|
|
|
Modeling stochastic noise in gene regulatory systems |
Arwen Meister,Chao Du,Ye Henry Li,Wing Hung Wong( ) |
| Computational Biology Lab, Bio-X Program, Stanford University, Stanford, CA 94305, USA |
|
|
|
|
Abstract The Master equation is considered the gold standard for modeling the stochastic mechanisms of gene regulation in molecular detail, but it is too complex to solve exactly in most cases, so approximation and simulation methods are essential. However, there is still a lack of consensus about the best way to carry these out. To help clarify the situation, we review Master equation models of gene regulation, theoretical approximations based on an expansion method due to N.G. van Kampen and R. Kubo, and simulation algorithms due to D.T. Gillespie and P. Langevin. Expansion of the Master equation shows that for systems with a single stable steady-state, the stochastic model reduces to a deterministic model in a first-order approximation. Additional theory, also due to van Kampen, describes the asymptotic behavior of multistable systems. To support and illustrate the theory and provide further insight into the complex behavior of multistable systems, we perform a detailed simulation study comparing the various approximation and simulation methods applied to synthetic gene regulatory systems with various qualitative characteristics. The simulation studies show that for large stochastic systems with a single steady-state, deterministic models are quite accurate, since the probability distribution of the solution has a single peak tracking the deterministic trajectory whose variance is inversely proportional to the system size. In multistable stochastic systems, large fluctuations can cause individual trajectories to escape from the domain of attraction of one steady-state and be attracted to another, so the system eventually reaches a multimodal probability distribution in which all stable steady-states are represented proportional to their relative stability. However, since the escape time scales exponentially with system size, this process can take a very long time in large systems.
|
| Keywords
gene regulation
stochastic modeling
simulation
Master equation
Gillespie algorithm
Langevin equation
|
|
Corresponding Author(s):
Wing Hung Wong
|
|
Issue Date: 25 June 2014
|
|
| 1 |
Swain, P. S., Elowitz, M. B. and Siggia, E. D. (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. U.S.A., 99, 12795–12800. Available at: and doi: 10.1073/pnas.162041399 pmid: 12237400
|
| 2 |
Paulsson, J. (2004) Summing up the noise in gene networks. Nature, 427, 415–418. Available at: and doi: 10.1038/nature02257 pmid: 14749823
|
| 3 |
Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Sci. Signal., 297, 1183.
|
| 4 |
Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. and van Oudenaarden, A. (2002) Regulation of noise in the expression of a single gene. Nat. Genet., 31, 69–73. Available at: and doi: 10.1038/ng869 pmid: 11967532
|
| 5 |
Blake, W. J.,Kaern, M., Cantor, C. R. and Collins, J. J. (2003) Noise in eukaryotic gene expression. Nature, 422, 633–637 pmid: 12687005
|
| 6 |
Rao, C. V., Wolf, D. M. and Arkin, A. P. (2002) Control, exploitation and tolerance of intracellular noise. Nature, 420, 231–237. Available at: and doi: 10.1038/nature01258 pmid: 12432408
|
| 7 |
Kaern, M., Elston, T. C., Blake, W. J. and Collins, J. J. (2005) Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet., 6, 451–464. Available at: and doi: 10.1038/nrg1615 pmid: 15883588
|
| 8 |
Raj, A. and van Oudenaarden, A. (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell, 135, 216–226. Available at: and doi: 10.1016/j.cell.2008.09.050 pmid: 18957198
|
| 9 |
Munsky, B., Neuert, G. and van Oudenaarden, A. (2012) Using gene expression noise to understand gene regulation. Science, 336, 183–187. Available at: and doi: 10.1126/science.1216379 pmid: 22499939
|
| 10 |
Hager, G. L., McNally, J. G. and Misteli, T. (2009) Transcription dynamics. Mol. Cell, 35, 741–753. Available at: and doi: 10.1016/j.molcel.2009.09.005 pmid: 19782025
|
| 11 |
Kittisopikul, M. and Süel, G. M. (2010) Biological role of noise encoded in a genetic network motif. Proc. Natl. Acad. Sci. U.S.A., 107, 13300–13305. Available at: and doi: 10.1073/pnas.1003975107 pmid: 20616054
|
| 12 |
Pedraza, J. M. and van Oudenaarden, A. (2005) Noise propagation in gene networks. Science, 307, 1965–1969. Available at: and doi: 10.1126/science.1109090 pmid: 15790857
|
| 13 |
Kepler, T. B. and Elston, T. C. (2001) Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J., 81, 3116–3136 doi: 10.1016/S0006-3495(01)75949-8
|
| 14 |
Ma, R., Wang, J., Hou, Z. and Liu, H. (2012) Small-number effects: a third stable state in a genetic bistable toggle switch. Phys. Rev. Lett., 109, 248107. Available at: . doi: 10.1103/PhysRevLett.109.248107 pmid: 23368390
|
| 15 |
Elowitz, M. B. and Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338. Available at: and doi: 10.1038/35002125 pmid: 10659856
|
| 16 |
Gardner, T., Cantor, C. and Collins, J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403.
|
| 17 |
Hasty, J., McMillen, D. and Collins, J. J. (2002) Engineered gene circuits. Nature, 420, 224–230. Available at: and doi: 10.1038/nature01257 pmid: 12432407
|
| 18 |
Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. and Van Oudenaarden, A. (2004) Multistability in the lactose utilization network of Escherichia coli. Nature, 427, 737–740. Available at: and doi: 10.1038/nature02298 pmid: 14973486
|
| 19 |
Frigola, D., Casanellas, L., Sancho, J. M. and Iba?es, M. (2012) Asymmetric stochastic switching driven by intrinsic molecular noise. PLoS ONE, 7, e31407. Available at: and doi: 10.1371/journal.pone.0031407 pmid: 22363638
|
| 20 |
Novak, B. and Tyson, J. J. (1997) Modeling the control of DNA replication in fission yeast. Proc. Natl. Acad. Sci. U.S.A., 94, 9147–9152. Available at: and doi: 10.1073/pnas.94.17.9147 pmid: 9256450
|
| 21 |
Arkin, A., Ross, J. and McAdams, H. H. (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics, 149, 1633–1648. Available at: pmid: 9691025
|
| 22 |
Thattai, M. and van Oudenaarden, A. (2001) Intrinsic noise in gene regulatory networks. Proc. Natl. Acad. Sci. U.S.A., 98, 8614–8619. Available at: and doi: 10.1073/pnas.151588598 pmid: 11438714
|
| 23 |
Tao, Y. (2004) Intrinsic noise, gene regulation and steady-state statistics in a two gene network. J. Theor. Biol., 231, 563–568. Available at: and doi: 10.1016/j.jtbi.2004.07.012 pmid: 15488533
|
| 24 |
Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. and Elowitz, M. B. (2005) Gene regulation at the single-cell level. Sci. Signal., 307, 1962.
|
| 25 |
Krishnamurthy, S., Smith, E., Krakauer, D., Fontana, W. (2007) The stochastic behavior of a molecular switching circuit with feedback. Biol. Direct, 2, 1–17. Available at: doi: 10.1186/1745-6150-2-13
|
| 26 |
Munsky, B., Trinh, B. and Khammash, M. (2009) Listening to the noise: random fluctuations reveal gene network parameters. Mol. Syst. Biol., 5, 318. Available at: and doi: 10.1038/msb.2009.75 pmid: 19888213
|
| 27 |
Dunlop, M. J., Cox, R. S. 3rd, Levine, J. H., Murray, R. M. and Elowitz, M. B. (2008) Regulatory activity revealed by dynamic correlations in gene expression noise. Nat. Genet., 40, 1493–1498. Available at: and doi: 10.1038/ng.281 pmid: 19029898
|
| 28 |
Stewart-Ornstein, J., Weissman, J. S. and El-Samad, H. (2012) Cellular noise regulons underlie fluctuations in Saccharomyces cerevisiae. Mol. Cell, 45, 483–493. Available at: doi: 10.1016/j.molcel.2011.11.035
|
| 29 |
Van Kampen, N. G.Stochastic Processes in Physics and Chemistry. (3rd, Ed). North Holland, 2007.
|
| 30 |
Peles, S., Munsky, B. and Khammash, M. (2006) Reduction and solution of the chemical Master equation using time scale separation and finite state projection. J. Chem. Phys., 125, 204104. Available at: and doi: 10.1063/1.2397685 pmid: 17144687
|
| 31 |
Hegland, M., Burden, C., Santoso, L., MacNamara, S. and Booth, H. (2007) A solver for the stochastic master equation applied to gene regulatory networks. J. Comput. Appl. Math., 205, 708–724. Available at: doi: 10.1016/j.cam.2006.02.053
|
| 32 |
Macnamara, S., Bersani, A. M., Burrage, K. and Sidje, R. B. (2008) Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation. J. Chem. Phys., 129, 095105. Available at: and doi: 10.1063/1.2971036 pmid: 19044893
|
| 33 |
Smadbeck, P. and Kaznessis, Y. (2012) Stochastic model reduction using a modified Hill-type kinetic rate law. J. Chem. Phys., 137, 234109. Available at: . doi: 10.1063/1.4770273 pmid: 23267473
|
| 34 |
Waldherr, S., Wu, J. and Allg?wer, F. (2010) Bridging time scales in cellular decision making with a stochastic bistable switch. BMC Syst. Biol., 4, 108. Available at: and doi: 10.1186/1752-0509-4-108 pmid: 20696063
|
| 35 |
Liang, J. and Qian, H. (2010) Computational cellular dynamics based on the chemical master equation: A challenge for understanding complexity. Journal of Computer Science and Technology, 25, 154–168. Available at: doi: 10.1007/s11390-010-9312-6
|
| 36 |
Gutierrez, P. S., Monteoliva, D. and Diambra, L. (2012) Cooperative binding of transcription factors promotes bimodal gene expression response. PLoS ONE, 7, e44812. Available at: and doi: 10.1371/journal.pone.0044812 pmid: 22984566
|
| 37 |
Khanin, R. and Higham, D. J. (2008) Chemical Master Equation and Langevin regimes for a gene transcription model. Theor. Comput. Sci., 408, 31–40 doi: 10.1016/j.tcs.2008.07.007
|
| 38 |
Meister, A., Li, Y. H., Choi, B. and Wong, W. H. (2013) Learning a nonlinear dynamical system model of gene regulation: A perturbed steady-state approach. Ann. Appl. Stat., 7, 1311–1333. Available at: doi: 10.1214/13-AOAS645
|
| 39 |
Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif, S., Collins, J. J. and Gardner, T. S. (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol., 5, e8. Available at: and doi: 10.1371/journal.pbio.0050008 pmid: 17214507
|
| 40 |
Bansal, M., Belcastro, V., Ambesi-Impiombato, A. and di Bernardo, D. (2007) How to infer gene networks from expression profiles. Mol. Syst. Biol., 3, 78. Available at: pmid: 17299415
|
| 41 |
Gardner, T. S., di Bernardo, D., Lorenz, D. and Collins, J. J. (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 301, 102–105. Available at: and doi: 10.1126/science.1081900 pmid: 12843395
|
| 42 |
di Bernardo, D., Thompson, M. J., Gardner, T. S., Chobot, S. E., Eastwood, E. L., Wojtovich, A. P., Elliott, S. J., Schaus, S. E. and Collins, J. J. (2005) Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat. Biotechnol., 23, 377–383. Available at: and doi: 10.1038/nbt1075 pmid: 15765094
|
| 43 |
Michaelis, L. and Menten, M. L. (1913) Die kinetik der invertinwirkung. Biochem. Z., 49, 333–369.
|
| 44 |
Hill, A. V. (1913) The combinations of haemoglobin with oxygen and with carbon monoxide. Biochem. J., 7, 471–480. Available at: pmid: 16742267
|
| 45 |
Ackers, G. K., Johnson, A. D. and Shea, M. A. (1982) Quantitative model for gene regulation by lambda phage repressor. Proc. Natl. Acad. Sci. U.S.A., 79, 1129–1133. Available at: doi: 10.1073/pnas.79.4.1129 pmid: 6461856
|
| 46 |
Shea, M. A. and Ackers, G. K. (1985) The OR control system of bacteriophage lambda: A physicalchemical model for gene regulation. J. Mol. Biol., 181, 211–230. Available at: doi: 10.1016/0022-2836(85)90086-5
|
| 47 |
Bintu, L., Buchler, N. E., Garcia, H. G., Gerland, U., Hwa, T., Kondev, J. and Phillips, R. (2005) Transcriptional regulation by the numbers: models. Curr. Opin. Genet. Dev., 15, 116–124. Available at: and doi: 10.1016/j.gde.2005.02.007 pmid: 15797194
|
| 48 |
Bintu, L., Buchler, N. E., Garcia, H. G., Gerland, U., Hwa, T., Kondev, J., Kuhlman, T. and Phillips, R. (2005) Transcriptional regulation by the numbers: applications. Curr. Opin. Genet. Dev., 15, 125–135. Available at: and doi: 10.1016/j.gde.2005.02.006 pmid: 15797195
|
| 49 |
Rao, C. V. and Arkin, A. P.(2003) Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. J. Chem. Phys., 118, 4999–5010 doi: 10.1063/1.1545446
|
| 50 |
Walker, J. A.Dynamical Systems and Evolution Equations. New York: Plenum Press, 1939.
|
| 51 |
Kubo, R., Matsuo, K. and Kitahara, K. (1973) Fluctuation and relaxation of macrovariables. J. Stat. Phys., 9, 51–96. Available at: doi: 10.1007/BF01016797
|
| 52 |
Gillespie, D. T. (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 2340–2361. Available at: doi: 10.1021/j100540a008
|
| 53 |
Gillespie, D. T. (2000) The chemical Langevin equation. J. Chem. Phys., 113, 297. Available at: doi: 10.1063/1.481811
|
| 54 |
Komorowski, M., Finkenst?dt, B., Harper, C. V. and Rand, D. A. (2009) Bayesian inference of biochemical kinetic parameters using the linear noise approximation. BMC Bioinformatics, 10, 343. Available at: and doi: 10.1186/1471-2105-10-343 pmid: 19840370
|
| 55 |
Choi, B.Learning networks in biological systems, Ph.D. thesis, Department of Applied Physics, Stanford University, Stanford, 2012.
|
| 56 |
Planck, M. and Verband Deutscher Physikalischer Gesellschaften. Physikalische abhandlungen und vortr?ge. 1958.
|
| 57 |
Lord Rayleigh. (1891) Liii. Dynamical problems in illustration of the theory of gases. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 32, 424–445.
|
| 58 |
Einstein, A.. (1906) Eine neue bestimmung der molek uldimensionen. Annalen der Physik, 324, 289–306 doi: 10.1002/andp.19063240204
|
| 59 |
Von Smoluchowski, M. (1906). Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen. Annalen der physik, 326, 756–780.
|
| 60 |
Van Kampen, N. G.Fluctuations in Nonlinear Systems. Fluctuation Phenomena in Solids, New York: Academic Press, 1965.
|
| 61 |
Bar-Haim, A. and Klafter, J. (1998) Geometric versus energetic competition in light harvesting by dendrimers. J. Phys. Chem. B, 102, 1662–1664. Available at: doi: 10.1021/jp980174r
|
| 62 |
Chickarmane, V. and Peterson, C. (2008) A computational model for understanding stem cell, trophectoderm and endoderm lineage determination. PLoS ONE, 3, e3478. Available at: and doi: 10.1371/journal.pone.0003478 pmid: 18941526
|
| 63 |
Zavlanos, M. M., Julius, A. A., Boyd, S. P. and Pappas, G. J. (2011) Inferring stable genetic networks from steady-state data. Automatica, 47, 1113–1122. Available at: doi: 10.1016/j.automatica.2011.02.006
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|