Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2016, Vol. 4 Issue (1) : 22-35    https://doi.org/10.1007/s40484-016-0060-7
Review
Mapping and differential expression analysis from short-read RNA-Seq data in model organisms
Qiong-Yi Zhao1(), Jacob Gratten1, Restuadi Restuadi1, Xuan Li2()
1. The University of Queensland, Queensland Brain Institute, St Lucia, Qld 4072, Australia
2. Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
 Download: PDF(690 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recent advances in next-generation sequencing technology allow high-throughput RNA sequencing (RNA-Seq) to be widely applied in transcriptomic studies. For model organisms with a reference genome, the first step in analysis of RNA-Seq data involves mapping of short-read sequences to the reference genome. Reference-guided transcriptome assembly is an optional step, which is recommended if the aim is to identify novel transcripts. Following read mapping, the primary interest of biologists in many RNA-Seq studies is the investigation of differential expression between experimental groups. In this review, we discuss recent developments in RNA-Seq data analysis applied to model organisms, including methods and algorithms for direct mapping, reference-guided transcriptome assembly and differential expression analysis, and provide insights for the future direction of RNA-Seq.

Author Summary   

RNA-Seq is a revolutionary methodology that employs high-throughput sequencing technologies to enable highly sensitive detection and quantification of RNA in biological samples. Mapping of RNA-Seq data to a reference is a fundamental step for all forms of RNA-Seq data analysis in model organisms, and differential expression analysis is the primary interest of biologists in many RNA-Seq studies. In this review we discuss recent developments in these two fields and provide insights for the future direction of RNA-Seq. We see our review as a resource for the community that will enable researchers to select the most appropriate tools for RNA-Seq data analysis.

Keywords RNA-Seq      mapping      reference-guided transcriptome assembly      differential expression analysis     
Corresponding Author(s): Qiong-Yi Zhao,Xuan Li   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Online First Date: 16 March 2016    Issue Date: 16 March 2016
 Cite this article:   
Qiong-Yi Zhao,Jacob Gratten,Restuadi Restuadi, et al. Mapping and differential expression analysis from short-read RNA-Seq data in model organisms[J]. Quant. Biol., 2016, 4(1): 22-35.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-016-0060-7
https://academic.hep.com.cn/qb/EN/Y2016/V4/I1/22
Fig.1  The general concept and data structures for three broad categories of mapping algorithms.
AlignerSpliced (Y/N)Supported NGS data
Aligners based on hash tables
BWA-MEMNIllumina (>70 bp), 454 and long-read data (e.g., PacBio). The developer of BWA recommends BWA-MEM over BWA-SW as it is faster and more accurate than BWA-SW
CLC genomicsNAlmost all NGS data (commercial software package)
ElandNIllumina (implemented by Illumina)
MAQNIllumina. MAQ has not been maintained since 2008. The developer of MAQ recommends people to use other tools (such as BWA) rather than MAQ
NovoalignNIllumina (commercial software package)
RazerSNIllumina
RazerS 3NIllumina, 454 and long read platforms (e.g., PacBio). RazerS 3 is a successor to RazerS
RMAPNIllumina and bisulfite-treaded Illumina reads
SHRiMPNIllumina and SOLiD. SHRiMP has not been maintained since 2012
SMALTNIllumina and 454
SOAPNIllumina
ZOOMNIllumina and SOLiD
Aligners based on suffix trees
BowtieNIllumina, 454, SOLiD. Works best when aligning short reads to large genomes
Bowtie2NIllumina, 454 and long-read data. For reads>50 bp, Bowtie2 is generally faster, more sensitive, and uses less memory than Bowtie
BWANIllumina (≤100 bp)
BWA-SWNIllumina (>70 bp), 454. BWA-SW has better sensitivity when alignment gaps are frequent
HISATYIllumina, 454. HISAT is>50 times faster than?TopHat2 with better alignment quality
HISAT2YIllumina, 454. HISAT2 is a successor to both HISAT and TopHat2
SegemehlNIllumina and bisulfite-treaded Illumina data, 454 and long-read data
SOAP2NIllumina
TopHatYIllumina, 454, SOLiD. It uses Bowtie or Bowtie2 as the underlying mapping engine
TopHat2YIllumina, 454, SOLiD. TopHat2 is a successor to TopHat
Aligners based on merge sorting
SliderNData from Illumina Genome Analyzer
SliderIINData from Illumina Genome Analyzer
Tab.1  Popular short-read aligners.
Fig.2  The workflow for RNA-Seq differential expression analysis.
1 E. T. Wang, , R. Sandberg, , S. Luo, I. Khrebtukova, , L. Zhang, , C. Mayr, , S. F. Kingsmore, , G. P. Schroth, and C. B. Burge, (2008) Alternative isoform regulation in human tissue transcriptomes. Nature, 456, 470–476
https://doi.org/10.1038/nature07509 pmid: 18978772
2 Z. Wang, , M. Gerstein, and M. Snyder, (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63
https://doi.org/10.1038/nrg2484 pmid: 19015660
3 T. W. Nilsen, and B. R. Graveley, (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature, 463, 457–463
https://doi.org/10.1038/nature08909 pmid: 20110989
4 B. R. Graveley, , A. N. Brooks, , J. W. Carlson, , M. O. Duff, , J. M. Landolin, , L. Yang, , C. G. Artieri, , M. J. van Baren, , N. Boley, , B. W. Booth, , et al. (2011) The developmental transcriptome of Drosophila melanogaster. Nature, 471, 473–479
https://doi.org/10.1038/nature09715 pmid: 21179090
5 N. L. Barbosa-Morais, , M. Irimia, , Q. Pan, , H. Y. Xiong, , S. Gueroussov, , L. J. Lee, , V. Slobodeniuc, , C. Kutter, , S. Watt, , R. Colak, , et al. (2012) The evolutionary landscape of alternative splicing in vertebrate species. Science, 338, 1587–1593
https://doi.org/10.1126/science.1230612 pmid: 23258890
6 A. K. Shalek, , R. Satija, , X. Adiconis, , R. S. Gertner, , J. T. Gaublomme, , R. Raychowdhury, , S. Schwartz, , N. Yosef, , C. Malboeuf, , D. Lu, , et al. (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature, 498, 236–240
https://doi.org/10.1038/nature12172 pmid: 23685454
7 D. A. Jaitin, , E. Kenigsberg, , H. Keren-Shaul, , N. Elefant, , F. Paul, , I. Zaretsky, , A. Mildner, , N. Cohen, , S. Jung, , A. Tanay, , et al. (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science, 343, 776–779
https://doi.org/10.1126/science.1247651 pmid: 24531970
8 A. K. Shalek, , R. Satija, , J. Shuga, , J. J. Trombetta, , D. Gennert, , D. Lu, , P. Chen, , R. S. Gertner, , J. T. Gaublomme, , N. Yosef, , et al. (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature, 510, 363–369
pmid: 24919153
9 X. C. Wang, , Q. Y. Zhao, , C. L. Ma, , Z. H. Zhang, , H. L. Cao, , Y. M. Kong, , C. Yue, , X. Y. Hao, , L. Chen, , J. Q. Ma, , et al. (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics, 14, 415
https://doi.org/10.1186/1471-2164-14-415 pmid: 23799877
10 D. J. Jhaveri, , I. O’Keeffe, , G. J. Robinson, , Q. Y. Zhao, , Z. H. Zhang, , V. Nink, , R. K. Narayanan, , G. W. Osborne, , N. R. Wray, and P. F. Bartlett, (2015) Purification of neural precursor cells reveals the presence of distinct, stimulus-specific subpopulations of quiescent precursors in the adult mouse hippocampus. J. Neurosci., 35, 8132–8144
https://doi.org/10.1523/JNEUROSCI.0504-15.2015 pmid: 26019330
11 C. Trapnell, , B. A. Williams, , G. Pertea, , A. Mortazavi, , G. Kwan, , M. J. van Baren, , S. L. Salzberg, , B. J. Wold, and L. Pachter, (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515
https://doi.org/10.1038/nbt.1621 pmid: 20436464
12 W. Shao, , Q. Y. Zhao, , X. Y. Wang, , X. Y. Xu,, Q. Tang, , M. Li, , X. Li, and Y. Z. Xu, (2012) Alternative splicing and trans-splicing events revealed by analysis of the Bombyx mori transcriptome. RNA, 18, 1395–1407
https://doi.org/10.1261/rna.029751.111 pmid: 22627775
13 D. Muzzey, , G. Sherlock, and J. S. Weissman, (2014) Extensive and coordinated control of allele-specific expression by both transcription and translation in Candida albicans. Genome Res., 24, 963–973
https://doi.org/10.1101/gr.166322.113 pmid: 24732588
14 S. Hong, , X. Chen, , L. Jin, and M. Xiong, (2013) Canonical correlation analysis for RNA-seq co-expression networks. Nucleic Acids Res., 41, e95
https://doi.org/10.1093/nar/gkt145 pmid: 23460206
15 V. Blanc, , E. Park, , S. Schaefer, , M. Miller, , Y. Lin, , S. Kennedy, , A. M. Billing, H. B. Hamidane, , J. Graumann, , A. Mortazavi, et al. (2014) Genome-wide identification and functional analysis of Apobec-1-mediated C-to-U RNA editing in mouse small intestine and liver. Genome Biol., 15, R79
https://doi.org/10.1186/gb-2014-15-6-r79 pmid: 24946870
16 R. Piskol, , G. Ramaswami, and J. B. Li, (2013) Reliable identification of genomic variants from RNA-seq data. Am. J. Hum. Genet., 93, 641–651
https://doi.org/10.1016/j.ajhg.2013.08.008 pmid: 24075185
17 M. Garber, , M. G. Grabherr, , M. Guttman, and C. Trapnell, (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat. Methods, 8, 469–477
https://doi.org/10.1038/nmeth.1613 pmid: 21623353
18 J. A. Martin, and Z. Wang, (2011) Next-generation transcriptome assembly. Nat. Rev. Genet., 12, 671–682
https://doi.org/10.1038/nrg3068 pmid: 21897427
19 F. Ozsolak, and P. M. Milos, (2011) RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet., 12, 87–98
https://doi.org/10.1038/nrg2934 pmid: 21191423
20 L. Han, , K. C. Vickers, , D. C. Samuels, and Y. Guo, (2015) Alternative applications for distinct RNA sequencing strategies. Brief. Bioinform., 16, 629–639
https://doi.org/10.1093/bib/bbu032 pmid: 25246237
21 C. Trapnell, , L. Pachter, and S. L. Salzberg, (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25, 1105–1111
https://doi.org/10.1093/bioinformatics/btp120 pmid: 19289445
22 D. Kim, , G. Pertea, , C. Trapnell, , H. Pimentel, , R. Kelley, and S. L. Salzberg, (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol., 14, R36
https://doi.org/10.1186/gb-2013-14-4-r36 pmid: 23618408
23 D. Kim, , B. Langmead, and S. L. Salzberg, (2015) HISAT: a fast spliced aligner with low memory requirements. Nat. Methods, 12, 357–360
https://doi.org/10.1038/nmeth.3317 pmid: 25751142
24 K. Wang, , D. Singh, , Z. Zeng, , S. J. Coleman, , Y. Huang, , G. L. Savich, , X. He, , P. Mieczkowski, , S. A. Grimm, , C. M. Perou, , et al. (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res., 38, e178
https://doi.org/10.1093/nar/gkq622 pmid: 20802226
25 S. Huang, ,J. Zhang, ,R. Li, ,W. Zhang, ,Z. He, , T. Lam, ,Z. Peng, ,S. Yiu, (2011) SOAPsplice: genome-wide ab initio detection of splice junctions from RNA-Seq Data. Front. Genet., 2,46
26 A. Dobin, , C. A. Davis, , F. Schlesinger, , J. Drenkow, , C. Zaleski, , S. Jha, , P. Batut, , M. Chaisson, and T. R. Gingeras, (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15–21
https://doi.org/10.1093/bioinformatics/bts635 pmid: 23104886
27 B. Langmead, , C. Trapnell, , M. Pop, and S. L. Salzberg, (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10, R25
https://doi.org/10.1186/gb-2009-10-3-r25 pmid: 19261174
28 B. Langmead, and S. L. Salzberg, (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357–359
https://doi.org/10.1038/nmeth.1923 pmid: 22388286
29 H. Li, and R. Durbin, (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760
https://doi.org/10.1093/bioinformatics/btp324 pmid: 19451168
30 H. Li, and R. Durbin, (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26, 589–595
https://doi.org/10.1093/bioinformatics/btp698 pmid: 20080505
31 H. Li, (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997
32 R. Li, , Y. Li, , K. Kristiansen, and J. Wang, (2008) SOAP: short oligonucleotide alignment program. Bioinformatics, 24, 713–714
https://doi.org/10.1093/bioinformatics/btn025 pmid: 18227114
33 R. Li, , C. Yu, , Y. Li, , T. W. Lam, , S. M. Yiu, , K. Kristiansen, and J. Wang, (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966–1967
https://doi.org/10.1093/bioinformatics/btp336 pmid: 19497933
34 J. Jnes, , F. Hu, , A. Lewin, and E. Turro, (2015) A comparative study of RNA-seq analysis strategies. Brief. Bioinform., 16, 932–940
https://doi.org/10.1093/bib/bbv007 pmid: 25788326
35 M. D. Robinson, , D. J. McCarthy, and G. K. Smyth, (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140
https://doi.org/10.1093/bioinformatics/btp616 pmid: 19910308
36 S. Anders, and W. Huber, (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106
https://doi.org/10.1186/gb-2010-11-10-r106 pmid: 20979621
37 M. I. Love, , W. Huber, and S. Anders, (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550
https://doi.org/10.1186/s13059-014-0550-8 pmid: 25516281
38 J. Li, and R. Tibshirani, (2013) Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. Stat. Methods Med. Res., 22, 519–536
https://doi.org/10.1177/0962280211428386 pmid: 22127579
39 T. J. Hardcastle, and K. A. Kelly, (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics, 11, 422
https://doi.org/10.1186/1471-2105-11-422 pmid: 20698981
40 S. Tarazona, , F. García-Alcalde, , J. Dopazo, , A. Ferrer, and A. Conesa, (2011) Differential expression in RNA-seq: a matter of depth. Genome Res., 21, 2213–2223
https://doi.org/10.1101/gr.124321.111 pmid: 21903743
41 G. K. Smyth, (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol., 3, 1–25
42 Y. M. Di, ,D. W. Schafer, ,J. S. Cumbie, and J. H. Chang, (2011) The NBP negative binomial model for assessing differential gene expression from RNA-Seq. Stat. Appl. Genet. Mol. Biol., 10
https://doi.org/10.2202/1544-6115.1637
43 P. L. Auer, and R. W. Doerge, (2011) A two-stage Poisson model for testing RNA-Seq data. Stat. Appl. Genet. Mol. Biol., 10, 1–26
https://doi.org/10.2202/1544-6115.1627
44 N. Leng, , J. A. Dawson, , J. A. Thomson, , V. Ruotti, , A. I. Rissman, , B. M. Smits, , J. D. Haag, , M. N. Gould, , R. M. Stewart, and C. Kendziorski, (2013) EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics, 29, 1035–1043
https://doi.org/10.1093/bioinformatics/btt087 pmid: 23428641
45 M. Guttman, , M. Garber, , J. Z. Levin, , J. Donaghey, , J. Robinson, , X. Adiconis, , L. Fan, , M. J. Koziol, , A. Gnirke, , C. Nusbaum, , et al. (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol., 28, 503–510
https://doi.org/10.1038/nbt.1633 pmid: 20436462
46 G. Chen, , C. Wang, , L. Shi, , W. Tong, , X. Qu, , J. Chen, , J. Yang, , C. Shi, , L. Chen, , P. Zhou, , et al. (2013) Comprehensively identifying and characterizing the missing gene sequences in human reference genome with integrated analytic approaches. Hum. Genet., 132, 899–911
https://doi.org/10.1007/s00439-013-1300-9 pmid: 23572138
47 A. Roberts, , H. Pimentel, , C. Trapnell, and L. Pachter, (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics, 27, 2325–2329
https://doi.org/10.1093/bioinformatics/btr355 pmid: 21697122
48 M. G. Grabherr, , B. J. Haas, , M. Yassour, , J. Z. Levin, , D. A. Thompson, , I. Amit, , X. Adiconis, , L. Fan, , R. Raychowdhury, , Q. Zeng, , et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol., 29, 644–652
https://doi.org/10.1038/nbt.1883 pmid: 21572440
49 M. Pertea, , G. M. Pertea, , C. M. Antonescu, , T. C. Chang, , J. T. Mendell, and S. L. Salzberg, (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol., 33, 290–295
https://doi.org/10.1038/nbt.3122 pmid: 25690850
50 N. A. Fonseca, , J. Rung, , A. Brazma, and J. C. Marioni, (2012) Tools for mapping high-throughput sequencing data. Bioinformatics, 28, 3169–3177
https://doi.org/10.1093/bioinformatics/bts605 pmid: 23060614
51 H. Li, and N. Homer, (2010) A survey of sequence alignment algorithms for next-generation sequencing. Brief. Bioinform., 11, 473–483
https://doi.org/10.1093/bib/bbq015 pmid: 20460430
52 S. F. Altschul, , W. Gish, , W. Miller, , E. W. Myers, and D. J. Lipman, (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410
https://doi.org/10.1016/S0022-2836(05)80360-2 pmid: 2231712
53 S. F. Altschul, , T. L. Madden, , A. A. Schäffer, , J. Zhang, , Z. Zhang, , W. Miller, and D. J. Lipman, (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389–3402
https://doi.org/10.1093/nar/25.17.3389 pmid: 9254694
54 H. Li, , J. Ruan, and R. Durbin, (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res., 18, 1851–1858
https://doi.org/10.1101/gr.078212.108 pmid: 18714091
55 A. D. Smith, , Z. Xuan, and M. Q. Zhang, (2008) Using quality scores and longer reads improves accuracy of Solexa read mapping. BMC Bioinformatics, 9, 128
https://doi.org/10.1186/1471-2105-9-128 pmid: 18307793
56 A. D. Smith, , W. Y. Chung, , E. Hodges, , J. Kendall, , G. Hannon, , J. Hicks, , Z. Xuan, and M. Q. Zhang, (2009) Updates to the RMAP short-read mapping software. Bioinformatics, 25, 2841–2842
https://doi.org/10.1093/bioinformatics/btp533 pmid: 19736251
57 H. Lin, , Z. Zhang, , M. Q. Zhang, , B. Ma, and M. Li, (2008) ZOOM! Zillions of oligos mapped. Bioinformatics, 24, 2431–2437
https://doi.org/10.1093/bioinformatics/btn416 pmid: 18684737
58 H. Jiang, and W. H. Wong, (2008) SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics, 24, 2395–2396
https://doi.org/10.1093/bioinformatics/btn429 pmid: 18697769
59 P. Jokinen, and E. Ukkonen, (1991) Two algorithms for approxmate string matching in static texts. Mathematical Foundations of Computer Science 1991. Lect. Notes Comput. Sci., 520, 240–248
https://doi.org/10.1007/3-540-54345-7_67
60 S. M. Rumble, , P. Lacroute, , A. V. Dalca, , M. Fiume, , A. Sidow, and M. Brudno, (2009) SHRiMP: accurate mapping of short color-space reads. PLoS Comput. Biol., 5, e1000386
https://doi.org/10.1371/journal.pcbi.1000386 pmid: 19461883
61 D. Weese, , A. K. Emde, , T. Rausch, , A. Döring, and K. Reinert, (2009) RazerS—fast read mapping with sensitivity control. Genome Res., 19, 1646–1654
https://doi.org/10.1101/gr.088823.108 pmid: 19592482
62 D. Weese, , M. Holtgrewe, and K. Reinert, (2012) RazerS 3: faster, fully sensitive read mapping. Bioinformatics, 28, 2592–2599
https://doi.org/10.1093/bioinformatics/bts505 pmid: 22923295
63 M. Farrar, (2007) Striped Smith-Waterman speeds database searches six times over other SIMD implementations. Bioinformatics, 23, 156–161
https://doi.org/10.1093/bioinformatics/btl582 pmid: 17110365
64 S. Kurtz, , A. Phillippy, , A. L. Delcher, , M. Smoot, , M. Shumway, , C. Antonescu, and S. L. Salzberg, (2004) Versatile and open software for comparing large genomes. Genome Biol., 5, R12
https://doi.org/10.1186/gb-2004-5-2-r12 pmid: 14759262
65 M. I. Abouelhoda, , S. Kurtz, and E. Ohlebusch, (2004) Replacing suffix trees with enhanced suffix arrays. J. Discrete Algorithms, 2, 53–86
https://doi.org/10.1016/S1570-8667(03)00065-0
66 P. Ferragina, andG. Manzini, , (2000) Opportunistic data structures with applications.In Proceedings, 41st Annual Symposium, 390–398
67 M. Burrows, and D. J. Wheeler, (1994) A block-sorting lossless data compression algorithm. Systems Research Center, 124
68 S. Hoffmann, , C. Otto, , S. Kurtz, , C. M. Sharma, , P. Khaitovich, , J. Vogel, , P. F. Stadler, and J. Hackermüller, (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput. Biol., 5, e1000502
https://doi.org/10.1371/journal.pcbi.1000502 pmid: 19750212
69 B. Li, and C. N. Dewey, (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323
https://doi.org/10.1186/1471-2105-12-323 pmid: 21816040
70 N. Malhis, , Y. S. Butterfield, , M. Ester, and S. J. Jones, (2009) Slider—maximum use of probability information for alignment of short sequence reads and SNP detection. Bioinformatics, 25, 6–13
https://doi.org/10.1093/bioinformatics/btn565 pmid: 18974170
71 N. Malhis, and S. J. M. Jones, (2010) High quality SNP calling using Illumina data at shallow coverage. Bioinformatics, 26, 1029–1035
https://doi.org/10.1093/bioinformatics/btq092 pmid: 20190250
72 C. Trapnell, , D. G. Hendrickson, , M. Sauvageau, , L. Goff, , J. L. Rinn, and L. Pachter, (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol., 31, 46–53
https://doi.org/10.1038/nbt.2450 pmid: 23222703
73 A. C. Frazee, , G. Pertea, , A. E. Jaffe, , B. Langmead, , S. L. Salzberg, and J. T. Leek, (2015) Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat. Biotechnol., 33, 243–246
https://doi.org/10.1038/nbt.3172 pmid: 25748911
74 J. A. Robles, , S. E. Qureshi, , S. J. Stephen, , S. R. Wilson, , C. J. Burden, and J. M. Taylor, (2012) Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing. BMC Genomics, 13, 484
https://doi.org/10.1186/1471-2164-13-484 pmid: 22985019
75 Z. H. Zhang, , D. J. Jhaveri, , V. M. Marshall, , D. C. Bauer, , J. Edson, , R. K. Narayanan, , G. J. Robinson, , A. E. Lundberg, , P. F. Bartlett, , N. R. Wray, , et al. (2014) A comparative study of techniques for differential expression analysis on RNA-Seq data. PLoS One, 9, e103207
https://doi.org/10.1371/journal.pone.0103207 pmid: 25119138
76 J. C. Marioni, , C. E. Mason, , S. M. Mane, , M. Stephens, and Y. Gilad, (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509–1517
https://doi.org/10.1101/gr.079558.108 pmid: 18550803
77 S. Hoffmann, , C. Otto, , S. Kurtz, , C. M. Sharma, , P. Khaitovich, , J. Vogel, , P. F. Stadler, and J. Hackermüller, (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput. Biol., 5, e1000502
https://doi.org/10.1371/journal.pcbi.1000502 pmid: 19750212
78 C. Luo, , D. Tsementzi, , N. Kyrpides, , T. Read, and K. T. Konstantinidis, (2012) Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One, 7, e30087
https://doi.org/10.1371/journal.pone.0030087 pmid: 22347999
79 T. G. Mamedov, , E. Pienaar, , S. E. Whitney, , J. R. TerMaat, , G. Carvill, , R. Goliath, , A. Subramanian, and H. J. Viljoen, (2008) A fundamental study of the PCR amplification of GC-rich DNA templates. Comput. Biol. Chem., 32, 452–457
https://doi.org/10.1016/j.compbiolchem.2008.07.021 pmid: 18760969
80 A. Oshlack, , M. D. Robinson, and M. D. Young, (2010) From RNA-seq reads to differential expression results. Genome Biol., 11, 220
https://doi.org/10.1186/gb-2010-11-12-220 pmid: 21176179
81 K. D. Hansen, , S. E. Brenner, and S. Dudoit, (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res., 38, e131
https://doi.org/10.1093/nar/gkq224 pmid: 20395217
82 L. M. McIntyre, , K. K. Lopiano, , A. M. Morse, , V. Amin, , A. L. Oberg, , L. J. Young, and S. V. Nuzhdin, (2011) RNA-seq: technical variability and sampling. BMC Genomics, 12, 293
https://doi.org/10.1186/1471-2164-12-293 pmid: 21645359
83 J. H. Bullard, , E. Purdom, , K. D. Hansen, and S. Dudoit, (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 11, 94
https://doi.org/10.1186/1471-2105-11-94 pmid: 20167110
84 M. D. Robinson, and G. K. Smyth, (2007) Moderated statistical tests for assessing differences in tag abundance. Bioinformatics, 23, 2881–2887
https://doi.org/10.1093/bioinformatics/btm453 pmid: 17881408
85 U. Nagalakshmi, , Z. Wang, , K. Waern, , C. Shou, , D. Raha, , M. Gerstein, and M. Snyder, (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320, 1344–1349
https://doi.org/10.1126/science.1158441 pmid: 18451266
86 C. Soneson, and M. Delorenzi, (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics, 14, 91
https://doi.org/10.1186/1471-2105-14-91 pmid: 23497356
87 M. A. Van De Wiel, , G. G. Leday, , L. Pardo, , H. Rue, , A. W. Van Der Vaart, and W. N. Van Wieringen, (2013) Bayesian analysis of RNA sequencing data by estimating multiple shrinkage priors. Biostatistics, 14, 113–128
https://doi.org/10.1093/biostatistics/kxs031 pmid: 22988280
88 F. Rapaport, , R. Khanin, , Y. Liang, , M. Pirun, , A. Krek, , P. Zumbo, , C. E. Mason, , N. D. Socci, and D. Betel, (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol., 14, R95
https://doi.org/10.1186/gb-2013-14-9-r95 pmid: 24020486
89 C. Trapnell, , A. Roberts, , L. Goff, , G. Pertea, , D. Kim, , D. R. Kelley, , H. Pimentel, , S. L. Salzberg, , J. L. Rinn, and L. Pachter, (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc., 7, 562–578
https://doi.org/10.1038/nprot.2012.016 pmid: 22383036
90 J. Li, , D. M. Witten, , I. M. Johnstone, and R. Tibshirani, (2012) Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics, 13, 523–538
https://doi.org/10.1093/biostatistics/kxr031 pmid: 22003245
91 F. Seyednasrollah, , A. Laiho, and L. L. Elo, (2015) Comparison of software packages for detecting differential expression in RNA-seq studies. Brief. Bioinform., 16, 59–70
https://doi.org/10.1093/bib/bbt086 pmid: 24300110
92 Y. Liu, , J. Zhou, and K. P. White, (2014) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics, 30, 301–304
https://doi.org/10.1093/bioinformatics/btt688 pmid: 24319002
93 H. Cho, , J. Davis, , X. Li, , K. S. Smith, , A. Battle, and S. B. Montgomery, (2014) High-resolution transcriptome analysis with long-read RNA sequencing. PLoS One, 9, e108095
https://doi.org/10.1371/journal.pone.0108095 pmid: 25251678
94 M. Zavodna, , A. Bagshaw, , R. Brauning, and N. J. Gemmell, (2014) The accuracy, feasibility and challenges of sequencing short tandem repeats using next-generation sequencing platforms. PLoS One, 9, e113862
https://doi.org/10.1371/journal.pone.0113862 pmid: 25436869
95 A. E. Minoche, , J. C. Dohm, , J. Schneider, , D. Holtgräwe, , P. Viehöver, , M. Montfort, , T. R. Sörensen, , B. Weisshaar, and H. Himmelbauer, (2015) Exploiting single-molecule transcript sequencing for eukaryotic gene prediction. Genome Biol., 16, 184
https://doi.org/10.1186/s13059-015-0729-7 pmid: 26328666
96 C. J. Westbrook, , J. A. Karl, , R. W. Wiseman, , S. Mate, , G. Koroleva, , K. Garcia, , M. Sanchez-Lockhart, , D. H. O’Connor, and G. Palacios, (2015) No assembly required: Full-length MHC class I allele discovery by PacBio circular consensus sequencing. Hum. Immunol., 76, 891–896
https://doi.org/10.1016/j.humimm.2015.03.022 pmid: 26028281
97 Q. Gao, , W. Sun, , M. Ballegeer, , C. Libert, and W. Chen, (2015) Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing. Mol. Syst. Biol., 11, 816
https://doi.org/10.15252/msb.20145970 pmid: 26134616
98 M. Margulies, , M. Egholm, , W. E. Altman, , S. Attiya, , J. S. Bader, , L. A. Bemben, , J. Berka, , M. S. Braverman, , Y. J. Chen, , Z. Chen, , et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–380
pmid: 16056220
99 J. O. Korbel, , A. E. Urban, , J. P. Affourtit, , B. Godwin, , F. Grubert, , J. F. Simons, , P. M. Kim, , D. Palejev, , N. J. Carriero, , L. Du, , et al. (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science, 318, 420–426
https://doi.org/10.1126/science.1149504 pmid: 17901297
100 D. A. Wheeler, , M. Srinivasan, , M. Egholm, , Y. Shen, , L. Chen, , A. McGuire, , W. He, , Y. J. Chen, , V. Makhijani, , G. T. Roth, , et al. (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature, 452, 872–876
https://doi.org/10.1038/nature06884 pmid: 18421352
101 M. Droege, and B. Hill, (2008) The Genome Sequencer FLX System—longer reads, more applications, straight forward bioinformatics and more complete data sets. J. Biotechnol., 136, 3–10
https://doi.org/10.1016/j.jbiotec.2008.03.021 pmid: 18616967
102 J. Eid, , A. Fehr, , J. Gray, , K. Luong, , J. Lyle, , G. Otto, , P. Peluso, , D. Rank, , P. Baybayan, , B. Bettman, , et al. (2009) Real-time DNA sequencing from single polymerase molecules. Science, 323, 133–138
https://doi.org/10.1126/science.1162986 pmid: 19023044
103 S. Uemura, , C. E. Aitken, , J. Korlach, , B. A. Flusberg, , S. W. Turner, and J. D. Puglisi, (2010) Real-time tRNA transit on single translating ribosomes at codon resolution. Nature, 464, 1012–1017
https://doi.org/10.1038/nature08925 pmid: 20393556
104 I. C. Macaulay, , W. Haerty, , P. Kumar, , Y. I. Li, , T. X. Hu, , M. J. Teng, , M. Goolam, , N. Saurat, , P. Coupland, , L. M. Shirley, , et al. (2015) G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods, 12, 519–522
https://doi.org/10.1038/nmeth.3370 pmid: 25915121
105 D. Stoddart, , A. J. Heron, , E. Mikhailova, , G. Maglia, and H. Bayley, (2009) Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl. Acad. Sci. USA, 106, 7702–7707
https://doi.org/10.1073/pnas.0901054106 pmid: 19380741
106 F. Olasagasti, , K. R. Lieberman, , S. Benner, , G. M. Cherf, , J. M. Dahl, , D. W. Deamer, and M. Akeson, (2010) Replication of individual DNA molecules under electronic control using a protein nanopore. Nat. Nanotechnol., 5, 798–806
https://doi.org/10.1038/nnano.2010.177 pmid: 20871614
107 T. Laver, , J. Harrison, , P. A. O’Neill, , K. Moore, , A. Farbos, , K. Paszkiewicz, and D. J. Studholme, (2015) Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol. Detect. Quantif., 3, 1–8
https://doi.org/10.1016/j.bdq.2015.02.001
108 M. Pendleton, , R. Sebra, , A. W. Pang, , A. Ummat, , O. Franzen, , T. Rausch, , A. M. Stütz, , W. Stedman, , T. Anantharaman, , A. Hastie, , et al. (2015) Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods, 12, 780–786
https://doi.org/10.1038/nmeth.3454 pmid: 26121404
109 F. Buettner, , K. N. Natarajan, , F. P. Casale, , V. Proserpio, , A. Scialdone, , F. J. Theis, , S. A. Teichmann, , J. C. Marioni, and O. Stegle, (2015) Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol., 33, 155–160
https://doi.org/10.1038/nbt.3102 pmid: 25599176
110 P. Dalerba, , T. Kalisky, , D. Sahoo, , P. S. Rajendran, , M. E. Rothenberg, , A. A. Leyrat, , S. Sim, , J. Okamoto, , D. M. Johnston, , D. Qian, , et al. (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol., 29, 1120–1127
https://doi.org/10.1038/nbt.2038 pmid: 22081019
111 J. M. Levsky, , S. M. Shenoy, , R. C. Pezo, and R. H. Singer, (2002) Single-cell gene expression profiling. Science, 297, 836–840
https://doi.org/10.1126/science.1072241 pmid: 12161654
112 A. Raj, , P. van den Bogaard, , S. A. Rifkin, , A. van Oudenaarden, and S. Tyagi, (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods, 5, 877–879
https://doi.org/10.1038/nmeth.1253 pmid: 18806792
113 Y. Taniguchi, , P. J. Choi, , G. W. Li, , H. Chen, , M. Babu, , J. Hearn, , A. Emili, and X. S. Xie, (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science, 329, 533–538
https://doi.org/10.1126/science.1188308 pmid: 20671182
114 F. Tang, , C. Barbacioru, , Y. Wang, , E. Nordman, , C. Lee, , N. Xu, , X. Wang, , J. Bodeau, , B. B. Tuch, , A. Siddiqui, , et al. (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods, 6, 377–382
https://doi.org/10.1038/nmeth.1315 pmid: 19349980
115 T. Hashimshony, , F. Wagner, , N. Sher, and I. Yanai, (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Reports, 2, 666–673
https://doi.org/10.1016/j.celrep.2012.08.003 pmid: 22939981
116 S. Picelli, , Å. K. Björklund, , O. R. Faridani, , S. Sagasser, , G. Winberg, and R. Sandberg, (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods, 10, 1096–1098
https://doi.org/10.1038/nmeth.2639 pmid: 24056875
117 A. M. Klein, , L. Mazutis, , I. Akartuna, , N. Tallapragada, , A. Veres, , V. Li, , L. Peshkin, , D. A. Weitz, and M. W. Kirschner, (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell, 161, 1187–1201
https://doi.org/10.1016/j.cell.2015.04.044 pmid: 26000487
118 E. Z. Macosko, , A. Basu, , R. Satija, , J. Nemesh, , K. Shekhar, , M. Goldman, , I. Tirosh, , A. R. Bialas, , N. Kamitaki, , E. M. Martersteck, , et al. (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell, 161, 1202–1214
https://doi.org/10.1016/j.cell.2015.05.002 pmid: 26000488
119 A. A. Pollen, , T. J. Nowakowski, , J. Shuga, , X. Wang, , A. A. Leyrat, , J. H. Lui, , N. Li, , L. Szpankowski, , B. Fowler, , P. Chen, , et al. (2014) Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol., 32, 1053–1058
https://doi.org/10.1038/nbt.2967 pmid: 25086649
120 C Trapnell, ., D. Cacchiarelli, , J. Grimsby, , P. Pokharel , S. Li, M. Morse, , N. J. Lennon, , J., Livak K. T. S. Mikkelsen, ,J. L Rinn, . (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol, 32, 381–386
[1] Huanhuan Zhu, Xiang Zhou. Transcriptome-wide association studies: a view from Mendelian randomization[J]. Quant. Biol., 2021, 9(2): 107-121.
[2] Jianan Lin, Zhengqing Ouyang. Large-scale analysis of the position-dependent binding and regulation of human RNA binding proteins[J]. Quant. Biol., 2020, 8(2): 119-129.
[3] Xing Chen, Yinglei Lai. A censored-Poisson model based approach to the analysis of RNA-seq data[J]. Quant. Biol., 2020, 8(2): 155-171.
[4] Jie Zheng, Ke Wang. Emerging deep learning methods for single-cell RNA-seq data analysis[J]. Quant. Biol., 2019, 7(4): 247-254.
[5] Aysegul Guvenek, Bin Tian. Analysis of alternative cleavage and polyadenylation in mature and differentiating neurons using RNA-seq data[J]. Quant. Biol., 2018, 6(3): 253-266.
[6] Wei Vivian Li, Jingyi Jessica Li. Modeling and analysis of RNA-seq data: a review from a statistical perspective[J]. Quant. Biol., 2018, 6(3): 195-209.
[7] Saad M Khan, Jason E Denney, Michael X Wang, Dong Xu. Whole-exome sequencing and microRNA profiling reveal PI3K/AKT pathway’s involvement in juvenile myelomonocytic leukemia[J]. Quant. Biol., 2018, 6(1): 85-97.
[8] Ganlu Hu, Guang-Zhong Wang. Decoding nervous system by single-cell RNA sequencing[J]. Quant. Biol., 2017, 5(3): 210-214.
[9] Jing Qin, Bin Yan, Yaohua Hu, Panwen Wang, Junwen Wang. Applications of integrative OMICs approaches to gene regulation studies[J]. Quant. Biol., 2016, 4(4): 283-301.
[10] Zhun Miao, Xuegong Zhang. Differential expression analyses for single-cell RNA-Seq: old questions on new data[J]. Quant. Biol., 2016, 4(4): 243-260.
[11] Amal Katrib, William Hsu, Alex Bui, Yi Xing. “RADIOTRANSCRIPTOMICS”: A synergy of imaging and transcriptomics in clinical assessment[J]. Quant. Biol., 2016, 4(1): 1-12.
[12] Junhai Jiang,Nan Lin,Shicheng Guo,Jinyun Chen,Momiao Xiong. Multiple functional linear model for association analysis of RNA-seq with imaging[J]. Quant. Biol., 2015, 3(2): 90-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed