Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2016, Vol. 4 Issue (4) : 302-309    https://doi.org/10.1007/s40484-016-0082-1
REVIEW
Computational inference of physical spatial organization of eukaryotic genomes
Bingxiang Xu,Zhihua Zhang()
CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
 Download: PDF(317 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: Chromosomes are packed in the cell’s nucleus, and chromosomal conformation is critical to nearly all intranuclear biological reactions, including gene transcription and DNA replication. Nevertheless, chromosomal conformation is largely a mystery in terms of its formation and the regulatory machinery that accesses it.

Results: Thanks to recent technological developments, we can now probe chromatin interaction in substantial detail, boosting research interest in modeling genome spatial organization. Here, we review the current computational models that simulate chromosome dynamics, and explain the physical and topological properties of chromosomal conformation, as inferred from these newly generated data.

Conclusion: Novel models shall be developed to address questions beyond averaged structure in the near further.

Author Summary  Genome is always working in the 3D space of the nucleus, and its 3D structure is critical for gene regulation. We review the computational methods that rebuild genome 3D structures from high throughput technologies, such as Hi-C. We also discuss the pros and cons in current methods and possible further directions in the field.
Keywords 3D genome      models      simulation     
PACS:     
Fund: 
Corresponding Author(s): Zhihua Zhang   
Online First Date: 17 November 2016    Issue Date: 01 December 2016
 Cite this article:   
Bingxiang Xu,Zhihua Zhang. Computational inference of physical spatial organization of eukaryotic genomes[J]. Quant. Biol., 2016, 4(4): 302-309.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-016-0082-1
https://academic.hep.com.cn/qb/EN/Y2016/V4/I4/302
Fig.1  Illustration of polymer models showing the dynamics of chromatin loops. (A) Dynamic loop model. (B) Random loop model. (C) SBS model. (D) Loop extrusion model.
1 Dillon, N. (2008) The impact of gene location in the nucleus on transcriptional regulation. Dev. Cell, 15, 182–186
https://doi.org/10.1016/j.devcel.2008.07.013 pmid: 18694558
2 Miele, A. and Dekker, J. (2008) Long-range chromosomal interactions and gene regulation. Mol. Biosyst., 4, 1046–1057
https://doi.org/10.1039/b803580f pmid: 18931780
3 Dekker, J., Rippe, K., Dekker, M., Kleckner, N. (2002) Capturing chromosome conformation. Science, 295,1306–1311
https://doi.org/10.1126/science.1067799
4 Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289–293
https://doi.org/10.1126/science.1181369
5 Cremer, M., Grasser, F., Lanctôt, C., Müller, S., Neusser, M., Zinner, R., Solovei, I. and Cremer, T. (2008) Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. In The Nucleus, Hancock. R. Ed. 463, 205–239, Germany: Springer
https://doi.org/10.1007/978-1-59745-406-3_15 pmid: 18951171
6 Song, F., Chen, P., Sun, D., Wang, M., Dong, L., Liang, D., Xu, R. M., Zhu, P. and Li, G. (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science, 344, 376–380
https://doi.org/10.1126/science.1251413 pmid: 24763583
7 Zhu, P. and Li, G. (2016) Structural insights of nucleosome and the 30-nm chromatin fiber. Curr. Opin. Struct. Biol., 36, 106–115
https://doi.org/10.1016/j.sbi.2016.01.013 pmid: 26872330
8 Naumova, N., Imakaev, M., Fudenberg, G., Zhan, Y., Lajoie, B. R., Mirny, L. A. and Dekker, J. (2013) Organization of the mitotic chromosome. Science, 342, 948–953
https://doi.org/10.1126/science.1236083 pmid: 24200812
9 Tang, Z., Luo, O. J., Li, X., Zheng, M., Zhu, J. J., Szalaj, P., Trzaskoma, P., Magalska, A., Wlodarczyk, J., Ruszczycki, B., (2015) CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell, 163, 1611–1627
https://doi.org/10.1016/j.cell.2015.11.024 pmid: 26686651
10 Bickmore, W. A. (2013) The spatial organization of the human genome. Annu. Rev. Genomics Hum. Genet., 14, 67–84
https://doi.org/10.1146/annurev-genom-091212-153515 pmid: 23875797
11 Selvaraj, S., R Dixon, J., Bansal, V. and Ren, B. (2013) Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol., 31, 1111–1118
https://doi.org/10.1038/nbt.2728 pmid: 24185094
12 Klenin, K., Merlitz, H. and Langowski, J. (1998) A Brownian dynamics program for the simulation of linear and circular DNA and other wormlike chain polyelectrolytes. Biophys. J., 74, 780–788
https://doi.org/10.1016/S0006-3495(98)74003-2 pmid: 9533691
13 Bednar, J., Furrer, P., Stasiak, A., Dubochet, J., Egelman, E. H. and Bates, A. D. (1994) The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix: possible implications for DNA structure in vivo. J. Mol. Biol., 235, 825–847
https://doi.org/10.1006/jmbi.1994.1042 pmid: 8289322
14 Gr�nbech-Jensen, N., Mashl, R. J., Bruinsma, R. F. and Gelbart, W. M. (1997) Counterion-induced attraction between rigid polyelectrolytes. Phys. Rev. Lett., 78, 2477–2480
https://doi.org/10.1103/PhysRevLett.78.2477
15 Langowski, J. and Heermann, D. W. (2007) Computational modeling of the chromatin fiber. Semin. Cell. Dev. Biol., 235, 659–667
16 Meluzzi, D. and Arya, G. (2013) Recovering ensembles of chromatin conformations from contact probabilities. Nucleic Acids Res., 41, 63–75
https://doi.org/10.1093/nar/gks1029 pmid: 23143266
17 Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F. and de Laat, W. (2002) Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell, 10, 1453–1465
https://doi.org/10.1016/S1097-2765(02)00781-5 pmid: 12504019
18 Brackley, C. A., Brown, J. M., Waithe, D., Babbs, C., Davies, J., Hughes, J. R., Buckle, V. J. and Marenduzzo, D. (2016) Predicting the three-dimensional folding of cis-regulatory regions in mammalian genomes using bioinformatic data and polymer models. Genome Biol., 17, 59
https://doi.org/10.1186/s13059-016-0909-0 pmid: 27036497
19 Rosa, A. and Everaers, R. (2008) Structure and dynamics of interphase chromosomes. PLoS Comput. Biol., 4, e1000153
https://doi.org/10.1371/journal.pcbi.1000153 pmid: 18725929
20 Tokuda, N., Terada, T. P. and Sasai, M. (2012) Dynamical modeling of three-dimensional genome organization in interphase budding yeast. Biophys. J., 102, 296–304
https://doi.org/10.1016/j.bpj.2011.12.005 pmid: 22339866
21 Fudenberg, G. and Mirny, L. A. (2012) Higher-order chromatin structure: bridging physics and biology. Curr. Opin. Genet. Dev., 22, 115–124
https://doi.org/10.1016/j.gde.2012.01.006 pmid: 22360992
22 Tark-Dame, M., van Driel, R. and Heermann, D. W. (2011) Chromatin folding—from biology to polymer models and back. J. Cell Sci., 124, 839–845
https://doi.org/10.1242/jcs.077628 pmid: 21378305
23 Mateos-Langerak, J., Bohn, M., de Leeuw, W., Giromus, O., Manders, E. M., Verschure, P. J., Indemans, M. H., Gierman, H. J., Heermann, D. W., van Driel, R., (2009) Spatially confined folding of chromatin in the interphase nucleus. Proc. Natl. Acad. Sci. USA, 106, 3812–3817
https://doi.org/10.1073/pnas.0809501106 pmid: 19234129
24 Marko, J. F. and Siggia, E. D. (1997) Polymer models of meiotic and mitotic chromosomes. Mol. Biol. Cell, 8, 2217–2231
https://doi.org/10.1091/mbc.8.11.2217 pmid: 9362064
25 Göndör, A. and Ohlsson, R. (2009) Chromosome crosstalk in three dimensions. Nature, 461, 212–217
https://doi.org/10.1038/nature08453 pmid: 19741702
26 Kadauke, S. and Blobel, G. A. (2009) Chromatin loops in gene regulation. Biochim. Biophys. Acta, 1789, 17–25
https://doi.org/10.1016/j.bbagrm.2008.07.002 pmid: 18675948
27 Bohn, M. and Heermann, D. W. (2010) Diffusion-driven looping provides a consistent framework for chromatin organization. PLoS One, 5, e12218
https://doi.org/10.1371/journal.pone.0012218 pmid: 20811620
28 Nicodemi, M., Panning, B. and Prisco, A. (2008) A thermodynamic switch for chromosome colocalization. Genetics, 179, 717–721
https://doi.org/10.1534/genetics.107.083154 pmid: 18493085
29 Alipour, E. and Marko, J. F. (2012) Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res., 40, 11202–11212
https://doi.org/10.1093/nar/gks925 pmid: 23074191
30 Grosberg, A. Iu., Nechaev, S. K. and Shakhnovich, E. I. (1988) The role of topological limitations in the kinetics of homopolymer collapse and self-assembly of biopolymers. Biofizika, 33, 247–253
pmid: 3390477
31 Nicodemi, M., Panning, B. and Prisco, A. (2008) A thermodynamic switch for chromosome colocalization. Genetics, 179, 717–721
https://doi.org/10.1534/genetics.107.083154 pmid: 18493085
32 Barbieri, M., Chotalia, M., Fraser, J., Lavitas, L. M., Dostie, J., Pombo, A. and Nicodemi, M. (2012) Complexity of chromatin folding is captured by the strings and binders switch model. Proc. Natl. Acad. Sci. USA, 109, 16173–16178
https://doi.org/10.1073/pnas.1204799109 pmid: 22988072
33 Goloborodko, A., Marko, J. F. and Mirny, L. A. (2016) Chromosome compaction by active loop extrusion. Biophys. J., 110, 2162–2168
https://doi.org/10.1016/j.bpj.2016.02.041 pmid: 27224481
34 Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159, 1665–1680
https://doi.org/10.1016/j.cell.2014.11.021 pmid: 25497547
35 Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N., Mimy, L.A. (2015) Formation of chromosomal domains by loop extrusion. Cell Rep., 15, 2038–2049
36 Gruber, S. (2014) Multilayer chromosome organization through DNA bending, bridging and extrusion. Curr. Opin. Microbiol., 22, 102–110
https://doi.org/10.1016/j.mib.2014.09.018 pmid: 25460803
37 Simonis, M., Klous, P., Splinter, E., Moshkin, Y., Willemsen, R., de Wit, E., van Steensel, B. and de Laat, W. (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet., 38, 1348–1354
https://doi.org/10.1038/ng1896 pmid: 17033623
38 Dostie, J., Richmond, T. A., Arnaout, R. A., Selzer, R. R., Lee, W. L., Honan, T. A., Rubio, E. D., Krumm, A., Lamb, J., Nusbaum, C., (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res., 16, 1299–1309
https://doi.org/10.1101/gr.5571506 pmid: 16954542
39 Zhang, J., Poh, H. M., Peh, S. Q., Sia, Y. Y., Li, G., Mulawadi, F. H., Goh, Y., Fullwood, M. J., Sung, W. K., Ruan, X., (2012) ChIA-PET analysis of transcriptional chromatin interactions. Methods, 58, 289–299
https://doi.org/10.1016/j.ymeth.2012.08.009 pmid: 22926262
40 Denker, A. and de Laat, W. (2016) The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev., 30, 1357–1382
https://doi.org/10.1101/gad.281964.116 pmid: 27340173
41 Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y. J., Lee, C., Shendure, J., Fields, S., Blau, C. A. and Noble, W. S. (2010) A three-dimensional model of the yeast genome. Nature, 465, 363–367
https://doi.org/10.1038/nature08973 pmid: 20436457
42 Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A. and Cavalli, G. (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell, 148, 458–472
https://doi.org/10.1016/j.cell.2012.01.010 pmid: 22265598
43 Zhang, Y., McCord, R. P., Ho, Y. J., Lajoie, B. R., Hildebrand, D. G., Simon, A. C., Becker, M. S., Alt, F. W. and Dekker, J. (2012) Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell, 148, 908–921
https://doi.org/10.1016/j.cell.2012.02.002 pmid: 22341456
44 Hübner, M. R. and Spector, D. L. (2010) Chromatin dynamics. Annu. Rev. Biophys., 39, 471–489
https://doi.org/10.1146/annurev.biophys.093008.131348 pmid: 20462379
45 Lesne, A., Riposo, J., Roger, P., Cournac, A. and Mozziconacci, J. (2014) 3D genome reconstruction from chromosomal contacts. Nat. Methods, 11, 1141–1143
https://doi.org/10.1038/nmeth.3104 pmid: 25240436
46 Zhang, Z., Li, G., Toh, K. C. and Sung, W. K. (2013) 3D chromosome modeling with semi-definite programming and Hi-C data. J. Comput. Biol., 20, 831–846
https://doi.org/10.1089/cmb.2013.0076 pmid: 24195706
47 Varoquaux, N., Ay, F., Noble, W. S. and Vert, J. P. (2014) A statistical approach for inferring the 3D structure of the genome. Bioinformatics, 30, i26–i33
https://doi.org/10.1093/bioinformatics/btu268 pmid: 24931992
48 Peng, C., Fu, L. Y., Dong, P. F., Deng, Z. L., Li, J. X., Wang, X. T. and Zhang, H. Y. (2013) The sequencing bias relaxed characteristics of Hi-C derived data and implications for chromatin 3D modeling. Nucleic Acids Res., 41, e183
https://doi.org/10.1093/nar/gkt745 pmid: 23965308
49 Ba�, D. and Marti-Renom, M. A. (2012) Genome structure determination via 3C-based data integration by the Integrative Modeling Platform. Methods, 58, 300–306
https://doi.org/10.1016/j.ymeth.2012.04.004 pmid: 22522224
50 Zou, C., Zhang, Y. and Ouyang, Z. (2016) HSA: integrating multi-track Hi-C data for genome-scale reconstruction of 3D chromatin structure. Genome Biol., 17, 40
https://doi.org/10.1186/s13059-016-0896-1 pmid: 26936376
51 Nowotny, J., Ahmed, S., Xu, L., Oluwadare, O., Chen, H., Hensley, N., Trieu, T., Cao, R. and Cheng, J. (2015) Iterative reconstruction of three-dimensional models of human chromosomes from chromosomal contact data. BMC Bioinformatics, 16, 338
https://doi.org/10.1186/s12859-015-0772-0 pmid: 26493399
52 Trieu, T. and Cheng, J. (2014) Large-scale reconstruction of 3D structures of human chromosomes from chromosomal contact data. Nucleic Acids Res., 42, e52
https://doi.org/10.1093/nar/gkt1411 pmid: 24465004
53 Serra, F., Di Stefano, M., Spill, Y. G., Cuartero, Y., Goodstadt, M., Ba�, D. and Marti-Renom, M. A. (2015) Restraint-based three-dimensional modeling of genomes and genomic domains. FEBS Lett., 589, 2987–2995
https://doi.org/10.1016/j.febslet.2015.05.012 pmid: 25980604
54 Yaffe, E. and Tanay, A. (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet., 43, 1059–1065
https://doi.org/10.1038/ng.947 pmid: 22001755
55 Wang, S., Xu, J. and Zeng, J. (2015) Inferential modeling of 3D chromatin structure. Nucleic Acids Res., 43, e54.
https://doi.org/10.1093/nar/gkv100 pmid: 25690896
56 Tjong, H., Li, W., Kalhor, R., Dai, C., Hao, S., Gong, K., Zhou, Y., Li, H., Zhou, X. J., Le Gros, M. A., (2016) Population-based 3D genome structure analysis reveals driving forces in spatial genome organization. Proc. Natl. Acad. Sci. USA, 113, E1663–E1672
https://doi.org/10.1073/pnas.1512577113 pmid: 26951677
57 Rousseau, M., Fraser, J., Ferraiuolo, M. A., Dostie, J. and Blanchette, M. (2011) Three-dimensional modeling of chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling. BMC Bioinformatics, 12, 414
https://doi.org/10.1186/1471-2105-12-414 pmid: 22026390
58 Hu, M., Deng, K., Qin, Z., Dixon, J., Selvaraj, S., Fang, J., Ren, B. and Liu, J. S. (2013) Bayesian inference of spatial organizations of chromosomes. PLoS Comput. Biol., 9, e1002893
https://doi.org/10.1371/journal.pcbi.1002893 pmid: 23382666
59 He, C., Wang, X. and Zhang, M. Q. (2014) Nucleosome eviction and multiple co-factor binding predict estrogen-receptor-alpha-associated long-range interactions. Nucleic Acids Res., 42, 6935–6944
https://doi.org/10.1093/nar/gku327 pmid: 24782518
60 Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376– 380
https://doi.org/10.1038/nature11082 pmid: 22495300
61 Ho, J. W., Jung, Y. L., Liu, T., Alver, B. H., Lee, S., Ikegami, K., Sohn, K. A., Minoda, A., Tolstorukov, M. Y., Appert, A., (2014) Comparative analysis of metazoan chromatin organization. Nature, 512, 449–452
https://doi.org/10.1038/nature13415 pmid: 25164756
62 Fortin, J. P. and Hansen, K. D. (2015) Reconstructing A/B compartments as revealed by Hi-C using long-range correlations in epigenetic data. Genome Biol., 16, 180
https://doi.org/10.1186/s13059-015-0741-y pmid: 26316348
63 Huang, J., Marco, E., Pinello, L. and Yuan, G. C. (2015) Predicting chromatin organization using histone marks. Genome Biol., 16, 162
https://doi.org/10.1186/s13059-015-0740-z pmid: 26272203
64 Zhang, Z. and Zhang, M. Q. (2011) Histone modification profiles are predictive for tissue/cell-type specific expression of both protein-coding and microRNA genes. BMC Bioinformatics, 12, 155
https://doi.org/10.1186/1471-2105-12-155 pmid: 21569556
65 Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Peng, W., Zhang, M. Q., (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet., 40, 897–903
https://doi.org/10.1038/ng.154 pmid: 18552846
66 Karlić, R., Chung, H. R., Lasserre, J., Vlahovicek, K. and Vingron, M. (2010) Histone modification levels are predictive for gene expression. Proc. Natl. Acad. Sci. USA, 107, 2926–2931
https://doi.org/10.1073/pnas.0909344107 pmid: 20133639
67 Allis, C. D., Jenuwein, T., Reinberg, D., Caparros, M. (2015) Epigenetics. New York: Cold Spring Harbor Laboratory Press
68 Zhu, Y., Chen, Z., Zhang, K., Wang, M., Medovoy, D., Whitaker, J. W., Ding, B., Li, N., Zheng, L. and Wang, W. (2016) Constructing 3D interaction maps from 1D epigenomes. Nat. Commun., 7, 10812
https://doi.org/10.1038/ncomms10812 pmid: 26960733
69 Chen, Y., Wang, Y., Xuan, Z., Chen, M. and Zhang, M. Q. (2016) De novo deciphering three-dimensional chromatin interaction and topological domains by wavelet transformation of epigenetic profiles. Nucleic Acids Res., 44, e106
https://doi.org/10.1093/nar/gkw225 pmid: 27060148
70 Whalen, S., Truty, R. M. and Pollard, K. S. (2016) Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat. Genet., 48, 488–496
https://doi.org/10.1038/ng.3539 pmid: 27064255
71 The ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74
https://doi.org/10.1038/nature11247 pmid: 22955616
72 Kornberg, R. D. and Stryer, L. (1988) Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Nucleic Acids Res., 16, 6677–6690
https://doi.org/10.1093/nar/16.14.6677 pmid: 3399412
73 Kalhor, R., Tjong, H., Jayathilaka, N., Alber, F. and Chen, L. (2011) Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol., 30, 90–98
https://doi.org/10.1038/nbt.2057 pmid: 22198700
74 Giorgetti, L., Galupa, R., Nora, E. P., Piolot, T., Lam, F., Dekker, J., Tiana, G. and Heard, E. (2014) Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell, 157, 950–963
https://doi.org/10.1016/j.cell.2014.03.025 pmid: 24813616
[1] Xing Chen, Yinglei Lai. A censored-Poisson model based approach to the analysis of RNA-seq data[J]. Quant. Biol., 2020, 8(2): 155-171.
[2] Shansong Liu, Kui Hua, Sijie Chen, Xuegong Zhang. Comprehensive simulation of metagenomic sequencing data with non-uniform sampling distribution[J]. Quant. Biol., 2018, 6(2): 175-185.
[3] Zhijun Han, Gang Wei. Computational tools for Hi-C data analysis[J]. Quant. Biol., 2017, 5(3): 215-225.
[4] Mohamed Nadhir Djekidel, Mengjie Wang, Michael Q. Zhang, Juntao Gao. HiC-3DViewer: a new tool to visualize Hi-C data in 3D space[J]. Quant. Biol., 2017, 5(2): 183-190.
[5] Juntao Gao, Xusan Yang, Mohamed Nadhir Djekidel, Yang Wang, Peng Xi, Michael Q. Zhang. Developing bioimaging and quantitative methods to study 3D genome[J]. Quant. Biol., 2016, 4(2): 129-147.
[6] Arwen Meister, Chao Du, Ye Henry Li, Wing Hung Wong. Modeling stochastic noise in gene regulatory systems[J]. Quant. Biol., 2014, 2(1): 1-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed