Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2016, Vol. 4 Issue (1) : 1-12    https://doi.org/10.1007/s40484-016-0061-6
“RADIOTRANSCRIPTOMICS”: A synergy of imaging and transcriptomics in clinical assessment
Amal Katrib1,*(),William Hsu2,Alex Bui2,Yi Xing1,*()
1. Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles CA 90095, USA
2. Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
 Download: PDF(1018 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recent advances in quantitative imaging and “omics” technology have generated a wealth of mineable biological “big data”. With the push towards a P4 “predictive, preventive, personalized, and participatory” approach to medicine, researchers began integrating complementary tools to further tune existing diagnostic and therapeutic models. The field of radiogenomics has long pioneered such multidisciplinary investigations in neuroscience and oncology, correlating genotypic and phenotypic signatures to study structural and functional changes in relation to altered molecular behavior. Given the innate dynamic nature of complex disorders and the role of environmental and epigenetic factors in pathogenesis, the transcriptome can further elucidate serial modifications undetected at the genome level. We therefore propose “radiotranscriptomics” as a new member of the P4 medicine initiative, combining transcriptome information, including gene expression and isoform variation, and quantitative image annotations.

Author Summary   

The wealth of publically available “big data” has promoted a paradigm shift in medical research, emphasizing the need for multi-disciplinary integrative efforts to tackle chronic and complex disorders. By coupling molecular indexes from transcriptomics and phenotypic traits from imaging, “radiotranscriptomics” can provide a keener insight into the molecular and functional alterations behind chronic and multifactorial disorders.

Keywords quantitative imaging      transcriptomics      RNA-seq      genomics      image genomics      radiogenomics      systems biology      precision medicine     
PACS:     
Fund: 
Corresponding Author(s): Amal Katrib,Yi Xing   
Online First Date: 16 March 2016    Issue Date: 16 March 2016
 Cite this article:   
Amal Katrib,William Hsu,Alex Bui, et al. “RADIOTRANSCRIPTOMICS”: A synergy of imaging and transcriptomics in clinical assessment[J]. Quant. Biol., 2016, 4(1): 1-12.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-016-0061-6
https://academic.hep.com.cn/qb/EN/Y2016/V4/I1/1
Fig.1  A systems biology approach through “omic” tools.

The directional relationship of “omic” tools enables researchers to study the phenotypic progression from genome to metabolome. Multi-level data exists at the (i) genomic-level: single-nucleotide polymorphism (SNP), copy number variation (CNV), and loss of heterozygosity (LOH); (ii) transcriptomic-level: messenger RNA (mRNA), micro-RNA (miRNA), and non-coding RNA (ncRNA); (iii) proteomic-level: proteins; (iv) metabolomic-level: metabolites, and (v) epigenomic-level: DNA methylation & histone modification.

Fig.2  Alternative splicing modes of isoform variation.
Fig.3  From Radiogenomics to Radiotranscriptomics.

We propose a transition from the integration of imaging with genomics to that with transcriptomics, to unravel the impact of epigenetic and environmental factors on the static DNA code in the etiology of complex diseases. Note that studies involving gene expression and medical imaging have already been explored under the umbrella of radiogenomics. However, radiotranscriptomics is a more specific term, given that gene expression analysis is done at the transcriptome level.

Fig.4  "Radiotranscriptomic" maps of biological disorders.

Heatmap presents varying expression levels in correlation with a GBM-associated MR imaging annotation.

Fig.5  Integration of molecular, functional, and anatomical data in Radio-“ ”-omics
1 Loscalzo, J. and Barabasi, A. L. (2011) Systems biology and the future of medicine. Wiley Interdiscip. Rev. Syst. Biol. Med., 3, 619–627
https://doi.org/10.1002/wsbm.144
2 Trewavas, A. (2006) A Brief History of Systems Biology: "Every object that biology studies is a system of systems." Francois Jacob (1974). Plant Cell Online, 18, 2420–2430
https://doi.org/10.1105/tpc.106.042267
3 Jaffe, C. C. (2012) Imaging and genomics: is there a synergy? Radiology, 264, 329–331
https://doi.org/10.1148/radiol.12120871
4 Lander, E. S. (1996) The new genomics: global views of biology. Science, 274, 536–539
https://doi.org/10.1126/science.274.5287.536
5 Pritchard, J. K. and Cox, N. J. (2002) The allelic architecture of human disease genes: common disease-common variant...or not? Hum. Mol. Genet., 11, 2417–2423
https://doi.org/10.1093/hmg/11.20.2417
6 Strachan, T., Read, A. P. and Strachan, T. (2011) Human Molecular Genetics. 4th ed., New York: Garland Science
7 Bush, W. S. and Moore, J. H. (2012) Chapter 11: Genome-Wide Association Studies. PLoS Comput. Biol., 8, e1002822
https://doi.org/10.1371/journal.pcbi.1002822
8 Moody, G. (2004) Digital code of life: how bioinformatics is revolutionizing science, medicine, and business. Hoboken: Wiley
9 Visscher, P. M., Brown, M. A., McCarthy, M. I. and Yang, J. (2012) Five years of GWAS discovery. Am. J. Hum. Genet., 90, 7–24
https://doi.org/10.1016/j.ajhg.2011.11.029
10 Li, J., Horstman, B. and Chen, Y. (2011) Detecting epistatic effects in association studies at a genomic level based on an ensemble approach. Bioinformatics, 27, i222–i229
https://doi.org/10.1093/bioinformatics/btr227
11 Iles, M. M. (2008) What can genome-wide association studies tell us about the genetics of common disease? PLoS Genet., 4, e33
https://doi.org/10.1371/journal.pgen.0040033
12 George, A. L. Jr. (2008) Appraising the value of genomic association studies. J. Am. Soc. Nephrol., 19, 1840–1842
https://doi.org/10.1681/ASN.2008050524
13 Gibson, G. (2012) Rare and common variants: twenty arguments. Nat. Rev. Genet., 13, 135–145
https://doi.org/10.1038/nrg3118
14 Bushberg, J. T. (2012) The essential physics of medical imaging. 3rd ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins
15 Martí-Bonmatí, L., Sopena, R., Bartumeus, P. and Sopena, P. (2010) Multimodality imaging techniques. Contrast Media Mol. Imaging, 5, 180–189
https://doi.org/10.1002/cmmi.393
16 Padhani, A. R. and Miles, K. A. (2010) Multiparametric imaging of tumor response to therapy. Radiology, 256, 348–364
https://doi.org/10.1148/radiol.10091760
17 Jenkinson, M., Bannister, P., Brady, M. and Smith, S. (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17, 825–841
https://doi.org/10.1006/nimg.2002.1132
18 Woods, R. P., Mazziotta, J. C. and Cherry, S. R. (1993) MRI-PET registration with automated algorithm. J. Comput. Assist. Tomogr., 17, 536–546
https://doi.org/10.1097/00004728-199307000-00004
19 Martin, K., Ibáñez, L., Avila, L., Barré, S. and Kaspersen, J. H. (2005) Integrating segmentation methods from the Insight Toolkit into a visualization application. Med. Image Anal., 9, 579–593
https://doi.org/10.1016/j.media.2005.04.009
20 Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. and Smith, S. M. (2012) Fsl. Neuroimage, 62, 782–790
https://doi.org/10.1016/j.neuroimage.2011.09.015
21 Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging, 30, 1323–1341
https://doi.org/10.1016/j.mri.2012.05.001
22 Rosset, A., Spadola, L. and Ratib, O. (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J. Digit. Imaging, 17, 205–216
https://doi.org/10.1007/s10278-004-1014-6
23 Friston, K. J. (1995) Commentary and opinion: II. Statistical parametric mapping: ontology and current issues. J. Cereb. Blood Flow Metab., 15, 361–370
https://doi.org/10.1038/jcbfm.1995.45
24 Filippi, M., Horsfield, M. A., Adèr, H. J., Barkhof, F., Bruzzi, P., Evans, A., Frank, J. A., Grossman, R. I., McFarland, H. F., Molyneux, P., (1998) Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann. Neurol., 43, 499–506
https://doi.org/10.1002/ana.410430414
25 Netsch, T. and van Muiswinkel, A. (2004) Quantitative evaluation of image-based distortion correction in diffusion tensor imaging. IEEE Trans. Med. Imaging, 23, 789–798
https://doi.org/10.1109/TMI.2004.827479
26 Hutton, C., Bork, A., Josephs, O., Deichmann, R., Ashburner, J. and Turner, R. (2002) Image distortion correction in fMRI: A quantitative evaluation. Neuroimage, 16, 217–240
https://doi.org/10.1006/nimg.2001.1054
27 Gallardo-Estrella, L.,Lynch, D.A.,Prokop, M., Stinson, D., Zach, J.,Judy, P.F., van Ginneken, B., van Rikxoort, E. M. (2015) Normalizing computed tomography data reconstructed with different filter kernels: effect on emphysema quantification. Eur. Radiol., 26, 478–486
28 Fahey, F. H., Kinahan, P. E., Doot, R. K., Kocak, M., Thurston, H. and Poussaint, T. Y. (2010) Variability in PET quantitation within a multicenter consortium. Med. Phys., 37, 3660–3666
https://doi.org/10.1118/1.3455705
29 Snook, L., Plewes, C. and Beaulieu, C. (2007) Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. Neuroimage, 34, 243–252
https://doi.org/10.1016/j.neuroimage.2006.07.021
30 Poldrack, R. A. (2007) Region of interest analysis for fMRI. Soc. Cogn. Affect. Neurosci., 2, 67–70
https://doi.org/10.1093/scan/nsm006
31 Park, H. J., Kubicki, M., Shenton, M. E., Guimond, A., McCarley, R. W., Maier, S. E., Kikinis, R., Jolesz, F. A., Westin, C.-F. (2003) Spatial normalization of diffusion tensor MRI using multiple channels. Neuroimage, 20, 1995–2009
https://doi.org/10.1016/j.neuroimage.2003.08.008
32 Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews, P. M., (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 31, 1487–1505
https://doi.org/10.1016/j.neuroimage.2006.02.024
33 Buckler, A. J., Bresolin, L., Dunnick, N. R. and Sullivan, D. C. (2011) A collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging. Radiology, 258, 906–914
https://doi.org/10.1148/radiol.10100799
34 Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S. A., Schabath, M. B., Forster, K., Aerts, H. J. W. L., Dekker, A., Fenstermacher, D., (2012) Radiomics: the process and the challenges. Magn. Reson. Imaging, 30, 1234–1248
https://doi.org/10.1016/j.mri.2012.06.010
35 Aerts, H. J., Velazquez, E.R., Leijenaar, R.T., Parmar, C., Grossmann, P., Carvalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D. (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun., 5, 4006
36 Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R. G. P. M., Granton, P., Zegers, C. M. L., Gillies, R., Boellard, R., Dekker, A., (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer, 48, 441–446
https://doi.org/10.1016/j.ejca.2011.11.036
37 Medland, S. E., Jahanshad, N., Neale, B. M. and Thompson, P. M. (2014) Whole-genome analyses of whole-brain data: working within an expanded search space. Nat. Neurosci., 17, 791–800
https://doi.org/10.1038/nn.3718
38 Colen, R., Foster, I., Gatenby, R., Giger, M. E., Gillies, R.,Gutman, D.,Heller, M., Jain, R., Madabhushi, A., Madhavan, S., (2014) NCI Workshop Report: Clinical and computational requirements for correlating imaging phenotypes with genomics signatures. Transl. Oncol., 7, 556–569
https://doi.org/10.1016/j.tranon.2014.07.007
39 Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez. A. A., Renteria, M. E., Toro, R., Jahanshad, N., Schumann, G., Franke, B. (2014) large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav., 8, 153–182
40 Jack, C. R. Jr., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., L Whitwell, J., Ward, C., (2008) The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J. Magn. Reson. Imaging, 27, 685–691
https://doi.org/10.1002/jmri.21049
41 Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E. J., Bucholz, R., Chang, A., Chen, L., Corbetta, M., Curtiss, S. W., (2012) The Human Connectome Project: a data acquisition perspective. Neuroimage, 62, 2222–2231
https://doi.org/10.1016/j.neuroimage.2012.02.018
42 van Erp, T. G. M., Cannon, T. D., Tran, H. L., Wobbekind, A. D., Huttunen, M., Lonnqvist, J., Kaprio, J., Salonen, O., Valanne, L., Poutanen, V. -P. (2004) Genetic influences on human brain morphology.In Biomedical Imaging: Nano to Macro, IEEE International Symposium, 583–586
43 McIntosh, A., Deary, I. and Porteous, D. J. (2014) Two-back makes step forward in brain imaging genomics. Neuron, 81, 959–961
https://doi.org/10.1016/j.neuron.2014.02.023
44 Saykin, A. J., Shen, L., Foroud, T. M., Potkin, S. G., Swaminathan, S., Kim, S., Risacher, S. L., Nho, K., Huentelman, M. J., Craig, D. W., (2010) Alzheimer's Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimers Dement., 6, 265–273
https://doi.org/10.1016/j.jalz.2010.03.013
45 Stein, J. L., Medland, S. E., Vasquez, A. A., Hibar, D. P., Senstad, R. E., Winkler, A. M., Toro, R., Appel, K., Bartecek, R., Bergmann, Ø., (2012) Identification of common variants associated with human hippocampal and intracranial volumes. Nat. Genet., 44, 552–561
https://doi.org/10.1038/ng.2250
46 Kochunov, P., Glahn, D. C., Nichols, T. E., Winkler, A. M., Hong, E. L., Holcomb, H. H., Stein, J. L., Thompson, P. M., Curran, J. E., Carless, M. A., (2011) Genetic analysis of cortical thickness and fractional anisotropy of water diffusion in the brain. Front. Neurosci., 5, 120
https://doi.org/10.3389/fnins.2011.00120
47 Hibar, D. P., Stein, J. L., Renteria, M. E., Arias-Vasquez, A., Desrivières, S., Jahanshad, N., Toro, R., Wittfeld, K., Abramovic, L., Andersson, M., (2015) Common genetic variants influence human subcortical brain structures. Nature, 520, 224–229
https://doi.org/10.1038/nature14101
48 Sprooten, E., Fleming, K. M., Thomson, P. A., Bastin, M. E., Whalley, H. C., Hall, J., Sussmann, J. E., McKirdy, J., Blackwood, D., Lawrie, S. M., (2013) White matter integrity as an intermediate phenotype: Exploratory genome-wide association analysis in individuals at high risk of bipolar disorder. Psychiatry Res., 206, 223–231
https://doi.org/10.1016/j.psychres.2012.11.002
49 Hariri, A. R. and Weinberger, D. R. (2003) Imaging genomics. Br. Med. Bull., 65, 259–270
https://doi.org/10.1093/bmb/65.1.259
50 van den Heuvel, M. P., van Soelen, I. L. C., Stam, C. J., Kahn, R. S.,Boomsma, D. I. and Hulshoff Pol, H. E. (2013) Genetic control of functional brain network efficiency in children. Eur. Neuropsychopharmacol., 23, 19–23
https://doi.org/10.1016/j.euroneuro.2012.06.007
51 Kochunov, P., Jahanshad, N., Marcus, D., Winkler, A., Sprooten, E., Nichols, T. E., Wright, S. N., Hong, L. E., Patel, B., Behrens, T., (2015) Heritability of fractional anisotropy in human white matter: a comparison of Human Connectome Project and ENIGMA-DTI data. Neuroimage, 111, 300–311
https://doi.org/10.1016/j.neuroimage.2015.02.050
52 Ramanan, V. K., Risacher, S. L., Nho, K., Kim, S., Shen, L., McDonald, B. C., Yoder, K. K., Hutchins, G. D., West, J. D., Tallman, E. F., (2015) GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer’s disease implicates microglial activation gene IL1RAP. Brain, 138, 3076–3088
https://doi.org/10.1093/brain/awv231
53 Jahanshad, N., Kohannim, O., Toga, A. W., McMahon, K. L., de Zubicaray, G. I., Hansell, N. K., Montgomery, G.W., Martin , N.G., Wright, M. J.,Thompson, P.M. (2012) Diffusion Imaging Protocol Effects on Genetic Associations. IN Proc. IEEE Int. Symp. Biomed Imaging, 944–947
54 Nair, V. S., Gevaert, O., Davidzon, G., Napel, S., Graves, E. E., Hoang, C. D., Shrager, J. B., Quon, A., Rubin, D. L. and Plevritis, S. K. (2012) Prognostic PET 18F-FDG uptake imaging features are associated with major oncogenomic alterations in patients with resected non-small cell lung cancer. Cancer Res., 72, 3725–3734
https://doi.org/10.1158/0008-5472.CAN-11-3943
55 Jahanshad, N., Kochunov, P. V., Sprooten, E., Mandl, R. C., Nichols, T. E., Almasy, L., Blangero, J., Brouwer, R. M., Curran, J. E., de Zubicaray, G. I., (2013) Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA-DTI working group. Neuroimage, 81, 455–469
https://doi.org/10.1016/j.neuroimage.2013.04.061
56 Thomason, M. E. and Thompson, P. M. (2011) Diffusion imaging, white matter, and psychopathology. Annu. Rev. Clin. Psychol., 7, 63–85
https://doi.org/10.1146/annurev-clinpsy-032210-104507
57 Greaves, M. and Maley, C. C. (2012) Clonal evolution in cancer. Nature, 481, 306–313
https://doi.org/10.1038/nature10762
58 Chowdhury, R., Ganeshan, B., Irshad, S., Lawler, K., Eisenblätter, M.,Milewicz, H., Rodriguez-Justo, M., Miles, K., Ellis, P., Groves, A., (2014) The use of molecular imaging combined with genomic techniques to understand the heterogeneity in cancer metastasis. Br. J. Radiol., 87, 20140065
https://doi.org/10.1259/bjr.20140065
59 Yamamoto, S., Maki, D. D., Korn, R. L. and Kuo, M. D. (2012) Radiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscape. AJR Am. J. Roentgenol., 199, 654–663
https://doi.org/10.2214/AJR.11.7824
60 Zinn, P. O., Majadan, B., Sathyan, P., Singh, S. K., Majumder, S., Jolesz, F. A. and Colen, R. R. (2011) Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One, 6, e25451
https://doi.org/10.1371/journal.pone.0025451
61 Karlo, C. A., Di Paolo, P. L., Chaim, J., Hakimi, A. A., Ostrovnaya, I., Russo, P., Hricak, H., Motzer, R., Hsieh, J. J. and Akin, O. (2014) Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology, 270, 464–471
https://doi.org/10.1148/radiol.13130663
62 Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63
https://doi.org/10.1038/nrg2484
63 Dove, A. (1999) Proteomics: translating genomics into products? Nat. Biotechnol., 17, 233–236
https://doi.org/10.1038/6972
64 Smaczniak, C., Li, N., Boeren, S., America, T., van Dongen, W.,Goerdayal, S. S., de Vries, S., Angenent, G. C. and Kaufmann, K. (2012) Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. Nat. Protoc., 7, 2144–2158
https://doi.org/10.1038/nprot.2012.129
65 Fiehn, O. (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol., 48, 155–171
https://doi.org/10.1023/A:1013713905833
66 Hitzemann, R., Bottomly, D., Darakjian, P., Walter, N., Iancu, O.,Searles, R., Wilmot, B. and McWeeney, S. (2013) Genes, behavior and next-generation RNA sequencing. Genes Brain Behav., 12, 1–12
https://doi.org/10.1111/gbb.12007
67 Steger, D., Berry, D., Haider, S., Horn, M., Wagner, M., Stocker, R. and Loy, A. (2011) Systematic spatial bias in DNA microarray hybridization is caused by probe spot position-dependent variability in lateral diffusion. PLoS One, 6, e23727
https://doi.org/10.1371/journal.pone.0023727
68 Hartl, D. L. and Ruvolo, M. (2012) Genetics : analysis of genes and genomes. 8th ed. Burlington: Jones & Bartlett Learning
69 Koltai, H. and Weingarten-Baror, C. (2008) Specificity of DNA microarray hybridization: characterization, effectors and approaches for data correction. Nucleic Acids Res., 36, 2395–2405
https://doi.org/10.1093/nar/gkn087
70 Barry, W. T., Kernagis, D. N., Dressman, H. K., Griffis, R. J., Hunter, J. D., Olson, J. A., Marks, J. R., Ginsburg, G. S., Marcom, P. K., Nevins, J. R., (2010) Intratumor heterogeneity and precision of microarray-based predictors of breast cancer biology and clinical outcome. J. Clin. Oncol., 28, 2198–2206
https://doi.org/10.1200/JCO.2009.26.7245
71 Sugano, S. (2009) Introduction: next-generation DNA sequencing and bioinformatics. Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme, 54, 1233–1237
72 Coppola, G. (2014) The OMICs : applications in neuroscience. New York: Oxford University Press
73 Rapaport, F., Khanin, R.,Liang, Y., Pirun, M., Krek, A., Zumbo, P.,Mason, C. E., Socci, N. D. and Betel, D. (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol., 14, R95
https://doi.org/10.1186/gb-2013-14-9-r95
74 Lu, Z. X., Jiang, P. and Xing, Y. (2012) Genetic variation of pre-mRNA alternative splicing in human populations. Wiley Interdiscip. Rev. RNA, 3, 581–592
https://doi.org/10.1002/wrna.120
75 Liu, S. L. and Cheng, C. H. (2013) Alternative RNA splicing and cancer. Wiley Interdiscip. Rev. RNA, 4, 547–566
https://doi.org/10.1002/wrna.1178
76 Damodaran, S., Berger, M. F. and Roychowdhury, S. (2015) Clinical tumor sequencing: opportunities and challenges for precision cancer medicine. Am. Soc. Clin. Oncol. Educ. Book, 35, e175–e182
https://doi.org/10.14694/EdBook_AM.2015.35.e175
77 Van Keuren-Jensen, K., Keats, J. J. and Craig, D. W. (2014) Bringing RNA-seq closer to the clinic. Nat. Biotechnol., 32, 884–885
https://doi.org/10.1038/nbt.3017
78 Gonzalez-Angulo, A. M., Hennessy, B. T. and Mills, G. B. (2010) Future of personalized medicine in oncology: a systems biology approach. J. Clin. Oncol., 28, 2777–2783
https://doi.org/10.1200/JCO.2009.27.0777
79 Prior, F. W., Clark, K., Commean, P., Freymann, J., Jaffe, C., Kirby, J., Moore, S., Smith, K., Tarbox, L., Vendt, B. (2013) TCIA: An information resource to enable open science. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2013, 1282–1285
80 Gutman, D. A., Cooper, L. A. D., Hwang, S. N., Holder, C. A., Gao, J. J., Aurora, T. D., Dunn, W. D., Jr, Scarpace, L., Mikkelsen, T., Jain, R., (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology, 267, 560–569
https://doi.org/10.1148/radiol.13120118
81 Zhang, B. and Horvath, S. (2005) Ageneral framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol., 4, 10.2202/1544-6115.1128
82 Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S. M., Wakimoto, H., Cahill, D. P., Nahed, B. V., Curry, W. T., Martuza, R. L., (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science, 344, 1396–1401
https://doi.org/10.1126/science.1254257
[1] Biaobin Jiang, Dong Song, Quanhua Mu, Jiguang Wang. CELLO: a longitudinal data analysis toolbox untangling cancer evolution[J]. Quant. Biol., 2020, 8(3): 256-266.
[2] Xue Jiang, Mohammad Asad, Lin Li, Zhanpeng Sun, Jean-Sébastien Milanese, Bo Liao, Edwin Wang. Germline genomes have a dominant-heritable contribution to cancer immune evasion and immunotherapy response[J]. Quant. Biol., 2020, 8(3): 216-227.
[3] Xiaotu Ma, Sasi Arunachalam, Yanling Liu. Applications of probability and statistics in cancer genomics[J]. Quant. Biol., 2020, 8(2): 95-108.
[4] Xing Chen, Yinglei Lai. A censored-Poisson model based approach to the analysis of RNA-seq data[J]. Quant. Biol., 2020, 8(2): 155-171.
[5] Henry Linder, Yuping Zhang. A pan-cancer integrative pathway analysis of multi-omics data[J]. Quant. Biol., 2020, 8(2): 130-142.
[6] Jianan Lin, Zhengqing Ouyang. Large-scale analysis of the position-dependent binding and regulation of human RNA binding proteins[J]. Quant. Biol., 2020, 8(2): 119-129.
[7] Jie Zheng, Ke Wang. Emerging deep learning methods for single-cell RNA-seq data analysis[J]. Quant. Biol., 2019, 7(4): 247-254.
[8] Lei Wei, Ye Yuan, Tao Hu, Shuailin Li, Tianrun Cheng, Jinzhi Lei, Zhen Xie, Michael Q. Zhang, Xiaowo Wang. Regulation by competition: a hidden layer of gene regulatory network[J]. Quant. Biol., 2019, 7(2): 110-121.
[9] Aysegul Guvenek, Bin Tian. Analysis of alternative cleavage and polyadenylation in mature and differentiating neurons using RNA-seq data[J]. Quant. Biol., 2018, 6(3): 253-266.
[10] Wei Vivian Li, Jingyi Jessica Li. Modeling and analysis of RNA-seq data: a review from a statistical perspective[J]. Quant. Biol., 2018, 6(3): 195-209.
[11] Minzhe Zhang, Qiwei Li, Yang Xie. A Bayesian hierarchical model for analyzing methylated RNA immunoprecipitation sequencing data[J]. Quant. Biol., 2018, 6(3): 275-286.
[12] Guanghui Li, Jiawei Luo, Zheng Xiao, Cheng Liang. MTMO: an efficient network-centric algorithm for subtree counting and enumeration[J]. Quant. Biol., 2018, 6(2): 142-154.
[13] Saad M Khan, Jason E Denney, Michael X Wang, Dong Xu. Whole-exome sequencing and microRNA profiling reveal PI3K/AKT pathway’s involvement in juvenile myelomonocytic leukemia[J]. Quant. Biol., 2018, 6(1): 85-97.
[14] Varshini Vasudevaraja, Jamie Renbarger, Ridhhi Girish Shah, Garrett Kinnebrew, Murray Korc, Limei Wang, Yang Huo, Enze Liu, Lang Li, Lijun Cheng. PMTDS: a computational method based on genetic interaction networks for Precision Medicine Target-Drug Selection in cancer[J]. Quant. Biol., 2017, 5(4): 380-394.
[15] Lu Wang, Lipi Acharya, Changxin Bai, Dongxiao Zhu. Transcriptome assembly strategies for precision medicine[J]. Quant. Biol., 2017, 5(4): 280-290.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed