|
|
|
Toward an understanding of the relation between gene regulation and 3D genome organization |
Hao Tian1, Ying Yang1, Sirui Liu1, Hui Quan1, Yi Qin Gao1,2,3( ) |
1. Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China 2. Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China 3. Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China |
|
|
|
|
Abstract Background: High-order chromatin structure has been shown to play a vital role in gene regulation. Previously we identified two types of sequence domains, CGI (CpG island) forest and CGI prairie, which tend to spatially segregate, but to different extent in different tissues. Here we aim to further quantify the association of domain segregation with gene regulation and therefore differentiation. Methods: By means of the published RNA-seq and Hi-C data, we identified tissue-specific genes and quantitatively investigated how their regulation is relevant to chromatin structure. Besides, two types of gene networks were constructed and the association between gene pair co-regulation and genome organization is discussed. Results: We show that compared to forests, tissue-specific genes tend to be enriched in prairies. Highly specific genes also tend to cluster according to their functions in a relatively small number of prairies. Furthermore, tissue-specific forest-prairie contact formation was associated with the regulation of tissue-specific genes, in particular those in the prairie domains, pointing to the important role of gene positioning, in the linear DNA sequence as well as in 3D chromatin structure, in gene regulatory network formation. Conclusion: We investigated how gene regulation is related to genome organization from the perspective of forest-prairie spatial interactions. Since unlike compartments A and B, forest and prairie are identified solely based on sequence properties. Therefore, the simple and uniform framework (forest-prairie domain segregation) provided here can be utilized to further understand the chromatin structure changes as well as the underlying biological significances in different stages, such as tumorgenesis.
|
| Keywords
CGI forest
CGI prairie
domain segregation
chromatin structure
gene regulation
|
|
Corresponding Author(s):
Yi Qin Gao
|
|
Online First Date: 23 November 2020
Issue Date: 24 December 2020
|
|
| 1 |
E. Lieberman-Aiden, , N. L. van Berkum, , L. Williams, , M. Imakaev, , T. Ragoczy, , A. Telling, , I. Amit, , B. R. Lajoie, , P. J. Sabo, , M. O. Dorschner, , et al. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289–293
https://doi.org/10.1126/science.1181369.
pmid: 19815776
|
| 2 |
M. J. Fullwood, , M. H. Liu, , Y. F. Pan, , J. Liu, , H. Xu, , Y. B. Mohamed, , Y. L. Orlov, , S. Velkov, , A. Ho, , P. H. Mei, , et al. (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462, 58–64
https://doi.org/10.1038/nature08497.
pmid: 19890323
|
| 3 |
J. R. Dixon, , S. Selvaraj, , F. Yue, , A. Kim, , Y. Li, , Y. Shen, , M. Hu, , J. S. Liu, and B. Ren, (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376–380
https://doi.org/10.1038/nature11082.
pmid: 22495300
|
| 4 |
S. S. Rao, , M. H. Huntley, , N. C. Durand, , E. K. Stamenova, , I. D. Bochkov, , J. T. Robinson, , A. L. Sanborn, , I. Machol, , A. D. Omer, , E. S. Lander, , et al. (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159, 1665–1680
https://doi.org/10.1016/j.cell.2014.11.021.
pmid: 25497547
|
| 5 |
J. M. Dowen, , Z. P. Fan, , D. Hnisz, , G. Ren, , B. J. Abraham, , L. N. Zhang, , A. S. Weintraub, , J. Schuijers, , T. I. Lee, , K. Zhao, , et al. (2014) Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell, 159, 374–387
https://doi.org/10.1016/j.cell.2014.09.030.
pmid: 25303531
|
| 6 |
D. Hnisz, , D. S. Day, and R. A. Young, (2016) Insulated neighborhoods: structural and functional units of mammalian gene control. Cell, 167, 1188–1200
https://doi.org/10.1016/j.cell.2016.10.024.
pmid: 27863240
|
| 7 |
D. Hnisz, , A. S. Weintraub, , D. S. Day, , A.-L. Valton, , R. O. Bak, , C. H. Li, , J. Goldmann, , B. R. Lajoie, , Z. P. Fan, , A. A. Sigova, , et al. (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science, 351, 1454–1458
https://doi.org/10.1126/science.aad9024.
pmid: 26940867
|
| 8 |
X. Ji, , D. B. Dadon, , B. E. Powell, , Z. P. Fan, , D. Borges-Rivera, , S. Shachar, , A. S. Weintraub, , D. Hnisz, , G. Pegoraro, , T. I. Lee, , et al. (2016) 3D chromosome regulatory landscape of human pluripotent cells. Cell Stem Cell, 18, 262–275
https://doi.org/10.1016/j.stem.2015.11.007.
pmid: 26686465
|
| 9 |
D. G. Lupiáñez, , K. Kraft, , V. Heinrich, , P. Krawitz, , F. Brancati, , E. Klopocki, , D. Horn, , H. Kayserili, , J. M. Opitz, , R. Laxova, , et al. (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell, 161, 1012–1025
https://doi.org/10.1016/j.cell.2015.04.004.
pmid: 25959774
|
| 10 |
W. Schwarzer, , N. Abdennur, , A. Goloborodko, , A. Pekowska, , G. Fudenberg, , Y. Loe-Mie, , N. A. Fonseca, , W. Huber, , C. H. Haering, , L. Mirny, , et al. (2017) Two independent modes of chromatin organization revealed by cohesin removal. Nature, 551, 51–56
https://doi.org/10.1038/nature24281.
pmid: 29094699
|
| 11 |
T. Smol, , J. Sigé, , C. Thuillier, , F. Frénois, , P. Brunelle, , M. Rama, , C. Roche-Lestienne, , S. Manouvrier-Hanu, , F. Petit, and J. Ghoumid, (2020) Lessons from the analysis of TAD boundary deletions in normal population. bioRxiv, 021188
|
| 12 |
G. Li, , X. Ruan, , R. K. Auerbach, , K. S. Sandhu, , M. Zheng, , P. Wang, , H. M. Poh, , Y. Goh, , J. Lim, , J. Zhang, , et al. (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell, 148, 84–98
https://doi.org/10.1016/j.cell.2011.12.014.
pmid: 22265404
|
| 13 |
S. Wang, , J.-H. Su, , B. J. Beliveau, , B. Bintu, , J. R. Moffitt, , C. T. Wu, and X. Zhuang, (2016) Spatial organization of chromatin domains and compartments in single chromosomes. Science, 353, 598–602
https://doi.org/10.1126/science.aaf8084.
pmid: 27445307
|
| 14 |
R. Stadhouders, , E. Vidal, , F. Serra, , B. Di Stefano, , F. Le Dily, , J. Quilez, , A. Gomez, , S. Collombet, , C. Berenguer, , Y. Cuartero, , et al. (2018) Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nat. Genet., 50, 238–249
https://doi.org/10.1038/s41588-017-0030-7.
pmid: 29335546
|
| 15 |
A. Bertero, , P. A. Fields, , V. Ramani, , G. Bonora, , G. G. Yardimci, , H. Reinecke, , L. Pabon, , W. S. Noble, , J. Shendure, and C. E. Murry, (2019) Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nat. Commun., 10, 1538
https://doi.org/10.1038/s41467-019-09483-5.
pmid: 30948719
|
| 16 |
S. Liu, , L. Zhang, , H. Quan, , H. Tian, , L. Meng, , L. Yang, , H. Feng, and Y. Q. Gao, (2018) From 1D sequence to 3D chromatin dynamics and cellular functions: a phase separation perspective. Nucleic Acids Res., 46, 9367–9383
https://doi.org/10.1093/nar/gky633.
pmid: 30053116
|
| 17 |
Y. Zhan, , L. Mariani, , I. Barozzi, , E. G. Schulz, , N. Blüthgen, , M. Stadler, , G. Tiana, and L. Giorgetti, (2017) Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res., 27, 479–490
https://doi.org/10.1101/gr.212803.116.
pmid: 28057745
|
| 18 |
J. Ibn-Salem, , E. M. Muro, and M. A. Andrade-Navarro, (2017) Co-regulation of paralog genes in the three-dimensional chromatin architecture. Nucleic Acids Res., 45, 81–91
https://doi.org/10.1093/nar/gkw813.
pmid: 27634932
|
| 19 |
M. E. Soler-Oliva, , J. A. Guerrero-Martínez, , V. Bachetti, and J. C. Reyes, (2017) Analysis of the relationship between coexpression domains and chromatin 3D organization. PLOS Comput. Biol., 13, e1005708
https://doi.org/10.1371/journal.pcbi.1005708.
pmid: 28902867
|
| 20 |
V. Belcastro, , V. Siciliano, , F. Gregoretti, , P. Mithbaokar, , G. Dharmalingam, , S. Berlingieri, , F. Iorio, , G. Oliva, , R. Polishchuck, , N. Brunetti-Pierri, , et al. (2011) Transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function. Nucleic Acids Res., 39, 8677–8688
https://doi.org/10.1093/nar/gkr593.
pmid: 21785136
|
| 21 |
D. Hnisz, , K. Shrinivas, , R. A. Young, , A. K. Chakraborty, and P. A. Sharp, (2017) A phase separation model for transcriptional control. Cell, 169, 13–23
https://doi.org/10.1016/j.cell.2017.02.007.
pmid: 28340338
|
| 22 |
A. Boija, , I. A. Klein, , B. R. Sabari, , A. Dall’Agnese, , E. L. Coffey, , A. V. Zamudio, , C. H. Li, , K. Shrinivas, , J. C. Manteiga, , N. M. Hannett, , et al. (2018) Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell, 175, 1842–1855.e16
https://doi.org/10.1016/j.cell.2018.10.042.
pmid: 30449618
|
| 23 |
D. Hnisz, and R. A. Young, (2017) New insights into genome structure: genes of a feather stick together. Mol. Cell, 67, 730–731
https://doi.org/10.1016/j.molcel.2017.08.023.
pmid: 28886334
|
| 24 |
E. de Wit, , B. A. M. Bouwman, , Y. Zhu, , P. Klous, , E. Splinter, , M. J. A. M. Verstegen, , P. H. L. Krijger, , N. Festuccia, , E. P. Nora, , M. Welling, , et al. (2013) The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature, 501, 227–231
https://doi.org/10.1038/nature12420.
pmid: 23883933
|
| 25 |
K. Monahan, , A. Horta, and S. Lomvardas, (2019) LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice. Nature, 565, 448–453
https://doi.org/10.1038/s41586-018-0845-0.
pmid: 30626972
|
| 26 |
M. A. Hahn, , X. Wu, , A. X. Li, , T. Hahn, and G. P. Pfeifer, (2011) Relationship between gene body DNA methylation and intragenic H3K9me3 and H3K36me3 chromatin marks. PLoS One, 6, e18844
https://doi.org/10.1371/journal.pone.0018844.
pmid: 21526191
|
| 27 |
Z. Wang, and H. F. Willard, (2012) Evidence for sequence biases associated with patterns of histone methylation. BMC Genomics, 13, 367–379
https://doi.org/10.1186/1471-2164-13-367.
pmid: 22857523
|
| 28 |
G. Kustatscher, , P. Grabowski, and J. Rappsilber, (2017) Pervasive coexpression of spatially proximal genes is buffered at the protein level. Mol. Syst. Biol., 13, 937–950
https://doi.org/10.15252/msb.20177548.
pmid: 28835372
|
| 29 |
A. D. Schmitt, , M. Hu, , I. Jung, , Z. Xu, , Y. Qiu, , C. L. Tan, , Y. Li, , S. Lin, , Y. Lin, , C. L. Barr, , et al. (2016) A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep., 17, 2042–2059
https://doi.org/10.1016/j.celrep.2016.10.061.
pmid: 27851967
|
| 30 |
A. R. Sonawane, , J. Platig, , M. Fagny, , C.-Y. Chen, , J. N. Paulson, , C. M. Lopes-Ramos, , D. L. DeMeo, , J. Quackenbush, , K. Glass, and M. L. Kuijjer, (2017) Understanding tissue-specific gene regulation. Cell Rep., 21, 1077–1088
https://doi.org/10.1016/j.celrep.2017.10.001.
pmid: 29069589
|
| 31 |
L. D. Hurst, , C. Pál, and M. J. Lercher, (2004) The evolutionary dynamics of eukaryotic gene order. Nat. Rev. Genet., 5, 299–310
https://doi.org/10.1038/nrg1319.
pmid: 15131653
|
| 32 |
H. Xu, , J.-J. Liu, , Z. Liu, , Y. Li, , Y.-S. Jin, and J. Zhang, (2019) Synchronization of stochastic expressions drives the clustering of functionally related genes. Sci. Adv., 5, eaax6525
https://doi.org/10.1126/sciadv.aax6525.
pmid: 31633028
|
| 33 |
N. A. A. Shwan, , S. Louzada, , F. Yang, and J. A. L. Armour, (2017) Recurrent Rearrangements of Human Amylase Genes Create Multiple Independent CNV Series. Hum. Mutat., 38, 532–539
https://doi.org/10.1002/humu.23182.
pmid: 28101908
|
| 34 |
I. Ponomarev, , S. Wang, , L. Zhang, , R. A. Harris, and R. D. Mayfield, (2012) Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J. Neurosci., 32, 1884–1897
https://doi.org/10.1523/JNEUROSCI.3136-11.2012.
pmid: 22302827
|
| 35 |
B. A. Rosa, , D. P. Jasmer, and M. Mitreva, (2014) Genome-wide tissue-specific gene expression, co-expression and regulation of co-expressed genes in adult nematode Ascaris suum. PLoS Negl. Trop. Dis., 8, e2678
https://doi.org/10.1371/journal.pntd.0002678.
pmid: 24516681
|
| 36 |
J. Satoh, , Y. Yamamoto, , N. Asahina, , S. Kitano, and Y. Kino, (2014) RNA-Seq data mining: downregulation of NeuroD6 serves as a possible biomarker for alzheimer’s disease brains. Dis. Markers, 2014, 123165
https://doi.org/10.1155/2014/123165.
pmid: 25548427
|
| 37 |
I. Yevshin, , R. Sharipov, , S. Kolmykov, , Y. Kondrakhin, and F. Kolpakov, (2019) GTRD: a database on gene transcription regulation-2019 update. Nucleic Acids Res., 47, D100–D105
https://doi.org/10.1093/nar/gky1128.
pmid: 30445619
|
| 38 |
A. L. Sanborn, , S. S. P. Rao, , S.-C. Huang, , N. C. Durand, , M. H. Huntley, , A. I. Jewett, , I. D. Bochkov, , D. Chinnappan, , A. Cutkosky, , J. Li, , et al. (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. USA, 112, E6456–E6465
https://doi.org/10.1073/pnas.1518552112.
pmid: 26499245
|
| 39 |
G. Fudenberg, , M. Imakaev, , C. Lu, , A. Goloborodko, , N. Abdennur, and L. A. Mirny, (2016) Formation of chromosomal domains by loop extrusion. Cell Rep., 15, 2038–2049
https://doi.org/10.1016/j.celrep.2016.04.085.
pmid: 27210764
|
| 40 |
T. M. Yusufzai, , H. Tagami, , Y. Nakatani, and G. Felsenfeld, (2004) CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol. Cell, 13, 291–298
https://doi.org/10.1016/S1097-2765(04)00029-2.
pmid: 14759373
|
| 41 |
A. S. Weintraub, , C. H. Li, , A. V. Zamudio, , A. A. Sigova, , N. M. Hannett, , D. S. Day, , B. J. Abraham, , M. A. Cohen, , B. Nabet, , D. L. Buckley, , et al. (2017) YY1 is a structural regulator of enhancer-promoter loops. Cell, 171, 1573–1588.e28
https://doi.org/10.1016/j.cell.2017.11.008.
pmid: 29224777
|
| 42 |
K. Shrinivas, , B. R. Sabari, , E. L. Coffey, , I. A. Klein, , A. Boija, , A. V. Zamudio, , J. Schuijers, , N. M. Hannett, , P. A. Sharp, , R. A. Young, , et al. (2019) Enhancer features that drive formation of transcriptional condensates. Mol. Cell, 75, 549–561.e7
https://doi.org/10.1016/j.molcel.2019.07.009.
pmid: 31398323
|
| 43 |
C. Duran-Aniotz, and C. Hetz, (2016) Glucose metabolism: A sweet relief of Alzheimer’s disease. Curr. Biol., 26, R806–R809
https://doi.org/10.1016/j.cub.2016.07.060.
pmid: 27623263
|
| 44 |
G. Di Paolo, and T.-W. Kim, (2011) Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat. Rev. Neurosci., 12, 284–296
https://doi.org/10.1038/nrn3012.
pmid: 21448224
|
| 45 |
J. Tynkkynen, , V. Chouraki, , S. J. van der Lee, , J. Hernesniemi, , Q. Yang, , S. Li, , A. Beiser, , M. G. Larson, , K. Sääksjärvi, , M. J. Shipley, , et al. (2018) Association of branched-chain amino acids and other circulating metabolites with risk of incident dementia and Alzheimer’s disease: A prospective study in eight cohorts. Alzheimers Dement., 14, 723–733
https://doi.org/10.1016/j.jalz.2018.01.003.
pmid: 29519576
|
| 46 |
S. MahmoudianDehkordi, , M. Arnold, , K. Nho, , S. Ahmad, , W. Jia, , G. Xie, , G. Louie, , A. Kueider-Paisley, , M. A. Moseley, , J. W. Thompson, , et al. (2019) Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease—An emerging role for gut microbiome. Alzheimers Dement., 15, 76–92
https://doi.org/10.1016/j.jalz.2018.07.217.
pmid: 30337151
|
| 47 |
L. Lu, , X. Liu, , W.-K. Huang, , P. Giusti-Rodríguez, , J. Cui, , S. Zhang, , W. Xu, , Z. Wen, , S. Ma, , J. D. Rosen, , et al. (2020) Robust Hi-C maps of enhancer-promoter interactions reveal the function of non-coding genome in neural development and diseases. Mol. Cell, 79, 521–534.e15
https://doi.org/10.1016/j.molcel.2020.06.007.
pmid: 32592681
|
| 48 |
Y. Qi, and B. Zhang, (2019) Predicting three-dimensional genome organization with chromatin states. PLOS Comput. Biol., 15, e1007024
https://doi.org/10.1371/journal.pcbi.1007024.
pmid: 31181064
|
| 49 |
X. Zhang, , M. Jeong, , X. Huang, , X. Q. Wang, , X. Wang, , W. Zhou, , M. S. Shamim, , H. Gore, , P. Himadewi, , Y. Liu, , et al. (2020) Large DNA methylation nadirs anchor chromatin loops maintaining hematopoietic stem cell identity. Mol. Cell, 78, 506–521.e6
https://doi.org/10.1016/j.molcel.2020.04.018.
pmid: 32386543
|
| 50 |
X.Q. David, Wang, , H. Gore, , P. Himadewi, , F. Feng, , L. Yang, , W. Zhou, , Y. Liu, , X. Wang, , C-w. Chen, , J. Su, , et al. (2020) Three-dimensional regulation of HOXA cluster genes by a cis-element in hematopoietic stem cell and leukemia. bioRxiv, 017533
|
| 51 |
Y. Cai, , Y. Zhang, , Y. P. Loh, , J. Q. Tng, , M. C. Lim, , Z. Cao, , A. Raju, , S. Li, , L. Manikandan, , V. Tergaonkar, , et al. (2020) H3K27me3-rich genomic regions can function as silencers to repress gene expression via chromatin interactions.bioRxiv, 684712
|
| 52 |
N. Servant, , N. Varoquaux, , B. R. Lajoie, , E. Viara, , C.-J. Chen, , J.-P. Vert, , E. Heard, , J. Dekker, and E. Barillot, (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol., 16, 259–269
https://doi.org/10.1186/s13059-015-0831-x.
pmid: 26619908
|
| 53 |
W. J. Xie, , L. Meng, , S. Liu, , L. Zhang, , X. Cai, and Y. Q. Gao, (2017) Structural modeling of chromatin integrates genome features and reveals chromosome folding principle. Sci. Rep., 7, 2818–2828
https://doi.org/10.1038/s41598-017-02923-6.
pmid: 28588240
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|