Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2020, Vol. 8 Issue (4) : 295-311    https://doi.org/10.1007/s40484-020-0221-6
RESEARCH ARTICLE
Toward an understanding of the relation between gene regulation and 3D genome organization
Hao Tian1, Ying Yang1, Sirui Liu1, Hui Quan1, Yi Qin Gao1,2,3()
1. Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
2. Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
3. Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
 Download: PDF(1545 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: High-order chromatin structure has been shown to play a vital role in gene regulation. Previously we identified two types of sequence domains, CGI (CpG island) forest and CGI prairie, which tend to spatially segregate, but to different extent in different tissues. Here we aim to further quantify the association of domain segregation with gene regulation and therefore differentiation.

Methods: By means of the published RNA-seq and Hi-C data, we identified tissue-specific genes and quantitatively investigated how their regulation is relevant to chromatin structure. Besides, two types of gene networks were constructed and the association between gene pair co-regulation and genome organization is discussed.

Results: We show that compared to forests, tissue-specific genes tend to be enriched in prairies. Highly specific genes also tend to cluster according to their functions in a relatively small number of prairies. Furthermore, tissue-specific forest-prairie contact formation was associated with the regulation of tissue-specific genes, in particular those in the prairie domains, pointing to the important role of gene positioning, in the linear DNA sequence as well as in 3D chromatin structure, in gene regulatory network formation.

Conclusion: We investigated how gene regulation is related to genome organization from the perspective of forest-prairie spatial interactions. Since unlike compartments A and B, forest and prairie are identified solely based on sequence properties. Therefore, the simple and uniform framework (forest-prairie domain segregation) provided here can be utilized to further understand the chromatin structure changes as well as the underlying biological significances in different stages, such as tumorgenesis.

Keywords CGI forest      CGI prairie      domain segregation      chromatin structure      gene regulation     
Corresponding Author(s): Yi Qin Gao   
Online First Date: 23 November 2020    Issue Date: 24 December 2020
 Cite this article:   
Hao Tian,Ying Yang,Sirui Liu, et al. Toward an understanding of the relation between gene regulation and 3D genome organization[J]. Quant. Biol., 2020, 8(4): 295-311.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-020-0221-6
https://academic.hep.com.cn/qb/EN/Y2020/V8/I4/295
Fig.1  Forest and prairie gene features.
Liver Cortex Hippo Lung LV Spleen Ovary Adrenal Aorta Panc
Ft 217 193 169 67 40 106 43 55 10 128
Fnt 14853 14877 14901 15003 15030 14964 15027 15015 15060 14942
Pt 95 99 77 44 8 58 11 22 4 65
Pnt 3248 3244 3266 3299 3335 3285 3332 3321 3339 3278
p-value 1.1e–7 9.7e–11 6.4e–7 9.5e–8 1.3e–7 0.025 2.4e–7
Tab.1  TSG distribution in forest and prairie domains
Fig.2  The sequence dependence of gene tissue specificity and 3D environment gene located in.
Fig.3  Prairie gene expression regulation and genome organization.
Fig.4  The interplay between gene pair expression coordination and chromatin structure.
HKG housekeeping gene
TSG tissue-specific gene
TF transcription factor
CGI CpG island
F CGI forest
P CGI prairie
TAD topologically associated domain
Hi-C high throughput chromosome conformation capture
ChIA-PET chromatin interaction analysis by paired-end tag sequencing
H3K9me3 histone H3 lysine 9 trimethylation
PCC Pearson correlation coefficient
  
1 E. Lieberman-Aiden, , N. L. van Berkum, , L. Williams, , M. Imakaev, , T. Ragoczy, , A. Telling, , I. Amit, , B. R. Lajoie, , P. J. Sabo, , M. O. Dorschner, , et al. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289–293
https://doi.org/10.1126/science.1181369. pmid: 19815776
2 M. J. Fullwood, , M. H. Liu, , Y. F. Pan, , J. Liu, , H. Xu, , Y. B. Mohamed, , Y. L. Orlov, , S. Velkov, , A. Ho, , P. H. Mei, , et al. (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462, 58–64
https://doi.org/10.1038/nature08497. pmid: 19890323
3 J. R. Dixon, , S. Selvaraj, , F. Yue, , A. Kim, , Y. Li, , Y. Shen, , M. Hu, , J. S. Liu, and B. Ren, (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376–380
https://doi.org/10.1038/nature11082. pmid: 22495300
4 S. S. Rao, , M. H. Huntley, , N. C. Durand, , E. K. Stamenova, , I. D. Bochkov, , J. T. Robinson, , A. L. Sanborn, , I. Machol, , A. D. Omer, , E. S. Lander, , et al. (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159, 1665–1680
https://doi.org/10.1016/j.cell.2014.11.021. pmid: 25497547
5 J. M. Dowen, , Z. P. Fan, , D. Hnisz, , G. Ren, , B. J. Abraham, , L. N. Zhang, , A. S. Weintraub, , J. Schuijers, , T. I. Lee, , K. Zhao, , et al. (2014) Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell, 159, 374–387
https://doi.org/10.1016/j.cell.2014.09.030. pmid: 25303531
6 D. Hnisz, , D. S. Day, and R. A. Young, (2016) Insulated neighborhoods: structural and functional units of mammalian gene control. Cell, 167, 1188–1200
https://doi.org/10.1016/j.cell.2016.10.024. pmid: 27863240
7 D. Hnisz, , A. S. Weintraub, , D. S. Day, , A.-L. Valton, , R. O. Bak, , C. H. Li, , J. Goldmann, , B. R. Lajoie, , Z. P. Fan, , A. A. Sigova, , et al. (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science, 351, 1454–1458
https://doi.org/10.1126/science.aad9024. pmid: 26940867
8 X. Ji, , D. B. Dadon, , B. E. Powell, , Z. P. Fan, , D. Borges-Rivera, , S. Shachar, , A. S. Weintraub, , D. Hnisz, , G. Pegoraro, , T. I. Lee, , et al. (2016) 3D chromosome regulatory landscape of human pluripotent cells. Cell Stem Cell, 18, 262–275
https://doi.org/10.1016/j.stem.2015.11.007. pmid: 26686465
9 D. G. Lupiáñez, , K. Kraft, , V. Heinrich, , P. Krawitz, , F. Brancati, , E. Klopocki, , D. Horn, , H. Kayserili, , J. M. Opitz, , R. Laxova, , et al. (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell, 161, 1012–1025
https://doi.org/10.1016/j.cell.2015.04.004. pmid: 25959774
10 W. Schwarzer, , N. Abdennur, , A. Goloborodko, , A. Pekowska, , G. Fudenberg, , Y. Loe-Mie, , N. A. Fonseca, , W. Huber, , C. H. Haering, , L. Mirny, , et al. (2017) Two independent modes of chromatin organization revealed by cohesin removal. Nature, 551, 51–56
https://doi.org/10.1038/nature24281. pmid: 29094699
11 T. Smol, , J. Sigé, , C. Thuillier, , F. Frénois, , P. Brunelle, , M. Rama, , C. Roche-Lestienne, , S. Manouvrier-Hanu, , F. Petit, and J. Ghoumid, (2020) Lessons from the analysis of TAD boundary deletions in normal population. bioRxiv, 021188
12 G. Li, , X. Ruan, , R. K. Auerbach, , K. S. Sandhu, , M. Zheng, , P. Wang, , H. M. Poh, , Y. Goh, , J. Lim, , J. Zhang, , et al. (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell, 148, 84–98
https://doi.org/10.1016/j.cell.2011.12.014. pmid: 22265404
13 S. Wang, , J.-H. Su, , B. J. Beliveau, , B. Bintu, , J. R. Moffitt, , C. T. Wu, and X. Zhuang, (2016) Spatial organization of chromatin domains and compartments in single chromosomes. Science, 353, 598–602
https://doi.org/10.1126/science.aaf8084. pmid: 27445307
14 R. Stadhouders, , E. Vidal, , F. Serra, , B. Di Stefano, , F. Le Dily, , J. Quilez, , A. Gomez, , S. Collombet, , C. Berenguer, , Y. Cuartero, , et al. (2018) Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nat. Genet., 50, 238–249
https://doi.org/10.1038/s41588-017-0030-7. pmid: 29335546
15 A. Bertero, , P. A. Fields, , V. Ramani, , G. Bonora, , G. G. Yardimci, , H. Reinecke, , L. Pabon, , W. S. Noble, , J. Shendure, and C. E. Murry, (2019) Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nat. Commun., 10, 1538
https://doi.org/10.1038/s41467-019-09483-5. pmid: 30948719
16 S. Liu, , L. Zhang, , H. Quan, , H. Tian, , L. Meng, , L. Yang, , H. Feng, and Y. Q. Gao, (2018) From 1D sequence to 3D chromatin dynamics and cellular functions: a phase separation perspective. Nucleic Acids Res., 46, 9367–9383
https://doi.org/10.1093/nar/gky633. pmid: 30053116
17 Y. Zhan, , L. Mariani, , I. Barozzi, , E. G. Schulz, , N. Blüthgen, , M. Stadler, , G. Tiana, and L. Giorgetti, (2017) Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res., 27, 479–490
https://doi.org/10.1101/gr.212803.116. pmid: 28057745
18 J. Ibn-Salem, , E. M. Muro, and M. A. Andrade-Navarro, (2017) Co-regulation of paralog genes in the three-dimensional chromatin architecture. Nucleic Acids Res., 45, 81–91
https://doi.org/10.1093/nar/gkw813. pmid: 27634932
19 M. E. Soler-Oliva, , J. A. Guerrero-Martínez, , V. Bachetti, and J. C. Reyes, (2017) Analysis of the relationship between coexpression domains and chromatin 3D organization. PLOS Comput. Biol., 13, e1005708
https://doi.org/10.1371/journal.pcbi.1005708. pmid: 28902867
20 V. Belcastro, , V. Siciliano, , F. Gregoretti, , P. Mithbaokar, , G. Dharmalingam, , S. Berlingieri, , F. Iorio, , G. Oliva, , R. Polishchuck, , N. Brunetti-Pierri, , et al. (2011) Transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function. Nucleic Acids Res., 39, 8677–8688
https://doi.org/10.1093/nar/gkr593. pmid: 21785136
21 D. Hnisz, , K. Shrinivas, , R. A. Young, , A. K. Chakraborty, and P. A. Sharp, (2017) A phase separation model for transcriptional control. Cell, 169, 13–23
https://doi.org/10.1016/j.cell.2017.02.007. pmid: 28340338
22 A. Boija, , I. A. Klein, , B. R. Sabari, , A. Dall’Agnese, , E. L. Coffey, , A. V. Zamudio, , C. H. Li, , K. Shrinivas, , J. C. Manteiga, , N. M. Hannett, , et al. (2018) Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell, 175, 1842–1855.e16
https://doi.org/10.1016/j.cell.2018.10.042. pmid: 30449618
23 D. Hnisz, and R. A. Young, (2017) New insights into genome structure: genes of a feather stick together. Mol. Cell, 67, 730–731
https://doi.org/10.1016/j.molcel.2017.08.023. pmid: 28886334
24 E. de Wit, , B. A. M. Bouwman, , Y. Zhu, , P. Klous, , E. Splinter, , M. J. A. M. Verstegen, , P. H. L. Krijger, , N. Festuccia, , E. P. Nora, , M. Welling, , et al. (2013) The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature, 501, 227–231
https://doi.org/10.1038/nature12420. pmid: 23883933
25 K. Monahan, , A. Horta, and S. Lomvardas, (2019) LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice. Nature, 565, 448–453
https://doi.org/10.1038/s41586-018-0845-0. pmid: 30626972
26 M. A. Hahn, , X. Wu, , A. X. Li, , T. Hahn, and G. P. Pfeifer, (2011) Relationship between gene body DNA methylation and intragenic H3K9me3 and H3K36me3 chromatin marks. PLoS One, 6, e18844
https://doi.org/10.1371/journal.pone.0018844. pmid: 21526191
27 Z. Wang, and H. F. Willard, (2012) Evidence for sequence biases associated with patterns of histone methylation. BMC Genomics, 13, 367–379
https://doi.org/10.1186/1471-2164-13-367. pmid: 22857523
28 G. Kustatscher, , P. Grabowski, and J. Rappsilber, (2017) Pervasive coexpression of spatially proximal genes is buffered at the protein level. Mol. Syst. Biol., 13, 937–950
https://doi.org/10.15252/msb.20177548. pmid: 28835372
29 A. D. Schmitt, , M. Hu, , I. Jung, , Z. Xu, , Y. Qiu, , C. L. Tan, , Y. Li, , S. Lin, , Y. Lin, , C. L. Barr, , et al. (2016) A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep., 17, 2042–2059
https://doi.org/10.1016/j.celrep.2016.10.061. pmid: 27851967
30 A. R. Sonawane, , J. Platig, , M. Fagny, , C.-Y. Chen, , J. N. Paulson, , C. M. Lopes-Ramos, , D. L. DeMeo, , J. Quackenbush, , K. Glass, and M. L. Kuijjer, (2017) Understanding tissue-specific gene regulation. Cell Rep., 21, 1077–1088
https://doi.org/10.1016/j.celrep.2017.10.001. pmid: 29069589
31 L. D. Hurst, , C. Pál, and M. J. Lercher, (2004) The evolutionary dynamics of eukaryotic gene order. Nat. Rev. Genet., 5, 299–310
https://doi.org/10.1038/nrg1319. pmid: 15131653
32 H. Xu, , J.-J. Liu, , Z. Liu, , Y. Li, , Y.-S. Jin, and J. Zhang, (2019) Synchronization of stochastic expressions drives the clustering of functionally related genes. Sci. Adv., 5, eaax6525
https://doi.org/10.1126/sciadv.aax6525. pmid: 31633028
33 N. A. A. Shwan, , S. Louzada, , F. Yang, and J. A. L. Armour, (2017) Recurrent Rearrangements of Human Amylase Genes Create Multiple Independent CNV Series. Hum. Mutat., 38, 532–539
https://doi.org/10.1002/humu.23182. pmid: 28101908
34 I. Ponomarev, , S. Wang, , L. Zhang, , R. A. Harris, and R. D. Mayfield, (2012) Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J. Neurosci., 32, 1884–1897
https://doi.org/10.1523/JNEUROSCI.3136-11.2012. pmid: 22302827
35 B. A. Rosa, , D. P. Jasmer, and M. Mitreva, (2014) Genome-wide tissue-specific gene expression, co-expression and regulation of co-expressed genes in adult nematode Ascaris suum. PLoS Negl. Trop. Dis., 8, e2678
https://doi.org/10.1371/journal.pntd.0002678. pmid: 24516681
36 J. Satoh, , Y. Yamamoto, , N. Asahina, , S. Kitano, and Y. Kino, (2014) RNA-Seq data mining: downregulation of NeuroD6 serves as a possible biomarker for alzheimer’s disease brains. Dis. Markers, 2014, 123165
https://doi.org/10.1155/2014/123165. pmid: 25548427
37 I. Yevshin, , R. Sharipov, , S. Kolmykov, , Y. Kondrakhin, and F. Kolpakov, (2019) GTRD: a database on gene transcription regulation-2019 update. Nucleic Acids Res., 47, D100–D105
https://doi.org/10.1093/nar/gky1128. pmid: 30445619
38 A. L. Sanborn, , S. S. P. Rao, , S.-C. Huang, , N. C. Durand, , M. H. Huntley, , A. I. Jewett, , I. D. Bochkov, , D. Chinnappan, , A. Cutkosky, , J. Li, , et al. (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. USA, 112, E6456–E6465
https://doi.org/10.1073/pnas.1518552112. pmid: 26499245
39 G. Fudenberg, , M. Imakaev, , C. Lu, , A. Goloborodko, , N. Abdennur, and L. A. Mirny, (2016) Formation of chromosomal domains by loop extrusion. Cell Rep., 15, 2038–2049
https://doi.org/10.1016/j.celrep.2016.04.085. pmid: 27210764
40 T. M. Yusufzai, , H. Tagami, , Y. Nakatani, and G. Felsenfeld, (2004) CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol. Cell, 13, 291–298
https://doi.org/10.1016/S1097-2765(04)00029-2. pmid: 14759373
41 A. S. Weintraub, , C. H. Li, , A. V. Zamudio, , A. A. Sigova, , N. M. Hannett, , D. S. Day, , B. J. Abraham, , M. A. Cohen, , B. Nabet, , D. L. Buckley, , et al. (2017) YY1 is a structural regulator of enhancer-promoter loops. Cell, 171, 1573–1588.e28
https://doi.org/10.1016/j.cell.2017.11.008. pmid: 29224777
42 K. Shrinivas, , B. R. Sabari, , E. L. Coffey, , I. A. Klein, , A. Boija, , A. V. Zamudio, , J. Schuijers, , N. M. Hannett, , P. A. Sharp, , R. A. Young, , et al. (2019) Enhancer features that drive formation of transcriptional condensates. Mol. Cell, 75, 549–561.e7
https://doi.org/10.1016/j.molcel.2019.07.009. pmid: 31398323
43 C. Duran-Aniotz, and C. Hetz, (2016) Glucose metabolism: A sweet relief of Alzheimer’s disease. Curr. Biol., 26, R806–R809
https://doi.org/10.1016/j.cub.2016.07.060. pmid: 27623263
44 G. Di Paolo, and T.-W. Kim, (2011) Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat. Rev. Neurosci., 12, 284–296
https://doi.org/10.1038/nrn3012. pmid: 21448224
45 J. Tynkkynen, , V. Chouraki, , S. J. van der Lee, , J. Hernesniemi, , Q. Yang, , S. Li, , A. Beiser, , M. G. Larson, , K. Sääksjärvi, , M. J. Shipley, , et al. (2018) Association of branched-chain amino acids and other circulating metabolites with risk of incident dementia and Alzheimer’s disease: A prospective study in eight cohorts. Alzheimers Dement., 14, 723–733
https://doi.org/10.1016/j.jalz.2018.01.003. pmid: 29519576
46 S. MahmoudianDehkordi, , M. Arnold, , K. Nho, , S. Ahmad, , W. Jia, , G. Xie, , G. Louie, , A. Kueider-Paisley, , M. A. Moseley, , J. W. Thompson, , et al. (2019) Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease—An emerging role for gut microbiome. Alzheimers Dement., 15, 76–92
https://doi.org/10.1016/j.jalz.2018.07.217. pmid: 30337151
47 L. Lu, , X. Liu, , W.-K. Huang, , P. Giusti-Rodríguez, , J. Cui, , S. Zhang, , W. Xu, , Z. Wen, , S. Ma, , J. D. Rosen, , et al. (2020) Robust Hi-C maps of enhancer-promoter interactions reveal the function of non-coding genome in neural development and diseases. Mol. Cell, 79, 521–534.e15
https://doi.org/10.1016/j.molcel.2020.06.007. pmid: 32592681
48 Y. Qi, and B. Zhang, (2019) Predicting three-dimensional genome organization with chromatin states. PLOS Comput. Biol., 15, e1007024
https://doi.org/10.1371/journal.pcbi.1007024. pmid: 31181064
49 X. Zhang, , M. Jeong, , X. Huang, , X. Q. Wang, , X. Wang, , W. Zhou, , M. S. Shamim, , H. Gore, , P. Himadewi, , Y. Liu, , et al. (2020) Large DNA methylation nadirs anchor chromatin loops maintaining hematopoietic stem cell identity. Mol. Cell, 78, 506–521.e6
https://doi.org/10.1016/j.molcel.2020.04.018. pmid: 32386543
50 X.Q. David, Wang, , H. Gore, , P. Himadewi, , F. Feng, , L. Yang, , W. Zhou, , Y. Liu, , X. Wang, , C-w. Chen, , J. Su, , et al. (2020) Three-dimensional regulation of HOXA cluster genes by a cis-element in hematopoietic stem cell and leukemia. bioRxiv, 017533
51 Y. Cai, , Y. Zhang, , Y. P. Loh, , J. Q. Tng, , M. C. Lim, , Z. Cao, , A. Raju, , S. Li, , L. Manikandan, , V. Tergaonkar, , et al. (2020) H3K27me3-rich genomic regions can function as silencers to repress gene expression via chromatin interactions.bioRxiv, 684712
52 N. Servant, , N. Varoquaux, , B. R. Lajoie, , E. Viara, , C.-J. Chen, , J.-P. Vert, , E. Heard, , J. Dekker, and E. Barillot, (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol., 16, 259–269
https://doi.org/10.1186/s13059-015-0831-x. pmid: 26619908
53 W. J. Xie, , L. Meng, , S. Liu, , L. Zhang, , X. Cai, and Y. Q. Gao, (2017) Structural modeling of chromatin integrates genome features and reveals chromosome folding principle. Sci. Rep., 7, 2818–2828
https://doi.org/10.1038/s41598-017-02923-6. pmid: 28588240
[1] supplementary_materials Download
[1] Lijie Hao, Zhuoqin Yang, Marc Turcotte. Time-scale separation and stochasticity conspire to impact phenotypic dynamics in the canonical and inverted Bacillus subtilis core genetic regulation circuits[J]. Quant. Biol., 2019, 7(1): 54-68.
[2] Mohamed Nadhir Djekidel, Mengjie Wang, Michael Q. Zhang, Juntao Gao. HiC-3DViewer: a new tool to visualize Hi-C data in 3D space[J]. Quant. Biol., 2017, 5(2): 183-190.
[3] Marc Turcotte. Delineating the respective impacts of stochastic curl- and grad-forces in a family of idealized core genetic commitment circuits[J]. Quant. Biol., 2016, 4(2): 69-83.
[4] Hongguang Xi, Marc Turcotte. Parameter asymmetry and time-scale separation in core genetic commitment circuits[J]. Quant. Biol., 2015, 3(1): 19-45.
[5] Arwen Meister, Chao Du, Ye Henry Li, Wing Hung Wong. Modeling stochastic noise in gene regulatory systems[J]. Quant. Biol., 2014, 2(1): 1-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed