dilla P.O.box. 419, Ethiopia
3. School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
 Download: PDF(182 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: The number of biological Knowledge bases/databases storing metabolic pathway information and models has been growing rapidly. These resources are diverse in the type of information/data, the analytical tools, and objectives. Here we present a review of the most popular metabolic pathway databases and model repositories, focusing on their scope, content including reactions, enzymes, compounds, and genes, and applicability. The review aims to help researchers choose a suitable database or model repository according to the information and data required, by providing an insight look of each pathway resource.

Results: Four pathways databases and three model repositories were selected on the basis of popularity and diversity. Our review showed that the pathway resources vary in many aspects, such as their scope, content, access to data and the tools. In addition, inconsistencies have been observed in nomenclature and representation of database entities. The three model repositories reviewed do not offer a brief description of the models’ characteristics such as simulation conditions.

Conclusions: The inconsistencies among the databases in representing their contents may hamper the maximal use of the knowledge accumulated in these databases in particular and the area of systems biology at large. Therefore, it is strongly recommended that the database creators and the metabolic network models developers should follow international standards for the nomenclature of reactions and metabolites. Besides, computationally generated models that could be obtained from model repositories should be utilized with manual curations as they lack some important components that are necessary for full functionality of the models.

Keywords metabolic pathway      database      model repository     
Corresponding Author(s): Feng-Biao Guo   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Online First Date: 14 September 2017    Issue Date: 08 March 2018
 Cite this article:   
Abraham A. Labena,Yi-Zhou Gao,Chuan Dong, et al. Metabolic pathway databases and model repositories[J]. Quant. Biol., 2018, 6(1): 30-39.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-017-0108-3
https://academic.hep.com.cn/qb/EN/Y2018/V6/I1/30
Name Description
Arabidopsis Reactome Curated knowledge base of plant biological pathways
AtIPD Arabidopsis thaliana isoprenoid pathway database
BiGG Knowledge base of genome-scale metabolic network models
BioCyc A collection of pathway/genome databases (PGDBs) and software tools for understanding their data
BioModels Online reference repository for quantitative, dynamic models of biological network models
BioPath Database on biochemical pathways
BioSilico A web-based database system that facilitates the search and analysis of metabolic pathways
BRENDA Comprehensive enzyme information system
BsubCyc Database of the bacterium? Bacillus subtilis and is based on the updated? B. subtilis 168 genome sequence and annotation
CATHACyc Metabolic pathway database of Catharanthus roseus
ECMDB Escherichia coli metabolome database
EcoCyc Encyclopedia of E.coli genes and metabolism
EcoCyc Scientific database for the bacterium? E. coli K-12 MG1655
ENZYME A repository of information relative to the nomenclature of enzymes
ExPASy Biochemical pathway maps
FlyReactome A curated knowledgebase of Drosophila melanogaster pathways
HMDB The human metabolome database
HPD An integrated human pathway database
HUMANCyc An encyclopedic reference on human metabolic pathways
KaPPA-View4 Kazusa Plant Pathway Viewer
KEGG Kyoto Encyclopedia of Genes and Genomes
LAMP Library of Apicomplexan metabolic pathways
LIPID MAPS LIPID metabolites and pathways strategy
MaizeGDB Metabolic pathways in maize
Malaria Malaria parasite metabolic pathways
MedicCyc A biochemical pathway database for Medicago truncatula
MetaCyc Knowledge of experimentally validated metabolic pathways
MetaNetX/MetanetX.?org Repository and webserver for genome-scale metabolic network models
MetNetDB Contains information on networks of metabolic and regulatory and interactions in Arabidopsis
MMMDB Mouse multiple tissue metabolome database
Model SEED Web-based resource for high-throughput generation, optimization and analysis of genome-scale metabolic pathway models
MouseCyc Manually curated database of both known and predicted metabolic pathways for the laboratory mouse
PathCase Pathways database system
PC2 Pathway Commons 2 (integrates a number of pathway and molecular interaction databases supporting BioPAX and PSI-MI formats into one large BioPAX model)
PMN Plant metabolic network
Reactome A free, open-source, curated and peer-reviewed pathway database
RGB Rat resource center
SABIO-RK Biochemical reaction kinetics database
SSER Species specific essential reactions database
UniPathWay Metabolic pathways database
YEASTNET A?consensus reconstruction of yeast metabolism
YMDB Yeast metabolome database
Tab.1  List of available metabolic pathway resources
Database/content Reactions Compounds Pathways Proteins Version
KEGG 10307 17787 474838 6836 80.2
MetaCyc 15162 13585 2884 17090 20.5
Reactome 78927 88597 22072 120935 59
PMN 74013 2509 13117 279301 11.0
Tab.2  Contents of the databases
Name Tools Function
Reactome Pathway browser • A tool for visualizing and interacting with Reactome biological pathways
Analyze data • Merges pathway identifier mapping, over-representation, and expression analysis tools ?into a single tabbed data analysis portal with integrated visualization and summary ?features, which can accept a gene, protein or small molecule list, or an expression ?dataset
Species comparison • Allows users to compare pathways between human and any of the other species inferred ?from Reactome by orthology
Reactome FI network • Cytoscape plugin designed to find network patterns related to cancer and other types of ?diseases
MetaCyc Pathway tools • Development of organism-specific databases
• Metabolic reconstruction and modeling
• Scientific visualization, web publishing
• Visual analysis of gene expression and metabolomics datasets
• Computational inferences
• Comparative genome and pathway analyses
• Analysis of biological networks
PMN E2P2 • Enzyme function annotation software. Predicts metabolic enzymes in a sequenced ?genome
SAVI • Pathway validation software. Processes predicted metabolic pathways using pathway ?metadata such as taxonomic distribution and key reactions and makes decisions about ?which pathways to keep, remove, or subject to manual validation
KEGG PlantClusterFinder • A pipeline to predict metabolic gene clusters from plant genomes
KegHier • Java application for browsing BRITE hierarchy files
KegArray • Java application for microarray data analysis
KegDraw • Java application for drawing compound and glycan structures
Tab.3  Comparison of the databases based on additional functions
Name Tools Function
BiGG Escher map and model validation tool It is a web-based tool for building, viewing and sharing visualizations of biological pathways
BioModels Path2Models (automatic generation of GSM) It automatically generates metabolic models from biochemical pathway maps
MetaNetX Flux balance analysis (FBA), flux variability analysis (FVA), group of coupled reactions (GCR), reaction knock-out (RKO), peptide/gene knock-out (PKO), gap-filling (GAP), predict direction (DIR) A web-based resource for accessing, analysing and manipulating genome-scale metabolic networks. It also provides interactive comaprison of two or more models and interates data from various public resources
Tab.4  Comparison of tools in model repositories
1 J. M., Berg, J. L. Tymoczko, and L. Stryer, (2002) Metabolism Is Composed of Many Coupled, Interconnecting Reactions. In Biochemistry. 5th ed. New York: Lippincott Williams & Wilkins
2 J. D. Wren, and A. Bateman, (2008) Databases, data tombs and dust in the wind. Bioinformatics, 24, 2127–2128
https://doi.org/10.1093/bioinformatics/btn464 pmid: 18819940
3 V. A. Likić, (2006) Databases of metabolic pathways. Biochem. Mol. Biol. Educ., 34, 408–412
https://doi.org/10.1002/bmb.2006.494034062680 pmid: 21638732
4 M. D. Stobbe, , S. M. Houten, , G. A. Jansen, , A. H. van Kampen, and P. D. Moerland, (2011) Critical assessment of human metabolic pathway databases: a stepping stone for future integration. BMC Syst. Biol., 5, 165
https://doi.org/10.1186/1752-0509-5-165 pmid: 21999653
5 M. D. Stobbe, (2015) Metabolic Pathway Databases: A Word of Caution. In Computational Systems Toxicology. Hoeng, J., Peitsch, M.C, eds. pp. 27–63. New York: Springer
6 J. D. Orth, , T. M. Conrad, , J. Na, , J. A. Lerman, , H. Nam, , A. M. Feist, and B. Ø. Palsson, (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol. Syst. Biol., 7, 535
https://doi.org/10.1038/msb.2011.65 pmid: 21988831
7 I. Thiele, , T. D. Vo, , N. D. Price, and B. O. Palsson, (2005) Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J. Bacteriol., 187, 5818–5830
https://doi.org/10.1128/JB.187.16.5818-5830.2005 pmid: 16077130
8 C. S. Henry, , J. F. Zinner, , M. P. Cohoon, and R. L. Stevens, (2009) iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol., 10, R69
https://doi.org/10.1186/gb-2009-10-6-r69 pmid: 19555510
9 K. Radrich, , Y. Tsuruoka, , P. Dobson, , A. Gevorgyan, , N. Swainston, , G. Baart, and J.-M. Schwartz, (2010) Integration of metabolic databases for the reconstruction of genome-scale metabolic networks. BMC Syst. Biol., 4, 114
https://doi.org/10.1186/1752-0509-4-114 pmid: 20712863
10 C. Zhang, and Q. Hua, (2015) Applications of genome-scale metabolic models in biotechnology and systems medicine. Front. Physiol., 6, 413
https://doi.org/10.3389/fphys.2015.00413
11 L. Liu, , R. Agren, , S. Bordel, and J. Nielsen, (2010) Use of genome-scale metabolic models for understanding microbial physiology. FEBS Lett., 584, 2556–2564
https://doi.org/10.1016/j.febslet.2010.04.052 pmid: 20420838
12 H. S. Ooi, , G. Schneider, , T. T. Lim, , Y. L. Chan, , B. Eisenhaber, and F. Eisenhaber, (2010) Biomolecular pathway databases. Methods Mol. Biol., 609, 129–144
https://doi.org/10.1007/978-1-60327-241-4_8 pmid: 20221917
13 U. Wittig, and A. De Beuckelaer, (2001) Analysis and comparison of metabolic pathway databases. Brief. Bioinform., 2, 126–142
https://doi.org/10.1093/bib/2.2.126 pmid: 11465731
14 D. Croft, , A. F. Mundo, , R. Haw, , M. Milacic, , J. Weiser, , G. Wu, , M. Caudy, , P. Garapati, , M. Gillespie, , M. R. Kamdar, , et al. (2014) The Reactome pathway knowledgebase. Nucleic Acids Res., 42, D472–D477
https://doi.org/10.1093/nar/gkt1102 pmid: 24243840
15 R. Caspi, , R. Billington, , L. Ferrer, , H. Foerster, , C. A. Fulcher, , I. M. Keseler, , A. Kothari, , M. Krummenacker, , M. Latendresse, , L. A. Mueller, , et al. (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 44, D471–D480
https://doi.org/10.1093/nar/gkv1164 pmid: 26527732
16 M. Kanehisa, , Y. Sato, , M. Kawashima, , M. Furumichi, and M. Tanabe, (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res., 44, D457–D462
https://doi.org/10.1093/nar/gkv1070 pmid: 26476454
17 K. Dreher, (2014) Putting the Plant Metabolic Network Pathway Databases to Work: Going Offline to Gain New Capabilities. In Plant Metabolism: Methods and Protocols. Sriram G. Totowa, ed., pp. 151–171. NJ: Humana Press
18 Z. A. King, , J. Lu, , A. Dräger, , P. Miller, , S. Federowicz, , J. A. Lerman, , A. Ebrahim, , B. O. Palsson, and N. E. Lewis, (2016) BiGG Models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res., 44, D515–D522
https://doi.org/10.1093/nar/gkv1049 pmid: 26476456
19 V. Chelliah, , C. Laibe, and N. Le Novère, (2013) BioModels Database: a repository of mathematical models of biological processes. Methods Mol. Biol., 1021, 189–199
https://doi.org/10.1007/978-1-62703-450-0_10 pmid: 23715986
20 M. Ganter, , T. Bernard, , S. Moretti, , J. Stelling, and M. Pagni, (2013) MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks. Bioinformatics, 29, 815–816
https://doi.org/10.1093/bioinformatics/btt036 pmid: 23357920
21 D. Croft, , G. O’Kelly, , G. Wu, , R. Haw, , M. Gillespie, , L. Matthews, , M. Caudy, , P. Garapati, , G. Gopinath, , B. Jassal, , et al. (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res., 39, D691–D697
https://doi.org/10.1093/nar/gkq1018 pmid: 21067998
22 A. Fabregat, , K. Sidiropoulos, , P. Garapati, , M. Gillespie, , K. Hausmann, , R. Haw, , B. Jassal, , S. Jupe, , F. Korninger, , S. McKay, , et al. (2016) The Reactome pathway Knowledgebase. Nucleic Acids Res., 44, D481–D487
https://doi.org/10.1093/nar/gkv1351 pmid: 26656494
23 S. Naithani, , J. Preece, , P. D’Eustachio, , P. Gupta, , V. Amarasinghe, , P. D. Dharmawardhana, , G. Wu, , A. Fabregat, , J. L. Elser, , J. Weiser, , et al. (2017) Plant Reactome: a resource for plant pathways and comparative analysis. Nucleic Acids Res., 45, D1029–D1039
https://doi.org/https://doi.org/10.1093/nar/gkw932 pmid: 27799469
24 R. Caspi, , T. Altman, , K. Dreher, , C. A. Fulcher, , P. Subhraveti, , I. M. Keseler, , A. Kothari, , M. Krummenacker, , M. Latendresse, , L. A. Mueller, , et al. (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 40, D742–D753
https://doi.org/10.1093/nar/gkr1014 pmid: 22102576
25 R. Caspi, , T. Altman, , R. Billington, , K. Dreher, , H. Foerster, , C. A. Fulcher, , T. A. Holland, , I. M. Keseler, , A. Kothari, , A. Kubo, , et al. (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res., 42, D459–D471
https://doi.org/10.1093/nar/gkt1103 pmid: 24225315
26 R. Caspi, , T. Altman, , J. M. Dale, , K. Dreher, , C. A. Fulcher, , F. Gilham, , P. Kaipa, , A. S. Karthikeyan, , A. Kothari, , M. Krummenacker, , et al. (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 38, D473–D479
https://doi.org/10.1093/nar/gkp875 pmid: 19850718
27 K. R. Christie, , S. Weng, , R. Balakrishnan, , M. C. Costanzo, , K. Dolinski, , S. S. Dwight, , S. R. Engel, , B. Feierbach, , D. G. Fisk, , J. E. Hirschman, , et al. (2004) Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms. Nucleic Acids Res., 32, D311–D314
https://doi.org/10.1093/nar/gkh033 pmid: 14681421
28 L. A. Mueller, , P. Zhang, and S. Y. Rhee, (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol., 132, 453–460
https://doi.org/10.1104/pp.102.017236 pmid: 12805578
29 C. Liang, , P. Jaiswal, , C. Hebbard, , S. Avraham, , E. S. Buckler, , T. Casstevens, , B. Hurwitz, , S. McCouch, , J. Ni, , A. Pujar, , et al. (2008) Gramene: a growing plant comparative genomics resource. Nucleic Acids Res., 36, D947–D953
https://doi.org/10.1093/nar/gkm968 pmid: 17984077
30 A. V. Evsikov, , M. E. Dolan, , M. P. Genrich, , E. Patek, and C. J. Bult, (2009) MouseCyc: a curated biochemical pathways database for the laboratory mouse. Genome Biol., 10, R84
https://doi.org/10.1186/gb-2009-10-8-r84 pmid: 19682380
31 S. Seo, and H. A. Lewin, (2009) Reconstruction of metabolic pathways for the cattle genome. BMC Syst. Biol., 3, 33
https://doi.org/10.1186/1752-0509-3-33 pmid: 19284618
32 E. Urbanczyk-Wochniak, and L. W. Sumner, (2007) MedicCyc: a biochemical pathway database for Medicago truncatula. Bioinformatics, 23, 1418–1423
https://doi.org/10.1093/bioinformatics/btm040 pmid: 17344243
33 P. Zhang, , K. Dreher, , A. Karthikeyan, , A. Chi, , A. Pujar, , R. Caspi, , P. Karp, , V. Kirkup, , M. Latendresse, , C. Lee, , et al. (2010) Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants. Plant Physiol., 153, 1479–1491
https://doi.org/10.1104/pp.110.157396 pmid: 20522724
34 P. Fey, , P. Gaudet, , T. Curk, , B. Zupan, , E. M. Just, , S. Basu, , S. N. Merchant, , Y. A. Bushmanova, , G. Shaulsky, , W. A. Kibbe, , et al. (2009) dictyBase—a Dictyostelium bioinformatics resource update. Nucleic Acids Res., 37, D515–D519
https://doi.org/10.1093/nar/gkn844 pmid: 18974179
35 M. A. Doyle, , J. I. MacRae, , D. P. De Souza, , E. C. Saunders, , M. J. McConville, and V. A. Likić, (2009) LeishCyc: a biochemical pathways database for Leishmania major. BMC Syst. Biol., 3, 57
https://doi.org/10.1186/1752-0509-3-57 pmid: 19497128
36 P. May, , J. O. Christian, , S. Kempa, and D. Walther, (2009) ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii. BMC Genomics, 10, 209
https://doi.org/10.1186/1471-2164-10-209 pmid: 19409111
37 A. Bombarely, , N. Menda, , I. Y. Tecle, , R. M. Buels, , S. Strickler, , T. Fischer-York, , A. Pujar, , J. Leto, , J. Gosselin, and L. A. Mueller, (2011) The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl. Nucleic Acids Res., 39, D1149–D1155
https://doi.org/10.1093/nar/gkq866 pmid: 20935049
38 E. E. Snyder, , N. Kampanya, , J. Lu, , E. K. Nordberg, , H. R. Karur, , M. Shukla, , J. Soneja, , Y. Tian, , T. Xue, , H. Yoo, , et al. (2007) PATRIC: the VBI PathoSystems Resource Integration Center. Nucleic Acids Res., 35, D401–D406
https://doi.org/10.1093/nar/gkl858 pmid: 17142235
39 , J Vincent., , Z Dai., , C Ravel., , F Choulet., , S Mouzeyar., M. F Bouzidi,., , M Agier. and , P Martre. (2013) dbWFA: a web-based database for functional annotation of Triticum aestivum transcripts. Database (Oxford). 2013, bat014
https://doi.org/10.1093/database/bat014
40 M. Obertello, , S. Shrivastava, , M. S. Katari, and G. M. Coruzzi, (2015) Cross-species network analysis uncovers conserved nitrogen-regulated network modules in rice. Plant Physiol., 168, 1830–1843
https://doi.org/10.1104/pp.114.255877 pmid: 26045464
41 K. Shiratake, and M. Suzuki, (2016) Omics studies of citrus, grape and rosaceae fruit trees. Breed. Sci., 66, 122–138
https://doi.org/10.1270/jsbbs.66.122 pmid: 27069397
42 K. Cho, , K. S. Cho, , H. B. Sohn, , I. J. Ha, , S. Y. Hong, , H. Lee, , Y. M. Kim, and M. H. Nam, (2016) Network analysis of the metabolome and transcriptome reveals novel regulation of potato pigmentation. J. Exp. Bot., 67, 1519–1533
https://doi.org/10.1093/jxb/erv549 pmid: 26733692
43 L. Chae, , T. Kim, , R. Nilo-Poyanco, and S. Y. Rhee, (2014) Genomic signatures of specialized metabolism in plants. Science, 344, 510–513
https://doi.org/10.1126/science.1252076 pmid: 24786077
44 O. Tzfadia, , D. Amar, , L. M. T. Bradbury, , E. T. Wurtzel, and R. Shamir, (2012) The MORPH algorithm: ranking candidate genes for membership in Arabidopsis and tomato pathways. Plant Cell, 24, 4389–4406
https://doi.org/10.1105/tpc.112.104513 pmid: 23204403
45 M. Kanehisa, , S. Goto, , Y. Sato, , M. Kawashima, , M. Furumichi, and M. Tanabe, (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res., 42, D199–D205
https://doi.org/10.1093/nar/gkt1076 pmid: 24214961
46 S. Schmeier, , T. Alam, , M. Essack, and V. B. Bajic, (2017) TcoF-DB v2: update of the database of human and mouse transcription co-factors and transcription factor interactions. Nucleic Acids Res., 45, D145–D150
https://doi.org/https://doi.org/10.1093/nar/gkw1007. pmid: 27789689
47 P. Li, , R. G. Tompkins, and W. Xiao, (2017) KERIS: kaleidoscope of gene responses to inflammation between species. Nucleic Acids Res., 45, D908–D914
https://doi.org/https://doi.org/10.1093/nar/gkw974
48 Y. Wang, , L. Xu, , R. Thilmony, , F. M. You, , Y. Q. Gu, and D. Coleman-Derr, (2016) PIECE 2.0: an update for the plant gene structure comparison and evolution database. Nucleic Acids Res., 45, 1015–1020
https://doi.org/https://doi.org/10.1093/nar/gks1109P pmid: 27742820
49 M. Kotera, , M. Hirakawa, , T. Tokimatsu, , S. Goto, and M. Kanehisa, (2012) The KEGG databases and tools facilitating omics analysis: latest developments involving human diseases and pharmaceuticals. Methods Mol. Biol., 802, 19–39
https://doi.org/10.1007/978-1-61779-400-1_2 pmid: 22130871
50 L. Bianco, , S. Riccadonna, , E. Lavezzo, , M. Falda, , E. Formentin, , D. Cavalieri, , S. Toppo, and P. Fontana, (2016) Pathway Inspector: a pathway based web application for RNAseq analysis of model and non-model organisms. Bioinformatics, btw636
https://doi.org/10.1093/bioinformatics/btw636 pmid: 27795226
51 S. Li, , K. Shui, , Y. Zhang, , Y. Lv, , W. Deng, , S. Ullah, , L. Zhang, and Y. Xue, (2016) CGDB: a database of circadian genes in eukaryotes. Nucleic Acids Res., 45, D397–D403
https://doi.org/https://doi.org/10.1093/nar/gkw1028 pmid: 27789706
52 I. A. Chen, , V. M. Markowitz, , K. Chu, , K. Palaniappan, , E. Szeto, , M. Pillay, , A. Ratner, , J. Huang, , E. Andersen, , M. Huntemann, , et al. (2017) IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res., 45, D507–D516
https://doi.org/https://doi.org/10.1093/nar/gkw929 pmid: 27738135
53 P. A. Saa, and L. K. Nielsen, (2016) Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models. Bioinformatics, 32, 3807–3814
https://doi.org/10.1093/bioinformatics/btw555 pmid: 27559155
54 P. W. Rose, , A. Prlic, , A. Altunkaya, , C. Bi, , A. R. Bradley, , C. H. Christie, , L. D. Costanzo, , J. M. Duarte, , S. Dutta, , Z. Feng, ,et al. (2017) The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res., 45, D271–D281
https://doi.org/https://doi.org/10.1093/nar/gkw1000 pmid: 27794042
55 F. Büchel, , N. Rodriguez, , N. Swainston, , C. Wrzodek, , T. Czauderna, , R. Keller, , F. Mittag, , M. Schubert, , M. Glont, , M. Golebiewski, ,et al. (2013) Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst. Biol., 7, 116
https://doi.org/10.1186/1752-0509-7-116 pmid: 24180668
56 A. Naldi, , P. T. Monteiro, , C. Müssel, , the Consortium for Logical Models and Tools,H. A. Kestler, , D. Thieffry, , I. Xenarios, , J. Saez-Rodriguez, , T. Helikar, and C. Chaouiya, (2015) Cooperative development of logical modelling standards and tools with CoLoMoTo. Bioinformatics, 31, 1154–1159
https://doi.org/10.1093/bioinformatics/btv013 pmid: 25619997
57 N. Le Novère, (2015) Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet., 16, 146–158
https://doi.org/10.1038/nrg3885 pmid: 25645874
58 P. Zhang, , L. Tao, , X. Zeng, , C. Qin, , S. Chen, , F. Zhu, , Z. Li, , Y. Jiang, , W. Chen, and Y. Z. Chen, (2016) A protein network descriptor server and its use in studying protein, disease, metabolic and drug targeted networks. Brief. Bioinform., bbw071
https://doi.org/10.1093/bib/bbw071 pmid: 27542402
59 S. Moretti, , O. Martin, , T. Van Du Tran, , A. Bridge, , A. Morgat, and M. Pagni, (2016) MetaNetX/MNXref–reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks. Nucleic Acids Res., 44, D523–D526
https://doi.org/10.1093/nar/gkv1117 pmid: 26527720
60 Y. N. Ye, , B. G. Ma, , C. Dong, , H. Zhang, , L. L. Chen, and F. B. Guo, (2016) A novel proposal of a simplified bacterial gene set and the neo-construction of a general minimized metabolic network. Sci. Rep., 6, 35082
https://doi.org/10.1038/srep35082 pmid: 27713529
61 R. A. Thompson, , S. Dahal, , S. Garcia, , I. Nookaew, and C. T. Trinh, (2016) Exploring complex cellular phenotypes and model-guided strain design with a novel genome-scale metabolic model of Clostridium thermocellum DSM 1313 implementing an adjustable cellulosome. Biotechnol. Biofuels, 9, 194
https://doi.org/10.1186/s13068-016-0607-x pmid: 27602057
62 R. G. van Heck, , M. Ganter, , V. A. Martins Dos Santos, and J. Stelling, (2016) Efficient reconstruction of predictive consensus metabolic network models. PLoS Comput. Biol., 12, e1005085
https://doi.org/10.1371/journal.pcbi.1005085 pmid: 27563720
[1] Jing Zhao, Jian Yang, Saisai Tian, Weidong Zhang. A survey of web resources and tools for the study of TCM network pharmacology[J]. Quant. Biol., 2019, 7(1): 17-29.
[2] Minoru Kanehisa. Automated interpretation of metabolic capacity from genome and metagenome sequences[J]. Quant Biol, 2013, 1(3): 192-200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed