|
|
|
Regulation by competition: a hidden layer of gene regulatory network |
Lei Wei1,2, Ye Yuan1,2, Tao Hu1,2, Shuailin Li3, Tianrun Cheng1,2, Jinzhi Lei4, Zhen Xie1,2, Michael Q. Zhang1,2,5,6, Xiaowo Wang1,2( ) |
1. Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China 2. Beijing National Research Center for Information Science and Technology, Beijing 100084, China 3. School of Life Sciences, Tsinghua University, Beijing 100084, China 4. Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China 5. Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China 6. Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX 75080-3021, USA |
|
|
|
|
Abstract Background: Molecular competition brings about trade-offs of shared limited resources among the cellular components, and thus introduces a hidden layer of regulatory mechanism by connecting components even without direct physical interactions. Several molecular competition scenarios have been observed recently, but there is still a lack of systematic quantitative understanding to reveal the essence of molecular competition. Methods: Here, by abstracting the analogous competition mechanism behind diverse molecular systems, we built a unified coarse-grained competition motif model to systematically integrate experimental evidences in these processes and analyzed general properties shared behind them from steady-state behavior to dynamic responses. Results: We could predict in what molecular environments competition would reveal threshold behavior or display a negative linear dependence. We quantified how competition can shape regulator-target dose-response curve, modulate dynamic response speed, control target expression noise, and introduce correlated fluctuations between targets. Conclusions: This work uncovered the complexity and generality of molecular competition effect as a hidden layer of gene regulatory network, and therefore provided a unified insight and a theoretical framework to understand and employ competition in both natural and synthetic systems.
|
| Keywords
systems biology
computational modeling
molecular competition regulation
synthetic biology
network motif
|
|
Corresponding Author(s):
Xiaowo Wang
|
|
Online First Date: 25 January 2019
Issue Date: 30 May 2019
|
|
| 1 |
G.Hardin, (1960) The competitive exclusion principle. Science, 131, 1292–1297
https://doi.org/10.1126/science.131.3409.1292.
pmid: 14399717
|
| 2 |
T. W.Schoener, (1983) Field experiments on interspecific competition. Am. Nat., 122, 240–285
https://doi.org/10.1086/284133.
|
| 3 |
J. H.Connell, (1983) On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat., 122, 661–696
https://doi.org/10.1086/284165.
|
| 4 |
M. H.Zwietering, , I.Jongenburger, , F. M.Rombouts, and K.van ’t Riet, (1990) Modeling of the bacterial growth curve. Appl. Environ. Microbiol., 56, 1875–1881
pmid: 16348228.
|
| 5 |
D. I.Bolnick, (2004) Can intraspecific competition drive disruptive selection? An experimental test in natural populations of sticklebacks. Evolution, 58, 608–618
https://doi.org/10.1111/j.0014-3820.2004.tb01683.x.
pmid: 15119444
|
| 6 |
R.Svanbäck, and D. I.Bolnick, (2007) Intraspecific competition drives increased resource use diversity within a natural population. Proc. Biol. Sci., 274, 839–844
https://doi.org/10.1098/rspb.2006.0198.
pmid: 17251094
|
| 7 |
A.Khare, and G. Shaulsky, (2006) First among equals: competition between genetically identical cells. Nat. Rev. Genet., 7, 577–583
https://doi.org/10.1038/nrg1875.
pmid: 16702983
|
| 8 |
L. A.Johnston, (2009) Competitive interactions between cells: death, growth, and geography. Science, 324, 1679–1682
https://doi.org/10.1126/science.1163862.
pmid: 19556501
|
| 9 |
A. K.Laird, (1964) Dynamics of tumor growth. Br. J. Cancer, 18, 490–502
https://doi.org/10.1038/bjc.1964.55.
pmid: 14219541
|
| 10 |
C. H.Chang, , J. Qiu, , D.O’Sullivan, , M. D.Buck, , T.Noguchi, , J. D.Curtis, , Q.Chen, , M.Gindin, , M. M.Gubin, , G. J.van der Windt, , et al.et al. (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell, 162, 1229–1241
https://doi.org/10.1016/j.cell.2015.08.016.
pmid: 26321679
|
| 11 |
M.Scott, , C. W. Gunderson, , E. M.Mateescu, , Z.Zhang, and T.Hwa, (2010) Interdependence of cell growth and gene expression: origins and consequences. Science, 330, 1099–1102
https://doi.org/10.1126/science.1192588.
pmid: 21097934
|
| 12 |
A. Y.Weiße, , D. A.Oyarzún, , V.Danos, and P. S.Swain, (2015) Mechanistic links between cellular trade-offs, gene expression, and growth. Proc. Natl. Acad. Sci. USA, 112, E1038–E1047
https://doi.org/10.1073/pnas.1416533112.
pmid: 25695966
|
| 13 |
S.Hui, , J. M. Silverman, , S. S.Chen, , D. W.Erickson, , M.Basan, , J.Wang, , T.Hwa, and J. R.Williamson, (2015) Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol., 11, e784
https://doi.org/10.15252/msb.20145697.
pmid: 25678603
|
| 14 |
R. C.Brewster, , F. M.Weinert, , H. G.Garcia, , D.Song, , M.Rydenfelt, and R.Phillips, (2014) The transcription factor titration effect dictates level of gene expression. Cell, 156, 1312–1323
https://doi.org/10.1016/j.cell.2014.02.022.
pmid: 24612990
|
| 15 |
A. A.Sigova, , B. J.Abraham, , X.Ji, , B. Molinie, , N. M.Hannett, , Y. E.Guo, , M.Jangi, , C. C.Giallourakis, , P. A.Sharp, and R. A.Young, (2015) Transcription factor trapping by RNA in gene regulatory elements. Science, 350, 978–981
https://doi.org/10.1126/science.aad3346.
pmid: 26516199
|
| 16 |
Q.Zheng, , C. Bao, , W.Guo, , S.Li, , J. Chen, , B.Chen, , Y.Luo, , D.Lyu, , Y.Li, , G. Shi, , et al.et al. (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun., 7, 11215
https://doi.org/10.1038/ncomms11215.
pmid: 27050392
|
| 17 |
M.Cesana, , D. Cacchiarelli, , I.Legnini, , T.Santini, , O.Sthandier, , M.Chinappi, , A.Tramontano, and I.Bozzoni, (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 147, 358–369
https://doi.org/10.1016/j.cell.2011.09.028.
pmid: 22000014
|
| 18 |
P.Sumazin, , X. Yang, , H. S.Chiu, , W. J.Chung, , A.Iyer, , D.Llobet-Navas, , P.Rajbhandari, , M.Bansal, , P.Guarnieri, , J.Silva, , et al.et al. (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell, 147, 370–381
https://doi.org/10.1016/j.cell.2011.09.041.
pmid: 22000015
|
| 19 |
S.Saha, , C. A. Weber, , M.Nousch, , O.Adame-Arana, , C.Hoege, , M. Y.Hein, , E.Osborne-Nishimura, , J.Mahamid, , M.Jahnel, , L.Jawerth, , et al. (2016) Polar positioning of phase-separated liquid compartments in cells regulated by an mRNA competition mechanism. Cell 166, 1572–1584
|
| 20 |
H.-S.Chiu, , S. Somvanshi, , E.Patel, , T.-W.Chen, , V. P.Singh, , B.Zorman, , S. L.Patil, , Y.Pan, , S. S.Chatterjee, , A. K.Sood, , et al.et al. (2018) Pan-cancer analysis of lncRNA regulation supports their targeting of cancer genes in each tumor context. Cell Reports, 23, 297–312.e12
https://doi.org/10.1016/j.celrep.2018.03.064.
pmid: 29617668
|
| 21 |
S.Cardinale, and A. P.Arkin, (2012) Contextualizing context for synthetic biology‒identifying causes of failure of synthetic biological systems. Biotechnol. J., 7, 856–866
https://doi.org/10.1002/biot.201200085.
pmid: 22649052
|
| 22 |
G.Wu, , Q. Yan, , J. A.Jones, , Y. J.Tang, , S. S.Fong, and M. A. G.Koffas, (2016) Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol., 34, 652–664
https://doi.org/10.1016/j.tibtech.2016.02.010.
pmid: 26996613
|
| 23 |
Y.Qian, , H. H. Huang, , J. I.Jiménez, and D.Del Vecchio, (2017) Resource competition shapes the response of genetic circuits. ACS Synth. Biol., 6, 1263–1272
https://doi.org/10.1021/acssynbio.6b00361.
pmid: 28350160
|
| 24 |
P.Jiang, , A. C. Ventura, , E. D.Sontag, , S. D.Merajver, , A. J.Ninfa, and D.Del Vecchio, (2011) Load-induced modulation of signal transduction networks. Sci. Signal., 4, ra67
https://doi.org/10.1126/scisignal.2002152.
pmid: 21990429
|
| 25 |
S.Jayanthi, , K. S. Nilgiriwala, and D.Del Vecchio, (2013) Retroactivity controls the temporal dynamics of gene transcription. ACS Synth. Biol., 2, 431–441
https://doi.org/10.1021/sb300098w.
pmid: 23654274
|
| 26 |
U.Ala, , F. A. Karreth, , C.Bosia, , A.Pagnani, , R.Taulli, , V.Léopold, , Y.Tay, , P.Provero, , R.Zecchina, and P. P.Pandolfi, (2013) Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc. Natl. Acad. Sci. USA, 110, 7154–7159
https://doi.org/10.1073/pnas.1222509110.
pmid: 23536298
|
| 27 |
H.-S.Chiu, , M. R. Martínez, , E. V.Komissarova, , D.Llobet-Navas, , M.Bansal, , E. O.Paull, , J.Silva, , X.Yang, , P.Sumazin, and A.Califano, (2018) The number of titrated microRNA species dictates ceRNA regulation. Nucleic Acids Res., 46, 4354–4369
https://doi.org/10.1093/nar/gky286.
pmid: 29684207
|
| 28 |
Y.Yuan, , B. Liu, , P.Xie, , M. Q.Zhang, , Y.Li, , Z. Xie, and X.Wang, (2015) Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc. Natl. Acad. Sci. USA, 112, 3158–3163
https://doi.org/10.1073/pnas.1413896112.
pmid: 25713348
|
| 29 |
T. E.Gorochowski, , I.Avcilar-Kucukgoze, , R. A.Bovenberg, , J. A.Roubos, and Z.Ignatova, (2016) A minimal model of ribosome allocation dynamics captures trade-offs in expression between endogenous and synthetic genes. ACS Synth. Biol., 5, 710–720
https://doi.org/10.1021/acssynbio.6b00040.
pmid: 27112032
|
| 30 |
W. H.Mather, , N. A.Cookson, , J.Hasty, , L. S.Tsimring, and R. J.Williams, (2010) Correlation resonance generated by coupled enzymatic processing. Biophys. J., 99, 3172–3181
https://doi.org/10.1016/j.bpj.2010.09.057.
pmid: 21081064
|
| 31 |
N. A.Cookson, , W. H.Mather, , T.Danino, , O.Mondragón-Palomino, , R. J.Williams, , L. S.Tsimring, and J.Hasty, (2014) Queueing up for enzymatic processing: correlated signaling through coupled degradation. Mol. Syst. Biol., 7, 561
https://doi.org/10.1038/msb.2011.94.
pmid: 22186735
|
| 32 |
A.Gyorgy, , J. I. Jiménez, , J.Yazbek, , H. H.Huang, , H.Chung, , R.Weiss, and D.Del Vecchio, (2015) Isocost lines describe the cellular economy of genetic circuits. Biophys. J., 109, 639–646
https://doi.org/10.1016/j.bpj.2015.06.034.
pmid: 26244745
|
| 33 |
M.Carbonell-Ballestero, , E.Garcia-Ramallo, , R.Montañez, , C.Rodriguez-Caso, and J.Macía, (2016) Dealing with the genetic load in bacterial synthetic biology circuits: convergences with the Ohm’s law. Nucleic Acids Res., 44, 496–507
https://doi.org/10.1093/nar/gkv1280.
pmid: 26656950
|
| 34 |
N. E.Buchler, and M.Louis, (2008) Molecular titration and ultrasensitivity in regulatory networks. J. Mol. Biol., 384, 1106–1119
https://doi.org/10.1016/j.jmb.2008.09.079.
pmid: 18938177
|
| 35 |
S.Mukherji, , M. S. Ebert, , G. X. Y.Zheng, , J. S.Tsang, , P. A.Sharp, and A.van Oudenaarden, (2011) MicroRNAs can generate thresholds in target gene expression. Nat. Genet., 43, 854–859
https://doi.org/10.1038/ng.905.
pmid: 21857679
|
| 36 |
T.Quarton, , K. Ehrhardt, , J.Lee, , S.Kannan, , Y.Li, , L. Ma, , & L.Bleris, (2018) Mapping the operational landscape of microRNAs in synthetic gene circuits. NPJ Syst. Biol. Appl.,
https://doi.org/10.1038/s41540-017-0043-y
|
| 37 |
T. H.Lee, and N.Maheshri, (2012) A regulatory role for repeated decoy transcription factor binding sites in target gene expression. Mol. Syst. Biol., 8, 576
https://doi.org/10.1038/msb.2012.7.
pmid: 22453733
|
| 38 |
M.Jens, and N. Rajewsky, (2015) Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat. Rev. Genet., 16, 113–126
https://doi.org/10.1038/nrg3853.
pmid: 25488579
|
| 39 |
Y.Yuan, , X. Ren, , Z.Xie, and X.Wang, (2016) A quantitative understanding of microRNA-mediated competing endogenous RNA regulation. Quant. Biol., 4, 47–57
https://doi.org/10.1007/s40484-016-0062-5.
|
| 40 |
D.Mishra, , P. M. Rivera, , A.Lin, , D.Del Vecchio, and R.Weiss, (2014) A load driver device for engineering modularity in biological networks. Nat. Biotechnol., 32, 1268–1275
https://doi.org/10.1038/nbt.3044.
pmid: 25419739
|
| 41 |
A.Burger, , A. M. Walczak, and P. G.Wolynes, (2010) Abduction and asylum in the lives of transcription factors. Proc. Natl. Acad. Sci. USA, 107, 4016–4021
https://doi.org/10.1073/pnas.0915138107.
pmid: 20160109
|
| 42 |
W. J.Blake, , M. KAErn, , C. R.Cantor, and J. J.Collins, (2003) Noise in eukaryotic gene expression. Nature, 422, 633–637
https://doi.org/10.1038/nature01546.
pmid: 12687005
|
| 43 |
M.Chen, , L. Wang, , C. C.Liu, and Q.Nie, (2013) Noise attenuation in the ON and OFF states of biological switches. ACS Synth. Biol., 2, 587–593
https://doi.org/10.1021/sb400044g.
pmid: 23768065
|
| 44 |
E.Schrödinger, (1944) What is Life? Cambridge: Cambridge University Press
|
| 45 |
J. M.Schmiedel, , S. L.Klemm, , Y.Zheng, , A.Sahay, , N.Blüthgen, , D. S.Marks, and A.van Oudenaarden, (2015) MicroRNA control of protein expression noise. Science, 348, 128–132
https://doi.org/10.1126/science.aaa1738.
pmid: 25838385
|
| 46 |
C.Bosia, , F. Sgrò, , L.Conti, , C.Baldassi, , D.Brusa, , F.Cavallo, , F. D.Cunto, , E.Turco, , A.Pagnani, and R.Zecchina, (2017) RNAs competing for microRNAs mutually influence their fluctuations in a highly non-linear microRNA-dependent manner in single cells. Genome Biol., 18, 37
https://doi.org/10.1186/s13059-017-1162-x.
pmid: 28219439
|
| 47 |
W. H.Mather, , J.Hasty, , L. S.Tsimring, and R. J.Williams, (2013) Translational cross talk in gene networks. Biophys. J., 104, 2564–2572
https://doi.org/10.1016/j.bpj.2013.04.049.
pmid: 23746529
|
| 48 |
T.-C.Chou, and P.Talaly, (1977) A simple generalized equation for the analysis of multiple inhibitions of Michaelis-Menten kinetic systems. J. Biol. Chem., 252, 6438–6442
pmid: 893418.
|
| 49 |
L.Bintu, , N. E. Buchler, , H. G.Garcia, , U.Gerland, , T.Hwa, , J.Kondev, and R.Phillips, (2005) Transcriptional regulation by the numbers: models. Curr. Opin. Genet. Dev., 15, 116–124
https://doi.org/10.1016/j.gde.2005.02.007.
pmid: 15797194
|
| 50 |
P.Xie, , Y. Liu, , Y.Li, , M. Q.Zhang, and X.Wang, (2014) MIROR: a method for cell-type specific microRNA occupancy rate prediction. Mol. Biosyst., 10, 1377–1384
https://doi.org/10.1039/C3MB70610A.
pmid: 24668253
|
| 51 |
Y.Rondelez, (2012) Competition for catalytic resources alters biological network dynamics. Phys. Rev. Lett., 108, 018102
https://doi.org/10.1103/PhysRevLett.108.018102.
pmid: 22304295
|
| 52 |
J.Kim, , J. Hopfield, and E.Winfree, (2004) Neural network computation by in vitro transcriptional circuits. In Advances in Neural Information Processing Systems 17, 681–688. Vancouver, Canada
|
| 53 |
A. J.Genot, , T. Fujii, and Y.Rondelez, (2013) Scaling down DNA circuits with competitive neural networks. J. R. Soc. Interface, 10, 20130212
https://doi.org/10.1098/rsif.2013.0212.
pmid: 23760296
|
| 54 |
M. R.Lakin, and D.Stefanovic, (2016) Supervised learning in adaptive DNA strand displacement networks. ACS Synth. Biol., 5, 885–897
https://doi.org/10.1021/acssynbio.6b00009.
pmid: 27111037
|
| 55 |
H.Seitz, (2009) Redefining microRNA targets. Curr. Biol., 19, 870–873
https://doi.org/10.1016/j.cub.2009.03.059.
pmid: 19375315
|
| 56 |
J. A.Brophy, and C. A.Voigt, (2014) Principles of genetic circuit design. Nat. Methods, 11, 508–520
https://doi.org/10.1038/nmeth.2926.
pmid: 24781324
|
| 57 |
L.Potvin-Trottier, , N. D.Lord, , G.Vinnicombe, and J.Paulsson, (2016) Synchronous long-term oscillations in a synthetic gene circuit. Nature, 538, 514–517
https://doi.org/10.1038/nature19841.
pmid: 27732583
|
| 58 |
C.Liao, , A. E. Blanchard, and T.Lu, (2017) An integrative circuit-host modelling framework for predicting synthetic gene network behaviours. Nat. Microbiol., 2, 1658–1666
https://doi.org/10.1038/s41564-017-0022-5.
pmid: 28947816
|
| 59 |
O. S.Venturelli, , M.Tei, , S.Bauer, , L. J. G.Chan, , C. J.Petzold, and A. P.Arkin, (2017) Programming mRNA decay to modulate synthetic circuit resource allocation. Nat. Commun., 8, 15128
https://doi.org/10.1038/ncomms15128.
pmid: 28443619
|
| 60 |
L.Nissim, , M. R. Wu, , E.Pery, , A.Binder-Nissim, , H. I.Suzuki, , D.Stupp, , C.Wehrspaun, , Y.Tabach, , P. A.Sharp, , and T. K.Lu, (2017) Synthetic RNA-based immunomodulatory gene circuits for cancer immunotherapy. Cell 171,1138–1150e1115
https://doi.org/https://doi.org/10.1016/j.cell.2017.09.049
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|