Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2020, Vol. 8 Issue (2) : 119-129    https://doi.org/10.1007/s40484-020-0206-5
RESEARCH ARTICLE
Large-scale analysis of the position-dependent binding and regulation of human RNA binding proteins
Jianan Lin1,2, Zhengqing Ouyang1()
1. Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
2. Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
 Download: PDF(1689 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: RNA binding proteins (RBPs) play essential roles in the regulation of RNA metabolism. Recent studies have disclosed that RBPs achieve their functions via binding to their targets in a position-dependent pattern on RNAs. However, few studies have systematically addressed the associations between the RBP’s functions and their positional binding preferences.

Methods: Here, we present large-scale analyses on the functional targets of human RBPs by integrating the enhanced cross-linking and immunoprecipitation followed by sequencing (eCLIP-seq) datasets and the shRNA knockdown followed by RNA-seq datasets that are deposited in the integrated ENCyclopedia of DNA Elements in the human genome (ENCODE) data portal.

Results: We found that (1) binding to the translation termination site and the 3′ untranslated region is important to most human RBPs in the RNA decay regulation; (2) RBPs’ binding and regulation follow a cell-type specific pattern.

Conclusions: These analysis results show the strong relationship between the binding position and the functions of RBPs, which provides novel insights into the RBPs’ regulation mechanisms.

Keywords RNA binding protein      CLIP-seq      RNA-seq      knockdown      RNA regulation     
Corresponding Author(s): Zhengqing Ouyang   
Online First Date: 10 June 2020    Issue Date: 13 July 2020
 Cite this article:   
Jianan Lin,Zhengqing Ouyang. Large-scale analysis of the position-dependent binding and regulation of human RNA binding proteins[J]. Quant. Biol., 2020, 8(2): 119-129.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-020-0206-5
https://academic.hep.com.cn/qb/EN/Y2020/V8/I2/119
Fig.1  Diagram of the study design, data structure and analysis.
Fig.2  RNA decay regulators achieve functions by using different reference sites.
Fig.3  The translation termination site is important for the regulations of RNA decay related RBPs.
Fig.4  Examples of the four groups of RBPs’ regulations in gene expression.
Fig.5  Cell type-specific regulation of RBPs.
Fig.6  SND1’s binding pattern in K562 and HepG2 cell lines.
1 J. D. Keene, (2007) RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet., 8, 533–543
https://doi.org/10.1038/nrg2111 pmid: 17572691
2 D. D. Licatalosi, , A. Mele, , J. J. Fak, , J. Ule, , M. Kayikci, , S. W. Chi, , T. A. Clark, , A. C. Schweitzer, , J. E. Blume, , X. Wang, , et al. (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature, 456, 464–469
https://doi.org/10.1038/nature07488 pmid: 18978773
3 D. I. Kao, , G. M. Aldridge, , I. J. Weiler, and W. T. Greenough, (2010) Altered mRNA transport, docking, and protein translation in neurons lacking fragile X mental retardation protein. Proc. Natl. Acad. Sci. USA, 107, 15601–15606
https://doi.org/10.1073/pnas.1010564107 pmid: 20713728
4 O. D. King, , A. D. Gitler, and J. Shorter, (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res., 1462, 61–80
https://doi.org/10.1016/j.brainres.2012.01.016 pmid: 22445064
5 C. Lagier-Tourenne, , M. Polymenidou, and D. W. Cleveland, (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet., 19, R46–R64
https://doi.org/10.1093/hmg/ddq137 pmid: 20400460
6 K. E. Lukong, , K. W. Chang, , E. W. Khandjian, and S. Richard, (2008) RNA-binding proteins in human genetic disease. Trends Genet., 24, 416–425
https://doi.org/10.1016/j.tig.2008.05.004 pmid: 18597886
7 J. König, , K. Zarnack, , N. M. Luscombe, and J. Ule, (2012) Protein-RNA interactions: new genomic technologies and perspectives. Nat. Rev. Genet., 13, 77–83
https://doi.org/10.1038/nrg3141 pmid: 22251872
8 M. Hafner, , M. Landthaler, , L. Burger, , M. Khorshid, , J. Hausser, , P. Berninger, , A. Rothballer, , M. Ascano, Jr, A. C. Jungkamp, , M. Munschauer, , et al. (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 141, 129–141
https://doi.org/10.1016/j.cell.2010.03.009 pmid: 20371350
9 J. König, , K. Zarnack, , G. Rot, , T. Curk, , M. Kayikci, , B. Zupan, , D. J. Turner, , N. M. Luscombe, and J. Ule, (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol., 17, 909–915
https://doi.org/10.1038/nsmb.1838 pmid: 20601959
10 K. B. Cook, , T. R. Hughes, and Q. D. Morris, (2015) High-throughput characterization of protein-RNA interactions. Brief. Funct. Genomics, 14, 74–89
https://doi.org/10.1093/bfgp/elu047 pmid: 25504152
11 B. Chen, , J. Yun, , M. S. Kim, , J. T. Mendell, and Y. Xie, (2014) PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis. Genome Biol., 15, R18
https://doi.org/10.1186/gb-2014-15-1-r18 pmid: 24451213
12 T. Wang, , Y. Xie, and G. Xiao, (2014) dCLIP: a computational approach for comparative CLIP-seq analyses. Genome Biol., 15, R11
https://doi.org/10.1186/gb-2014-15-1-r11 pmid: 24398258
13 T. Wang, , B. Chen, , M. Kim, , Y. Xie, and G. Xiao, (2014) A model-based approach to identify binding sites in CLIP-Seq data. PLoS One, 9, e93248
https://doi.org/10.1371/journal.pone.0093248 pmid: 24714572
14 M. T. Lovci, , D. Ghanem, , H. Marr, , J. Arnold, , S. Gee, , M. Parra, , T. Y. Liang, , T. J. Stark, , L. T. Gehman, , S. Hoon, , et al. (2013) Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol., 20, 1434–1442
https://doi.org/10.1038/nsmb.2699 pmid: 24213538
15 S. Althammer, , J. González-Vallinas, , C. Ballaré, , M. Beato, and E. Eyras, (2011) Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data. Bioinformatics, 27, 3333–3340
https://doi.org/10.1093/bioinformatics/btr570 pmid: 21994224
16 P. J. Uren, , E. Bahrami-Samani, , S. C. Burns, , M. Qiao, , F. V. Karginov, , E. Hodges, , G. J. Hannon, , J. R. Sanford, , L. O. Penalva, and A. D. Smith, (2012) Site identification in high-throughput RNA-protein interaction data. Bioinformatics, 28, 3013–3020
https://doi.org/10.1093/bioinformatics/bts569 pmid: 23024010
17 F. Comoglio, , C. Sievers, and R. Paro, (2015) Sensitive and highly resolved identification of RNA-protein interaction sites in PAR-CLIP data. BMC Bioinformatics, 16, 32
https://doi.org/10.1186/s12859-015-0470-y pmid: 25638391
18 D. L. Corcoran, , S. Georgiev, , N. Mukherjee, , E. Gottwein, , R. L. Skalsky, , J. D. Keene, and U. Ohler, (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol., 12, R79
https://doi.org/10.1186/gb-2011-12-8-r79 pmid: 21851591
19 M. J. Moore, , C. Zhang, , E. C. Gantman, , A. Mele, , J. C. Darnell, and R. B. Darnell, (2014) Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat. Protoc., 9, 263–293
https://doi.org/10.1038/nprot.2014.012 pmid: 24407355
20 A. Shah, , Y. Qian, , S. M. Weyn-Vanhentenryck, and C. Zhang, (2017) CLIP Tool Kit (CTK): a flexible and robust pipeline to analyze CLIP sequencing data. Bioinformatics, 33, 566–567
pmid: 27797762
21 F. Erhard, , L. Dölken, , L. Jaskiewicz, and R. Zimmer, (2013) PARma: identification of microRNA target sites in AGO-PAR-CLIP data. Genome Biol., 14, R79
https://doi.org/10.1186/gb-2013-14-7-r79 pmid: 23895117
22 J. Lin, , Y. Zhang, , W. N. Frankel, and Z. Ouyang, (2019) PRAS: Predicting functional targets of RNA binding proteins based on CLIP-seq peaks. PLOS Comput. Biol., 15, e1007227
https://doi.org/10.1371/journal.pcbi.1007227 pmid: 31425505
23 G. Rot, , Z. Wang, , I. Huppertz, , M. Modic, , T. Lenče, , M. Hallegger, , N. Haberman, , T. Curk, , C. von Mering, and J. Ule, (2017) High-resolution RNA maps suggest common principles of splicing and polyadenylation regulation by TDP-43. Cell Reports, 19, 1056–1067
https://doi.org/10.1016/j.celrep.2017.04.028 pmid: 28467899
24 E. T. Wang, , A. J. Ward, , J. M. Cherone, , J. Giudice, , T. T. Wang, , D. J. Treacy, , N. J. Lambert, , P. Freese, , T. Saxena, , T. A. Cooper, , et al. (2015) Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins. Genome Res., 25, 858–871
https://doi.org/10.1101/gr.184390.114 pmid: 25883322
25 E. L. Van Nostrand, , G. A. Pratt, , A. A. Shishkin, , C. Gelboin-Burkhart, , M. Y. Fang, , B. Sundararaman, , S. M. Blue, , T. B. Nguyen, , C. Surka, , K. Elkins, , et al. (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods, 13, 508–514
https://doi.org/10.1038/nmeth.3810 pmid: 27018577
26 E. L. Van Nostrand, , P. Freese, , G. A. Pratt, , X. Wang, , X. Wei, , R. Xiao, , S. M. Blue, , J.-Y. Chen, , N. A. L. Cody, , D. Dominguez, , et al. (2018) A large-scale binding and functional map of human RNA binding proteins. bioRxiv, 179648
27 M. I. Love, , W. Huber, and S. Anders, (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550
https://doi.org/10.1186/s13059-014-0550-8 pmid: 25516281
28 J. L. Wagnon, , M. Briese, , W. Sun, , C. L. Mahaffey, , T. Curk, , G. Rot, , J. Ule, and W. N. Frankel, (2012) CELF4 regulates translation and local abundance of a vast set of mRNAs, including genes associated with regulation of synaptic function. PLoS Genet., 8, e1003067
https://doi.org/10.1371/journal.pgen.1003067 pmid: 23209433
29 C. A. Chénard, and S. Richard, (2008) New implications for the QUAKING RNA binding protein in human disease. J. Neurosci. Res., 86, 233–242
https://doi.org/10.1002/jnr.21485 pmid: 17787018
30 R. Gherzi, , K.-Y. Lee, , P. Briata, , D. Wegmüller, , C. Moroni, , M. Karin, and C.-Y. Chen, (2004) A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol. Cell, 14, 571–583
https://doi.org/10.1016/j.molcel.2004.05.002 pmid: 15175153
31 S. Lebedeva, , M. Jens, , K. Theil, , B. Schwanhäusser, , M. Selbach, , M. Landthaler, and N. Rajewsky, (2011) Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell, 43, 340–352. PMID:21723171
https://doi.org/10.1016/j.molcel.2011.06.008
32 J. R. Hogg, and S. P. Goff, (2010) Upf1 senses 3′ UTR length to potentiate mRNA decay. Cell, 143, 379–389
33 The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489,57–74
34 C. A. Davis, , B. C. Hitz, , C. A. Sloan, , E. T. Chan, , J. M. Davidson, , I. Gabdank, , J. A. Hilton, , K. Jain, , U. K. Baymuradov, , A. K. Narayanan, , et al. (2018) The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res., 46, D794–D801
https://doi.org/10.1093/nar/gkx1081 pmid: 29126249
[1] QB-20206-OF-OYZQ_suppl_1 Download
[2] Supplementary_Materials 1 Download
[3] Supplementary_Materials 2 Download
[1] Xing Chen, Yinglei Lai. A censored-Poisson model based approach to the analysis of RNA-seq data[J]. Quant. Biol., 2020, 8(2): 155-171.
[2] Jie Zheng, Ke Wang. Emerging deep learning methods for single-cell RNA-seq data analysis[J]. Quant. Biol., 2019, 7(4): 247-254.
[3] Aysegul Guvenek, Bin Tian. Analysis of alternative cleavage and polyadenylation in mature and differentiating neurons using RNA-seq data[J]. Quant. Biol., 2018, 6(3): 253-266.
[4] Molly M. Hannigan, Leah L. Zagore, Donny D. Licatalosi. Mapping transcriptome-wide protein-RNA interactions to elucidate RNA regulatory programs[J]. Quant. Biol., 2018, 6(3): 228-238.
[5] Wei Vivian Li, Jingyi Jessica Li. Modeling and analysis of RNA-seq data: a review from a statistical perspective[J]. Quant. Biol., 2018, 6(3): 195-209.
[6] Saad M Khan, Jason E Denney, Michael X Wang, Dong Xu. Whole-exome sequencing and microRNA profiling reveal PI3K/AKT pathway’s involvement in juvenile myelomonocytic leukemia[J]. Quant. Biol., 2018, 6(1): 85-97.
[7] Lu Wang, Lipi Acharya, Changxin Bai, Dongxiao Zhu. Transcriptome assembly strategies for precision medicine[J]. Quant. Biol., 2017, 5(4): 280-290.
[8] Ganlu Hu, Guang-Zhong Wang. Decoding nervous system by single-cell RNA sequencing[J]. Quant. Biol., 2017, 5(3): 210-214.
[9] Zhun Miao, Xuegong Zhang. Differential expression analyses for single-cell RNA-Seq: old questions on new data[J]. Quant. Biol., 2016, 4(4): 243-260.
[10] Jing Qin, Bin Yan, Yaohua Hu, Panwen Wang, Junwen Wang. Applications of integrative OMICs approaches to gene regulation studies[J]. Quant. Biol., 2016, 4(4): 283-301.
[11] Ye Yuan, Xinying Ren, Zhen Xie, Xiaowo Wang. A quantitative understanding of microRNA- mediated competing endogenous RNA regulation[J]. Quant. Biol., 2016, 4(1): 47-57.
[12] Amal Katrib, William Hsu, Alex Bui, Yi Xing. “RADIOTRANSCRIPTOMICS”: A synergy of imaging and transcriptomics in clinical assessment[J]. Quant. Biol., 2016, 4(1): 1-12.
[13] Qiong-Yi Zhao, Jacob Gratten, Restuadi Restuadi, Xuan Li. Mapping and differential expression analysis from short-read RNA-Seq data in model organisms[J]. Quant. Biol., 2016, 4(1): 22-35.
[14] Junhai Jiang,Nan Lin,Shicheng Guo,Jinyun Chen,Momiao Xiong. Multiple functional linear model for association analysis of RNA-seq with imaging[J]. Quant. Biol., 2015, 3(2): 90-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed