Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2019, Vol. 7 Issue (1) : 30-41    https://doi.org/10.1007/s40484-018-0163-4
RESEARCH ARTICLE
Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network
Wen Yang1, Xia Wang1, Kenan Li2, Yuanru Liu1, Ying Liu2(), Rui Wang1(), Honglin Li1()
1. Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
2. BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
 Download: PDF(1681 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle. (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a natural product acted as an inhibitor of 5-lipoxygenase (5-LOX) and 15-LOX in vitro, exhibited weaker therapeutic effect in high dose than that in low dose to collagen induced arthritis (CIA) rats. In this study, we tried to elucidate the potential regulatory mechanism by using quantitative pharmacology.

Methods: First, we generated an experimental data set by monitoring the dynamics of AA metabolites’ concentration in A23187 stimulated and different doses of HOEC co-incubated RAW264.7. Then we constructed a dynamic model of A23187-stimulated AA metabolic model to evaluate how a model-based simulation of AA metabolic data assists to find the most suitable treatment dose by predicting the pharmacodynamics of HOEC.

Results: Compared to the experimental data, the model could simulate the inhibitory effect of HOEC on 5-LOX and 15-LOX, and reproduced the increase of the metabolic flux in the cyclooxygenase (COX) pathway. However, a concomitant, early-stage of stimulation-related decrease of prostaglandins (PGs) production in HOEC incubated RAW264.7 cells was not simulated in the model.

Conclusion: Using the model, we predict that higher dose of HOEC disrupts the flux balance in COX and LOX of the AA network, and increased COX flux can interfere the curative effects of LOX inhibitor on resolution of inflammation which is crucial for the efficient and safe drug design.

Keywords arachidonic acid      metabolic network      computational model      anti-inflammation      natural product     
Corresponding Author(s): Ying Liu,Rui Wang,Honglin Li   
Just Accepted Date: 06 December 2018   Online First Date: 19 December 2018    Issue Date: 22 March 2019
 Cite this article:   
Wen Yang,Xia Wang,Kenan Li, et al. Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network[J]. Quant. Biol., 2019, 7(1): 30-41.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-018-0163-4
https://academic.hep.com.cn/qb/EN/Y2019/V7/I1/30
Fig.1  A23187 induced AA metabolites changes in RAW264.7 macrophage.
Fig.2  Effect of HOEC on A23187 stimulated flux changes of AA metabolites in RAW264.7 cells.
Fig.3  The topological structure of AA metabolic network in mouse macrophages RAW264.7.
Fig.4  Simulation of model of AA metabolic network in RAW264.7.
Fig.5  Flux analysis of the four main pathways in the AA metabolic network modulated by HOEC (50 mM).
1 P.Libby, (2007) Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr. Rev., 65, S140–S146
https://doi.org/10.1301/nr.2007.dec.S140-S146. pmid: 18240538
2 P.Davies, , P. J. Bailey, , M. M.Goldenberg, and A. W.Ford-Hutchinson, (1984) The role of arachidonic acid oxygenation products in pain and inflammation. Annu. Rev. Immunol., 2, 335–357
https://doi.org/10.1146/annurev.iy.02.040184.002003. pmid: 6100476
3 J.Marx, (2004) Cancer research: inflammation and cancer: the link grows stronger. Science, 306, 966–968
https://doi.org/10.1126/science.306.5698.966. pmid: 15528423
4 P.Needleman, , J. Truk, , B. A.Jakschik, , A. R.Morrison, and J. B.Lefkowith, (1986) Arachidonic acid metabolism. Annu. Rev. Biochem., 55, 69–102
https://doi.org/10.1146/annurev.bi.55.070186.000441. pmid: 3017195
5 H.Kühn, and V. B.O’Donnell, (2006) Inflammation and immune regulation by 12/15-lipoxygenases. Prog. Lipid Res., 45, 334–356
https://doi.org/10.1016/j.plipres.2006.02.003. pmid: 16678271
6 R. J.Harvey, , U. B.Depner, , H.Wässle, , S.Ahmadi, , C.Heindl, , H.Reinold, , T. G.Smart, , K.Harvey, , B.Schütz, , O. M.Abo-Salem, , et al. (2004) GlyR α3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science, 304, 884–887
https://doi.org/10.1126/science.1094925. pmid: 15131310
7 J.Guay, , K. Bateman, , R.Gordon, , J.Mancini, and D.Riendeau, (2004) Carrageenan-induced paw edema in rat elicits a predominant prostaglandin E2 (PGE2) response in the central nervous system associated with the induction of microsomal PGE2 synthase-1. J. Biol. Chem., 279, 24866–24872
https://doi.org/10.1074/jbc.M403106200. pmid: 15044444
8 M.Nakanishi, and D. W.Rosenberg, (2013) Multifaceted roles of PGE2 in inflammation and cancer. Semin. Immunopathol., 35, 123–137
https://doi.org/10.1007/s00281-012-0342-8. pmid: 22996682
9 J. B.Smith, , H. Araki, and A. M.Lefer, (1980) Thromboxane A2, prostacyclin and aspirin: effects on vascular tone and platelet aggregation. Circulation, 62, V19–V25
pmid: 7002350.
10 K. V.Honn, , B. Cicone, and A.Skoff, (1981) Prostacyclin: a potent antimetastatic agent. Science, 212, 1270–1272
https://doi.org/10.1126/science.7015512. pmid: 7015512
11 J. U.Scher, and M. H.Pillinger, (2005) 15d-PGJ2: the anti-inflammatory prostaglandin? Clin. Immunol., 114, 100–109
https://doi.org/10.1016/j.clim.2004.09.008. pmid: 15639643
12 J.Palmblad, , C. L. Malmsten, , A. M.Udén, , O.Rådmark, , L.Engstedt, and B.Samuelsson, (1981) Leukotriene B4 is a potent and stereospecific stimulator of neutrophil chemotaxis and adherence. Blood, 58, 658–661
pmid: 6266432.
13 Z.Csoma, , S. A. Kharitonov, , B.Balint, , A.Bush, , N. M.Wilson, and P. J.Barnes, (2002) Increased leukotrienes in exhaled breath condensate in childhood asthma. Am. J. Respir. Crit. Care Med., 166, 1345–1349
https://doi.org/10.1164/rccm.200203-233OC. pmid: 12406853
14 M.Peters-Golden, , M. M.Gleason, and A. Togias, (2006) Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis. Clin. Exp. Allergy, 36, 689–703
https://doi.org/10.1111/j.1365-2222.2006.02498.x. pmid: 16776669
15 S.Sozzani, , D. Zhou, , M.Locati, , S.Bernasconi, , W.Luini, , A.Mantovani, and J. T.O’Flaherty, (1996) Stimulating properties of 5-oxo-eicosanoids for human monocytes: synergism with monocyte chemotactic protein-1 and -3. J. Immunol., 157, 4664–4671
pmid: 8906847.
16 K. D.Rainsford, (1999) Profile and mechanisms of gastrointestinal and other side effects of nonsteroidal anti-inflammatory drugs (NSAIDs). Am. J. Med., 107, 27–35
https://doi.org/10.1016/S0002-9343(99)00365-4. pmid: 10628591
17 B. M.Psaty, and C. D.Furberg, (2005) COX-2 inhibitors–lessons in drug safety. N. Engl. J. Med., 352, 1133–1135
https://doi.org/10.1056/NEJMe058042. pmid: 15713946
18 D.Singh, (2004) Merck withdraws arthritis drug worldwide. BMJ, 329, 816.2
https://doi.org/10.1136/bmj.329.7470.816-a. pmid: 15472245
19 W.Berger, , M. T. De Chandt, and C. B.Cairns, (2007) Zileuton: clinical implications of 5-Lipoxygenase inhibition in severe airway disease. Int. J. Clin. Pract., 61, 663–676
https://doi.org/10.1111/j.1742-1241.2007.01320.x. pmid: 17394438
20 C.Pergola, and O.Werz, (2010) 5-Lipoxygenase inhibitors: a review of recent developments and patents. Expert Opin. Ther. Pat., 20, 355–375
https://doi.org/10.1517/13543771003602012. pmid: 20180620
21 A.Bertolini, , A. Ottani, and M.Sandrini, (2001) Dual acting anti-inflammatory drugs: a reappraisal. Pharmacol. Res., 44, 437–450
https://doi.org/10.1006/phrs.2001.0872. pmid: 11735348
22 H.Kitano, (2007) A robustness-based approach to systems-oriented drug design. Nat. Rev. Drug Discov., 6, 202–210
https://doi.org/10.1038/nrd2195. pmid: 17318209
23 K.Yang, , W. Ma, , H.Liang, , Q.Ouyang, , C.Tang, and L.Lai, (2007) Dynamic simulations on the arachidonic acid metabolic network. PLOS Comput. Biol., 3, e55
https://doi.org/10.1371/journal.pcbi.0030055. pmid: 17381237
24 H.Meng, , Y. Liu, and L.Lai, (2015) Diverse ways of perturbing the human arachidonic acid metabolic network to control inflammation. Acc. Chem. Res., 48, 2242–2250
https://doi.org/10.1021/acs.accounts.5b00226. pmid: 26237215
25 Y. Q.Su, , W. D. Zhang, , C.Zhang, , R. H.Liu, and Y. H.Shen, (2008) A new caffeic ester from Incarvillea mairei var. granditlora (Wehrhahn) Grierson. Chin. Chem. Lett., 19, 829–831
https://doi.org/10.1016/j.cclet.2008.05.003.
26 L.Li, , H. Zeng, , F.Liu, , J.Zhang, , R.Yue, , W.Lu, , X. Yuan, , W.Dai, , H.Yuan, , Q.Sun, , et al. (2012) Target identification and validation of (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate, an anti-inflammatory natural product. Eur. J. Inflamm., 10, 297–309
https://doi.org/10.1177/1721727X1201000306.
27 M. W.Buczynski, , D. L.Stephens, , R. C.Bowers-Gentry, , A.Grkovich, , R. A.Deems, and E. A.Dennis, (2007) TLR-4 and sustained calcium agonists synergistically produce eicosanoids independent of protein synthesis in RAW264.7 cells. J. Biol. Chem., 282, 22834–22847
https://doi.org/10.1074/jbc.M701831200. pmid: 17535806
28 C. C.Leslie, (2015) Cytosolic phospholipase A2: physiological function and role in disease. J. Lipid Res., 56, 1386–1402
https://doi.org/10.1194/jlr.R057588. pmid: 25838312
29 P.Christmas, , B. M. Weber, , M.McKee, , D.Brown, and R. J.Soberman, (2002) Membrane localization and topology of leukotriene C4 synthase. J. Biol. Chem., 277, 28902–28908
https://doi.org/10.1074/jbc.M203074200. pmid: 12023288
30 C. D.Funk, (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294, 1871–1875
https://doi.org/10.1126/science.294.5548.1871. pmid: 11729303
31 Z.Honda, , M. Nakamura, , I.Miki, , M.Minami, , T.Watanabe, , Y.Seyama, , H.Okado, , H.Toh, , K.Ito, , T.Miyamoto, , et al. (1991) Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature, 349, 342–346
https://doi.org/10.1038/349342a0. pmid: 1846231
32 J. K.Horton, , A. S.Williams, , Z.Smith-Phillips, , R. C.Martin, and G.O’Beirne, (1999) Intracellular measurement of prostaglandin E2: effect of anti-inflammatory drugs on cyclooxygenase activity and prostanoid expression. Anal. Biochem., 271, 18–28
https://doi.org/10.1006/abio.1999.4118. pmid: 10361000
33 R. M.Kramer, , E. F.Roberts, , S. L.Um, , A. G.Börsch-Haubold, , S. P.Watson, , M. J.Fisher, and J. A.Jakubowski, (1996) p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J. Biol. Chem., 271, 27723–27729
https://doi.org/10.1074/jbc.271.44.27723. pmid: 8910365
34 O.Kozawa, , H. Tokuda, , H.Matsuno, and T.Uematsu, (1999) Involvement of p38 mitogen-activated protein kinase in basic fibroblast growth factor-induced interleukin-6 synthesis in osteoblasts. J. Cell. Biochem., 74, 479–485
https://doi.org/10.1002/(SICI)1097-4644(19990901)74:3<479::AID-JCB15>3.0.CO;2-9. pmid: 10412048
35 H.Tokuda, , O. Kozawa, and T.Uematsu, (2000) Basic fibroblast growth factor stimulates vascular endothelial growth factor release in osteoblasts: divergent regulation by p42/p44 mitogen-activated protein kinase and p38 mitogen-activated protein kinase. J. Bone Miner. Res., 15, 2371–2379
https://doi.org/10.1359/jbmr.2000.15.12.2371. pmid: 11127202
36 J.-N.Shen, , L.-X. Xu, , L.Shan, , W.-D.Zhang, , H.-L.Li, and R.Wang, (2015) Neuroprotection of (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate against hydrogen peroxide and lipopolysaccharide induced injury via modulating arachidonic acid network and p38-MAPK signaling. Curr. Alzheimer Res., 12, 892–902
https://doi.org/10.2174/156720501209151019111244. pmid: 26510982
37 M.Kanehisa, , S. Goto, , M.Hattori, , K. F.Aoki-Kinoshita, , M.Itoh, , S.Kawashima, , T.Katayama, , M.Araki, and M.Hirakawa, (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res., 34, D354–D357
https://doi.org/10.1093/nar/gkj102. pmid: 16381885
38 I.Schomburg, , A. Chang, , C.Ebeling, , M.Gremse, , C.Heldt, , G.Huhn, and D.Schomburg, (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res., 32, D431–D433
https://doi.org/10.1093/nar/gkh081. pmid: 14681450
39 K.Yang, , H. Bai, , Q.Ouyang, , L.Lai, and C.Tang, (2008) Finding multiple target optimal intervention in disease-related molecular network. Mol. Syst. Biol., 4, 228
https://doi.org/10.1038/msb.2008.60. pmid: 18985027
40 P.Csermely, , T. Korcsmáros, , H. J.Kiss, , G.London, and R.Nussinov, (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery. A comprehensive review. Pharmacol. Ther., 138, 333–408
https://doi.org/10.1016/j.pharmthera.2013.01.016. pmid: 23384594
41 A.Rossi, , C. Pergola, , A.Koeberle, , M.Hoffmann, , F.Dehm, , P.Bramanti, , S.Cuzzocrea, , O.Werz, and L.Sautebin, (2010) The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages. Br. J. Pharmacol., 161, 555–570
https://doi.org/10.1111/j.1476-5381.2010.00930.x. pmid: 20880396
42 M. M.-Y.Chan, , A. R.Moore, (2010) Resolution of inflammation in murine autoimmune arthritis is disrupted by cyclooxygenase-2 inhibition and restored by prostaglandin E(2)-mediated lipoxin A(4) Production. J. Immunol., 184, 6418–6426
43 R.Rajakariar, , M. M. Yaqoob, and D. W.Gilroy, (2006) COX-2 in inflammation and resolution. Mol. Interv., 6, 199–207
https://doi.org/10.1124/mi.6.4.6. pmid: 16960142
44 K.Seibert, , Y. Zhang, , K.Leahy, , S.Hauser, , J.Masferrer, , W.Perkins, , L.Lee, and P.Isakson, (1994) Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc. Natl. Acad. Sci. USA, 91, 12013–12017
https://doi.org/10.1073/pnas.91.25.12013. pmid: 7991575
45 B.Samuelsson, , S. E. Dahlén, , J. A.Lindgren, , C. A.Rouzer, and C. N.Serhan, (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science, 237, 1171–1176
https://doi.org/10.1126/science.2820055. pmid: 2820055
46 C. A.Dinarello, (2000) Proinflammatory cytokines. Chest, 118, 503–508
https://doi.org/10.1378/chest.118.2.503. pmid: 10936147
47 B. J.Pettus, , A.Bielawska, , S.Spiegel, , P.Roddy, , Y. A.Hannun, and C. E.Chalfant, (2003) Ceramide kinase mediates cytokine- and calcium ionophore-induced arachidonic acid release. J. Biol. Chem., 278, 38206–38213
https://doi.org/10.1074/jbc.M304816200. pmid: 12855693
48 D.Piomelli, (1993) Arachidonic acid in cell signaling. Curr. Opin. Cell Biol., 5, 274–280
https://doi.org/10.1016/0955-0674(93)90116-8. pmid: 7685181
49 G.De Micheli, and L.Benini, (2006) Networks on Chips: Technology and Tools. Academic Press.
50 L.Benini, , G. De Micheli, (2002) Networks on chips: A new SoC paradigm. Computer, 35, 70–78
51 A. L.Hopkins, (2008) Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol., 4, 682–690
https://doi.org/10.1038/nchembio.118. pmid: 18936753
52 X.Wang, , C. Terfve, , J. C.Rose, and F.Markowetz, (2011) HTSanalyzeR: an R/Bioconductor package for integrated network analysis of high-throughput screens. Bioinformatics, 27, 879–880
https://doi.org/10.1093/bioinformatics/btr028. pmid: 21258062
53 S.Zhao, and R. Iyengar, (2012) Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol., 52, 505–521
https://doi.org/10.1146/annurev-pharmtox-010611-134520. pmid: 22235860
54 J.Walpole, , J. A. Papin, and S. M.Peirce, (2013) Multiscale computational models of complex biological systems. Annu. Rev. Biomed. Eng., 15, 137–154
https://doi.org/10.1146/annurev-bioeng-071811-150104. pmid: 23642247
55 S.Gupta, , M. R. Maurya, , D. L.Stephens, , E. A.Dennis, and S.Subramaniam, (2009) An integrated model of eicosanoid metabolism and signaling based on lipidomics flux analysis. Biophys. J., 96, 4542–4551
https://doi.org/10.1016/j.bpj.2009.03.011. pmid: 19486676
56 Y.Kihara, , S. Gupta, , M. R.Maurya, , A.Armando, , I.Shah, , O.Quehenberger, , C. K.Glass, , E. A.Dennis, and S.Subramaniam, (2014) Modeling of eicosanoid fluxes reveals functional coupling between cyclooxygenases and terminal synthases. Biophys. J., 106, 966–975
https://doi.org/10.1016/j.bpj.2014.01.015. pmid: 24559999
57 K.Yang, , W. Ma, , H.Liang, , Q.Ouyang, , C.Tang, and L.Lai, (2007) Dynamic simulations on the arachidonic acid metabolic network. PLOS Comput. Biol., 3, e55
https://doi.org/10.1371/journal.pcbi.0030055. pmid: 17381237
58 K.Yang, , H. Bai, , Q.Ouyang, , L.Lai, and C.Tang, (2008) Finding multiple target optimal intervention in disease-related molecular network. Mol. Syst. Biol., 4, 228
https://doi.org/10.1038/msb.2008.60. pmid: 18985027
59 A.Fajmut, , D. Schäfer, , M.Brumen, , A.Dobovišek, , N.Antić, and T.Emeršič, (2015) Dynamic model of eicosanoid production with special reference to non-steroidal anti-inflammatory drug-triggered hypersensitivity. IET Syst. Biol., 9, 204–215
https://doi.org/10.1049/iet-syb.2014.0037. pmid: 26405144
[1] QB-18163-OF-LHL_suppl_1 Download
[1] Lei Wei, Ye Yuan, Tao Hu, Shuailin Li, Tianrun Cheng, Jinzhi Lei, Zhen Xie, Michael Q. Zhang, Xiaowo Wang. Regulation by competition: a hidden layer of gene regulatory network[J]. Quant. Biol., 2019, 7(2): 110-121.
[2] Weizhong Tu, Shaozhen Ding, Ling Wu, Zhe Deng, Hui Zhu, Xiaotong Xu, Chen Lin, Chaonan Ye, Minlu Han, Mengna Zhao, Juan Liu, Zixin Deng, Junni Chen, Dong-Qing Wei, Qian-Nan Hu. SynBioEcoli: a comprehensive metabolism network of engineered E. coli in three dimensional visualization[J]. Quant. Biol., 2017, 5(1): 99-104.
[3] Honglei Liu, Yanda Li, Xiaowo Wang. OP-Synthetic: identification of optimal genetic manipulations for the overproduction of native and non-native metabolites[J]. Quant. Biol., 2014, 2(3): 100-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed