|
|
|
Global quantitative biology can illuminate ontological connections between diseases |
Guanyu Wang( ) |
| Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China |
|
|
|
|
Abstract Owing to its interdisciplinary nature, quantitative biology is playing ever-increasing roles in biological researches. To make quantitative biology even more powerful, it is important to develop a holistic perspective by integrating information from multiple biological levels and by considering related biocomplexity simultaneously. Using complex diseases as an example, I show in this paper how their ontological connections can be revealed by considering the diseases on a common ground. The obtained insights may be useful to the prediction and treatment of the diseases. Although the example involves only with cancer and diabetes, the approaches are applicable to the study of other diseases, or even to other biological problems.
|
| Author Summary Deep connections may exist between seemingly disparate things. Using complex diseases as an example, the author shows that the connections between diseases can be revealed by using powerful approaches of mathematics and quantitative biology. The obtained insights may be useful to the prediction and treatment of the diseases. It is promising to apply the approaches to study other biological problems. |
| Keywords
quantitative biology
disease modeling
systems biology
nonlinear dynamics
|
|
Corresponding Author(s):
Guanyu Wang
|
|
Online First Date: 24 April 2017
Issue Date: 07 June 2017
|
|
| 1 |
Guan, L., Yang, Q., Gu, M. , Chen, L. and Zhang, X. (2014) Exon expression qtl (eeqtl) analysis highlights distant genomic variations associated with splicing regulation. Quant. Biol., 2, 71–79
https://doi.org/10.1007/s40484-014-0031-9
|
| 2 |
Chen, L., Liu, R., Liu, Z.-P. , Li, M. and Aihara, K. (2012) Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep., 2, 342
https://doi.org/10.1038/srep00342
pmid: 22461973
|
| 3 |
Servedio, M. R. , Brandvain, Y. , Dhole, S. , Fitzpatrick, C. L. , Goldberg, E. E. , Stern, C. A. , Van Cleve, J. & Yeh, D. J. (2014) Not just a theory—the utility of mathematical models in evolutionary biology. PLoS. Biol., 12, e1002017
https://doi.org/10.1371/journal.pbio.1002017
|
| 4 |
Nagel, E. and Hawkins, D. (1961) The structure of science. Am. J. Phys., 29, 716
https://doi.org/10.1119/1.1937571
|
| 5 |
Bruggeman, F. J. , Westerhoff, H. V. and Boogerd, F. C. (2002) Biocomplexity: a pluralist research strategy is necessary for a mechanistic explanation of the “live” state. Philos. Psychol., 15, 411–440
https://doi.org/10.1080/0951508021000041996
|
| 6 |
Bergman, M. (2013) Pathophysiology of prediabetes and treatment implications for the prevention of type 2 diabetes mellitus. Endocrine, 43, 504–513
https://doi.org/10.1007/s12020-012-9830-9
pmid: 23132321
|
| 7 |
Smyth, S. and Heron, A. (2006) Diabetes and obesity: the twin epidemics. Nat. Med., 12, 75–80
https://doi.org/10.1038/nm0106-75
pmid: 16397575
|
| 8 |
Mukherjee, S. (2010) The Emperor of All Maladies: a Biography of Cancer. New York: Scribner
|
| 9 |
Giovannucci, E., Harlan, D. M., Archer, M. C. , Bergenstal, R. M. , Gapstur, S. M. , Habel, L. A. , Pollak, M. , Regensteiner, J. G. and Yee, D. (2010) Diabetes and cancer: a consensus report. CA Cancer J. Clin., 60, 207–221
https://doi.org/10.3322/caac.20078
pmid: 20554718
|
| 10 |
Pischon, T., Nöthlings, U. and Boeing, H. (2008) Obesity and cancer. Proc. Nutr. Soc., 67, 128–145
https://doi.org/10.1017/S0029665108006976
pmid: 18412987
|
| 11 |
Hsu, I. R., Kim, S. P., Kabir, M. and Bergman, R. N. (2007) Metabolic syndrome, hyperinsulinemia, and cancer. Am. J. Clin. Nutr., 86, s867–s871
pmid: 18265480
|
| 12 |
Larsson, S. C. , Mantzoros, C. S. and Wolk, A. (2007) Diabetes mellitus and risk of breast cancer: a meta-analysis. Int. J. Cancer, 121, 856– 862
https://doi.org/10.1002/ijc.22717
pmid: 17397032
|
| 13 |
Engelman, J. A. , Luo, J. and Cantley, L. C. (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet., 7, 606–619
https://doi.org/10.1038/nrg1879
pmid: 16847462
|
| 14 |
Liao, Y. and Hung, M.-C. (2010) Physiological regulation of Akt activity and stability. Am. J. Transl. Res., 2, 19–42
pmid: 20182580
|
| 15 |
Li, T. &Wang, G. (2014) Computer-aided targeting of the PI3K/Akt/mTOR pathway: toxicity reduction and therapeutic opportunities. Int. J. Mol. Sci., 15, 18856–18891
https://doi.org/10.3390/ijms151018856
|
| 16 |
Zoncu, R., Efeyan, A. and Sabatini, D. M. (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol., 12, 21–35
https://doi.org/10.1038/nrm3025
pmid: 21157483
|
| 17 |
Wang, G. (2010) Singularity analysis of the AKT signaling pathway reveals connections between cancer and metabolic diseases. Phys. Biol. 7, 046015
|
| 18 |
Arnold, V. (1986) Catastrophe Theory.Berlin: Springer-Verlag
|
| 19 |
Golubitsky, M. and Schaeffer, D. G. (1985) Singularities and Groups in Bifurcation Theory. New York: Springer-Verlag
|
| 20 |
Liu, R., Aihara, K. and Chen, L. (2013) Dynamical network biomarkers for identifying critical transitions and their driving networks of biologic processes. Quant. Biol., 1, 105–114
https://doi.org/10.1007/s40484-013-0008-0
|
| 21 |
Liu, R., Chen, P., Aihara, K. & Chen, L. (2015) Identifying early-warning signals of critical transitions with strong noise by dynamical network markers. Sci. Rep., 5, 17501
https://doi.org/10.1038/srep17501
|
| 22 |
Hong, S. Y., Yu, F.-X., Luo, Y. and Hagen, T. (2016) Oncogenic activation of the PI3K/Akt pathway promotes cellular glucose uptake by downregulating the expression of thioredoxin-interacting protein. Cell. Signal., 28, 377–383
https://doi.org/10.1016/j.cellsig.2016.01.011
pmid: 26826652
|
| 23 |
Zhu, X., Song, Y., Wu, C. , Pan, C. , Lu, P., Wang, M., Zheng, P. , Huo, R. , Zhang, C. , Li, W.et al. (2016) Cyr61 participates in the pathogenesis of acute lymphoblastic leukemia by enhancing cellular survival via the Akt/NFB signaling pathway. Sci. Rep., 6, 34018
https://doi.org/10.1038/srep34018
|
| 24 |
Wang, H., Fan, L., Wei, J. , Weng, Y. , Zhou, L. , Shi, Y. , Zhou, W. , Ma, D. & Wang, C. (2012) Akt mediates metastasis-associated gene 1 (MTA1) regulating the expression of E-cadherin and promoting the invasiveness of prostate cancer cells. PloS One 7, e46888
https://doi.org/10.1371/journal.pone.0046888
|
| 25 |
Tyson, J. J., Albert, R., Goldbeter, A. , Ruoff, P. and Sible, J. (2008) Biological switches and clocks. J. R. Soc. Interface, 5, S1–S8
https://doi.org/10.1098/rsif.2008.0179.focus
pmid: 18522926
|
| 26 |
Xiong, W. and Ferrell, J. E. Jr. (2003) A positive-feedback-based bistable “memory module” that governs a cell fate decision. Nature, 426, 460–465
https://doi.org/10.1038/nature02089
pmid: 14647386
|
| 27 |
Tsai, T. Y.-C. , Choi, Y. S. , Ma, W., Pomerening, J. R., Tang, C. and Ferrell, J. E. Jr. (2008) Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science, 321, 126–129
https://doi.org/10.1126/science.1156951
pmid: 18599789
|
| 28 |
Wang, G. (2012) Optimal homeostasis necessitates bistable control. J. R. Soc. Interface, 9, 2723–2734
https://doi.org/10.1098/rsif.2012.0244
pmid: 22535698
|
| 29 |
Tzu, L. (1972) Tao De Ching, translated by Feng, G. and English, J.New York: Vintage (Original work published CA. 350–250 BC)
|
| 30 |
Meng, H. and Wang, Y. (2015) Cis-acting regulatory elements: from random screening to quantitative design. Quant. Biol., 3, 107–114
https://doi.org/10.1007/s40484-015-0050-1
|
| 31 |
Zhou, T. and Liu, T. (2015) Quantitative analysis of gene expression systems. Quant. Biol., 3, 168–181
https://doi.org/10.1007/s40484-015-0056-8
|
| 32 |
Cui, H., Li, Y. and Zhang, X. (2016) An overview of major metagenomic studies on human microbiomes in health and disease. Quant. Biol., 4, 192–206
https://doi.org/10.1007/s40484-016-0078-x
|
| 33 |
Li, R., Chen, T. and Li, S. (2015) Network-based method to infer the contributions of proteins to the etiology of drug side effects. Quant. Biol., 3, 124–134
https://doi.org/10.1007/s40484-015-0051-0
|
| 34 |
Li, S. (2016) Exploring traditional chinese medicine by a novel therapeutic concept of network target. Chin. J. Integr. Med., 22, 647–652
https://doi.org/10.1007/s11655-016-2499-9
pmid: 27145941
|
| 35 |
Tengholm, A., Teruel, M. N. and Meyer, T. (2003) Single cell imaging of PI3K activity and glucose transporter insertion into the plasma membrane by dual color evanescent wave microscopy. Sci. STKE, 2003, pl4.
https://doi.org/10.1126/stke.2003.http://stke.sciencemag.org/content/2003/169/pl4169.pl4
pmid: 12582202
|
| 36 |
Sato, M. (2006) Imaging molecular events in single living cells. Anal. Bioanal. Chem., 386, 435–443
https://doi.org/10.1007/s00216-006-0716-7
pmid: 16941159
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|