|
|
|
Metabolic pathway databases and model repositories |
Abraham A. Labena1,2, Yi-Zhou Gao1, Chuan Dong3, Hong-li Hua3, Feng-Biao Guo3( ) |
1. School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China 2. College of Computational and Natural Sciences, Dilla University, Dilla P.O.box. 419, Ethiopia 3. School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China |
|
|
|
|
Abstract Background: The number of biological Knowledge bases/databases storing metabolic pathway information and models has been growing rapidly. These resources are diverse in the type of information/data, the analytical tools, and objectives. Here we present a review of the most popular metabolic pathway databases and model repositories, focusing on their scope, content including reactions, enzymes, compounds, and genes, and applicability. The review aims to help researchers choose a suitable database or model repository according to the information and data required, by providing an insight look of each pathway resource. Results: Four pathways databases and three model repositories were selected on the basis of popularity and diversity. Our review showed that the pathway resources vary in many aspects, such as their scope, content, access to data and the tools. In addition, inconsistencies have been observed in nomenclature and representation of database entities. The three model repositories reviewed do not offer a brief description of the models’ characteristics such as simulation conditions. Conclusions: The inconsistencies among the databases in representing their contents may hamper the maximal use of the knowledge accumulated in these databases in particular and the area of systems biology at large. Therefore, it is strongly recommended that the database creators and the metabolic network models developers should follow international standards for the nomenclature of reactions and metabolites. Besides, computationally generated models that could be obtained from model repositories should be utilized with manual curations as they lack some important components that are necessary for full functionality of the models.
|
| Keywords
metabolic pathway
database
model repository
|
|
Corresponding Author(s):
Feng-Biao Guo
|
| About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
|
Online First Date: 14 September 2017
Issue Date: 08 March 2018
|
|
| 1 |
J. M., Berg, J. L. Tymoczko, and L. Stryer, (2002) Metabolism Is Composed of Many Coupled, Interconnecting Reactions. In Biochemistry. 5th ed. New York: Lippincott Williams & Wilkins
|
| 2 |
J. D. Wren, and A. Bateman, (2008) Databases, data tombs and dust in the wind. Bioinformatics, 24, 2127–2128
https://doi.org/10.1093/bioinformatics/btn464
pmid: 18819940
|
| 3 |
V. A. Likić, (2006) Databases of metabolic pathways. Biochem. Mol. Biol. Educ., 34, 408–412
https://doi.org/10.1002/bmb.2006.494034062680
pmid: 21638732
|
| 4 |
M. D. Stobbe, , S. M. Houten, , G. A. Jansen, , A. H. van Kampen, and P. D. Moerland, (2011) Critical assessment of human metabolic pathway databases: a stepping stone for future integration. BMC Syst. Biol., 5, 165
https://doi.org/10.1186/1752-0509-5-165
pmid: 21999653
|
| 5 |
M. D. Stobbe, (2015) Metabolic Pathway Databases: A Word of Caution. In Computational Systems Toxicology. Hoeng, J., Peitsch, M.C, eds. pp. 27–63. New York: Springer
|
| 6 |
J. D. Orth, , T. M. Conrad, , J. Na, , J. A. Lerman, , H. Nam, , A. M. Feist, and B. Ø. Palsson, (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol. Syst. Biol., 7, 535
https://doi.org/10.1038/msb.2011.65
pmid: 21988831
|
| 7 |
I. Thiele, , T. D. Vo, , N. D. Price, and B. O. Palsson, (2005) Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J. Bacteriol., 187, 5818–5830
https://doi.org/10.1128/JB.187.16.5818-5830.2005
pmid: 16077130
|
| 8 |
C. S. Henry, , J. F. Zinner, , M. P. Cohoon, and R. L. Stevens, (2009) iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol., 10, R69
https://doi.org/10.1186/gb-2009-10-6-r69
pmid: 19555510
|
| 9 |
K. Radrich, , Y. Tsuruoka, , P. Dobson, , A. Gevorgyan, , N. Swainston, , G. Baart, and J.-M. Schwartz, (2010) Integration of metabolic databases for the reconstruction of genome-scale metabolic networks. BMC Syst. Biol., 4, 114
https://doi.org/10.1186/1752-0509-4-114
pmid: 20712863
|
| 10 |
C. Zhang, and Q. Hua, (2015) Applications of genome-scale metabolic models in biotechnology and systems medicine. Front. Physiol., 6, 413
https://doi.org/10.3389/fphys.2015.00413
|
| 11 |
L. Liu, , R. Agren, , S. Bordel, and J. Nielsen, (2010) Use of genome-scale metabolic models for understanding microbial physiology. FEBS Lett., 584, 2556–2564
https://doi.org/10.1016/j.febslet.2010.04.052
pmid: 20420838
|
| 12 |
H. S. Ooi, , G. Schneider, , T. T. Lim, , Y. L. Chan, , B. Eisenhaber, and F. Eisenhaber, (2010) Biomolecular pathway databases. Methods Mol. Biol., 609, 129–144
https://doi.org/10.1007/978-1-60327-241-4_8
pmid: 20221917
|
| 13 |
U. Wittig, and A. De Beuckelaer, (2001) Analysis and comparison of metabolic pathway databases. Brief. Bioinform., 2, 126–142
https://doi.org/10.1093/bib/2.2.126
pmid: 11465731
|
| 14 |
D. Croft, , A. F. Mundo, , R. Haw, , M. Milacic, , J. Weiser, , G. Wu, , M. Caudy, , P. Garapati, , M. Gillespie, , M. R. Kamdar, , et al. (2014) The Reactome pathway knowledgebase. Nucleic Acids Res., 42, D472–D477
https://doi.org/10.1093/nar/gkt1102
pmid: 24243840
|
| 15 |
R. Caspi, , R. Billington, , L. Ferrer, , H. Foerster, , C. A. Fulcher, , I. M. Keseler, , A. Kothari, , M. Krummenacker, , M. Latendresse, , L. A. Mueller, , et al. (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 44, D471–D480
https://doi.org/10.1093/nar/gkv1164
pmid: 26527732
|
| 16 |
M. Kanehisa, , Y. Sato, , M. Kawashima, , M. Furumichi, and M. Tanabe, (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res., 44, D457–D462
https://doi.org/10.1093/nar/gkv1070
pmid: 26476454
|
| 17 |
K. Dreher, (2014) Putting the Plant Metabolic Network Pathway Databases to Work: Going Offline to Gain New Capabilities. In Plant Metabolism: Methods and Protocols. Sriram G. Totowa, ed., pp. 151–171. NJ: Humana Press
|
| 18 |
Z. A. King, , J. Lu, , A. Dräger, , P. Miller, , S. Federowicz, , J. A. Lerman, , A. Ebrahim, , B. O. Palsson, and N. E. Lewis, (2016) BiGG Models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res., 44, D515–D522
https://doi.org/10.1093/nar/gkv1049
pmid: 26476456
|
| 19 |
V. Chelliah, , C. Laibe, and N. Le Novère, (2013) BioModels Database: a repository of mathematical models of biological processes. Methods Mol. Biol., 1021, 189–199
https://doi.org/10.1007/978-1-62703-450-0_10
pmid: 23715986
|
| 20 |
M. Ganter, , T. Bernard, , S. Moretti, , J. Stelling, and M. Pagni, (2013) MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks. Bioinformatics, 29, 815–816
https://doi.org/10.1093/bioinformatics/btt036
pmid: 23357920
|
| 21 |
D. Croft, , G. O’Kelly, , G. Wu, , R. Haw, , M. Gillespie, , L. Matthews, , M. Caudy, , P. Garapati, , G. Gopinath, , B. Jassal, , et al. (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res., 39, D691–D697
https://doi.org/10.1093/nar/gkq1018
pmid: 21067998
|
| 22 |
A. Fabregat, , K. Sidiropoulos, , P. Garapati, , M. Gillespie, , K. Hausmann, , R. Haw, , B. Jassal, , S. Jupe, , F. Korninger, , S. McKay, , et al. (2016) The Reactome pathway Knowledgebase. Nucleic Acids Res., 44, D481–D487
https://doi.org/10.1093/nar/gkv1351
pmid: 26656494
|
| 23 |
S. Naithani, , J. Preece, , P. D’Eustachio, , P. Gupta, , V. Amarasinghe, , P. D. Dharmawardhana, , G. Wu, , A. Fabregat, , J. L. Elser, , J. Weiser, , et al. (2017) Plant Reactome: a resource for plant pathways and comparative analysis. Nucleic Acids Res., 45, D1029–D1039
https://doi.org/https://doi.org/10.1093/nar/gkw932
pmid: 27799469
|
| 24 |
R. Caspi, , T. Altman, , K. Dreher, , C. A. Fulcher, , P. Subhraveti, , I. M. Keseler, , A. Kothari, , M. Krummenacker, , M. Latendresse, , L. A. Mueller, , et al. (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 40, D742–D753
https://doi.org/10.1093/nar/gkr1014
pmid: 22102576
|
| 25 |
R. Caspi, , T. Altman, , R. Billington, , K. Dreher, , H. Foerster, , C. A. Fulcher, , T. A. Holland, , I. M. Keseler, , A. Kothari, , A. Kubo, , et al. (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res., 42, D459–D471
https://doi.org/10.1093/nar/gkt1103
pmid: 24225315
|
| 26 |
R. Caspi, , T. Altman, , J. M. Dale, , K. Dreher, , C. A. Fulcher, , F. Gilham, , P. Kaipa, , A. S. Karthikeyan, , A. Kothari, , M. Krummenacker, , et al. (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 38, D473–D479
https://doi.org/10.1093/nar/gkp875
pmid: 19850718
|
| 27 |
K. R. Christie, , S. Weng, , R. Balakrishnan, , M. C. Costanzo, , K. Dolinski, , S. S. Dwight, , S. R. Engel, , B. Feierbach, , D. G. Fisk, , J. E. Hirschman, , et al. (2004) Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms. Nucleic Acids Res., 32, D311–D314
https://doi.org/10.1093/nar/gkh033
pmid: 14681421
|
| 28 |
L. A. Mueller, , P. Zhang, and S. Y. Rhee, (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol., 132, 453–460
https://doi.org/10.1104/pp.102.017236
pmid: 12805578
|
| 29 |
C. Liang, , P. Jaiswal, , C. Hebbard, , S. Avraham, , E. S. Buckler, , T. Casstevens, , B. Hurwitz, , S. McCouch, , J. Ni, , A. Pujar, , et al. (2008) Gramene: a growing plant comparative genomics resource. Nucleic Acids Res., 36, D947–D953
https://doi.org/10.1093/nar/gkm968
pmid: 17984077
|
| 30 |
A. V. Evsikov, , M. E. Dolan, , M. P. Genrich, , E. Patek, and C. J. Bult, (2009) MouseCyc: a curated biochemical pathways database for the laboratory mouse. Genome Biol., 10, R84
https://doi.org/10.1186/gb-2009-10-8-r84
pmid: 19682380
|
| 31 |
S. Seo, and H. A. Lewin, (2009) Reconstruction of metabolic pathways for the cattle genome. BMC Syst. Biol., 3, 33
https://doi.org/10.1186/1752-0509-3-33
pmid: 19284618
|
| 32 |
E. Urbanczyk-Wochniak, and L. W. Sumner, (2007) MedicCyc: a biochemical pathway database for Medicago truncatula. Bioinformatics, 23, 1418–1423
https://doi.org/10.1093/bioinformatics/btm040
pmid: 17344243
|
| 33 |
P. Zhang, , K. Dreher, , A. Karthikeyan, , A. Chi, , A. Pujar, , R. Caspi, , P. Karp, , V. Kirkup, , M. Latendresse, , C. Lee, , et al. (2010) Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants. Plant Physiol., 153, 1479–1491
https://doi.org/10.1104/pp.110.157396
pmid: 20522724
|
| 34 |
P. Fey, , P. Gaudet, , T. Curk, , B. Zupan, , E. M. Just, , S. Basu, , S. N. Merchant, , Y. A. Bushmanova, , G. Shaulsky, , W. A. Kibbe, , et al. (2009) dictyBase—a Dictyostelium bioinformatics resource update. Nucleic Acids Res., 37, D515–D519
https://doi.org/10.1093/nar/gkn844
pmid: 18974179
|
| 35 |
M. A. Doyle, , J. I. MacRae, , D. P. De Souza, , E. C. Saunders, , M. J. McConville, and V. A. Likić, (2009) LeishCyc: a biochemical pathways database for Leishmania major. BMC Syst. Biol., 3, 57
https://doi.org/10.1186/1752-0509-3-57
pmid: 19497128
|
| 36 |
P. May, , J. O. Christian, , S. Kempa, and D. Walther, (2009) ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii. BMC Genomics, 10, 209
https://doi.org/10.1186/1471-2164-10-209
pmid: 19409111
|
| 37 |
A. Bombarely, , N. Menda, , I. Y. Tecle, , R. M. Buels, , S. Strickler, , T. Fischer-York, , A. Pujar, , J. Leto, , J. Gosselin, and L. A. Mueller, (2011) The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl. Nucleic Acids Res., 39, D1149–D1155
https://doi.org/10.1093/nar/gkq866
pmid: 20935049
|
| 38 |
E. E. Snyder, , N. Kampanya, , J. Lu, , E. K. Nordberg, , H. R. Karur, , M. Shukla, , J. Soneja, , Y. Tian, , T. Xue, , H. Yoo, , et al. (2007) PATRIC: the VBI PathoSystems Resource Integration Center. Nucleic Acids Res., 35, D401–D406
https://doi.org/10.1093/nar/gkl858
pmid: 17142235
|
| 39 |
, J Vincent., , Z Dai., , C Ravel., , F Choulet., , S Mouzeyar., M. F Bouzidi,., , M Agier. and , P Martre. (2013) dbWFA: a web-based database for functional annotation of Triticum aestivum transcripts. Database (Oxford). 2013, bat014
https://doi.org/10.1093/database/bat014
|
| 40 |
M. Obertello, , S. Shrivastava, , M. S. Katari, and G. M. Coruzzi, (2015) Cross-species network analysis uncovers conserved nitrogen-regulated network modules in rice. Plant Physiol., 168, 1830–1843
https://doi.org/10.1104/pp.114.255877
pmid: 26045464
|
| 41 |
K. Shiratake, and M. Suzuki, (2016) Omics studies of citrus, grape and rosaceae fruit trees. Breed. Sci., 66, 122–138
https://doi.org/10.1270/jsbbs.66.122
pmid: 27069397
|
| 42 |
K. Cho, , K. S. Cho, , H. B. Sohn, , I. J. Ha, , S. Y. Hong, , H. Lee, , Y. M. Kim, and M. H. Nam, (2016) Network analysis of the metabolome and transcriptome reveals novel regulation of potato pigmentation. J. Exp. Bot., 67, 1519–1533
https://doi.org/10.1093/jxb/erv549
pmid: 26733692
|
| 43 |
L. Chae, , T. Kim, , R. Nilo-Poyanco, and S. Y. Rhee, (2014) Genomic signatures of specialized metabolism in plants. Science, 344, 510–513
https://doi.org/10.1126/science.1252076
pmid: 24786077
|
| 44 |
O. Tzfadia, , D. Amar, , L. M. T. Bradbury, , E. T. Wurtzel, and R. Shamir, (2012) The MORPH algorithm: ranking candidate genes for membership in Arabidopsis and tomato pathways. Plant Cell, 24, 4389–4406
https://doi.org/10.1105/tpc.112.104513
pmid: 23204403
|
| 45 |
M. Kanehisa, , S. Goto, , Y. Sato, , M. Kawashima, , M. Furumichi, and M. Tanabe, (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res., 42, D199–D205
https://doi.org/10.1093/nar/gkt1076
pmid: 24214961
|
| 46 |
S. Schmeier, , T. Alam, , M. Essack, and V. B. Bajic, (2017) TcoF-DB v2: update of the database of human and mouse transcription co-factors and transcription factor interactions. Nucleic Acids Res., 45, D145–D150
https://doi.org/https://doi.org/10.1093/nar/gkw1007.
pmid: 27789689
|
| 47 |
P. Li, , R. G. Tompkins, and W. Xiao, (2017) KERIS: kaleidoscope of gene responses to inflammation between species. Nucleic Acids Res., 45, D908–D914
https://doi.org/https://doi.org/10.1093/nar/gkw974
|
| 48 |
Y. Wang, , L. Xu, , R. Thilmony, , F. M. You, , Y. Q. Gu, and D. Coleman-Derr, (2016) PIECE 2.0: an update for the plant gene structure comparison and evolution database. Nucleic Acids Res., 45, 1015–1020
https://doi.org/https://doi.org/10.1093/nar/gks1109P
pmid: 27742820
|
| 49 |
M. Kotera, , M. Hirakawa, , T. Tokimatsu, , S. Goto, and M. Kanehisa, (2012) The KEGG databases and tools facilitating omics analysis: latest developments involving human diseases and pharmaceuticals. Methods Mol. Biol., 802, 19–39
https://doi.org/10.1007/978-1-61779-400-1_2
pmid: 22130871
|
| 50 |
L. Bianco, , S. Riccadonna, , E. Lavezzo, , M. Falda, , E. Formentin, , D. Cavalieri, , S. Toppo, and P. Fontana, (2016) Pathway Inspector: a pathway based web application for RNAseq analysis of model and non-model organisms. Bioinformatics, btw636
https://doi.org/10.1093/bioinformatics/btw636
pmid: 27795226
|
| 51 |
S. Li, , K. Shui, , Y. Zhang, , Y. Lv, , W. Deng, , S. Ullah, , L. Zhang, and Y. Xue, (2016) CGDB: a database of circadian genes in eukaryotes. Nucleic Acids Res., 45, D397–D403
https://doi.org/https://doi.org/10.1093/nar/gkw1028
pmid: 27789706
|
| 52 |
I. A. Chen, , V. M. Markowitz, , K. Chu, , K. Palaniappan, , E. Szeto, , M. Pillay, , A. Ratner, , J. Huang, , E. Andersen, , M. Huntemann, , et al. (2017) IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res., 45, D507–D516
https://doi.org/https://doi.org/10.1093/nar/gkw929
pmid: 27738135
|
| 53 |
P. A. Saa, and L. K. Nielsen, (2016) Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models. Bioinformatics, 32, 3807–3814
https://doi.org/10.1093/bioinformatics/btw555
pmid: 27559155
|
| 54 |
P. W. Rose, , A. Prlic, , A. Altunkaya, , C. Bi, , A. R. Bradley, , C. H. Christie, , L. D. Costanzo, , J. M. Duarte, , S. Dutta, , Z. Feng, ,et al. (2017) The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res., 45, D271–D281
https://doi.org/https://doi.org/10.1093/nar/gkw1000
pmid: 27794042
|
| 55 |
F. Büchel, , N. Rodriguez, , N. Swainston, , C. Wrzodek, , T. Czauderna, , R. Keller, , F. Mittag, , M. Schubert, , M. Glont, , M. Golebiewski, ,et al. (2013) Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst. Biol., 7, 116
https://doi.org/10.1186/1752-0509-7-116
pmid: 24180668
|
| 56 |
A. Naldi, , P. T. Monteiro, , C. Müssel, , the Consortium for Logical Models and Tools,H. A. Kestler, , D. Thieffry, , I. Xenarios, , J. Saez-Rodriguez, , T. Helikar, and C. Chaouiya, (2015) Cooperative development of logical modelling standards and tools with CoLoMoTo. Bioinformatics, 31, 1154–1159
https://doi.org/10.1093/bioinformatics/btv013
pmid: 25619997
|
| 57 |
N. Le Novère, (2015) Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet., 16, 146–158
https://doi.org/10.1038/nrg3885
pmid: 25645874
|
| 58 |
P. Zhang, , L. Tao, , X. Zeng, , C. Qin, , S. Chen, , F. Zhu, , Z. Li, , Y. Jiang, , W. Chen, and Y. Z. Chen, (2016) A protein network descriptor server and its use in studying protein, disease, metabolic and drug targeted networks. Brief. Bioinform., bbw071
https://doi.org/10.1093/bib/bbw071
pmid: 27542402
|
| 59 |
S. Moretti, , O. Martin, , T. Van Du Tran, , A. Bridge, , A. Morgat, and M. Pagni, (2016) MetaNetX/MNXref–reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks. Nucleic Acids Res., 44, D523–D526
https://doi.org/10.1093/nar/gkv1117
pmid: 26527720
|
| 60 |
Y. N. Ye, , B. G. Ma, , C. Dong, , H. Zhang, , L. L. Chen, and F. B. Guo, (2016) A novel proposal of a simplified bacterial gene set and the neo-construction of a general minimized metabolic network. Sci. Rep., 6, 35082
https://doi.org/10.1038/srep35082
pmid: 27713529
|
| 61 |
R. A. Thompson, , S. Dahal, , S. Garcia, , I. Nookaew, and C. T. Trinh, (2016) Exploring complex cellular phenotypes and model-guided strain design with a novel genome-scale metabolic model of Clostridium thermocellum DSM 1313 implementing an adjustable cellulosome. Biotechnol. Biofuels, 9, 194
https://doi.org/10.1186/s13068-016-0607-x
pmid: 27602057
|
| 62 |
R. G. van Heck, , M. Ganter, , V. A. Martins Dos Santos, and J. Stelling, (2016) Efficient reconstruction of predictive consensus metabolic network models. PLoS Comput. Biol., 12, e1005085
https://doi.org/10.1371/journal.pcbi.1005085
pmid: 27563720
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|