|
|
|
Combination of versatile platforms for the development of synthetic biology |
Baizhu Chen, Zhuojun Dai( ) |
| Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
|
|
|
|
Abstract Background: Synthetic biology has attracted enormous attention in recent years. A key focus of synthetic biology is to utilize modular biological building blocks to assemble the cell-based circuits. Results: Scientists have programmed the living organisms using these circuits to attain multiple, delicate and well-defined functions. With the integration of tools or technologies from other disciplines, these rewired cells can achieve even more complex tasks. Conclusions: In this review, we will focus on the recent achievements in new materials and devices assembly, next generation therapeutics development and versatile manufacturing by combining the synthetic gene circuits, various tools and technologies from multiple fields, such as printing technology, material engineering and electronic engineering.
|
| Keywords
synthetic biology
material engineering
printing technology
electronic engineering
|
|
Corresponding Author(s):
Zhuojun Dai
|
|
Online First Date: 06 March 2020
Issue Date: 23 March 2020
|
|
| 1 |
D. E. Cameron, , C. J. Bashor, and J. J. Collins, (2014) A brief history of synthetic biology. Nat. Rev. Microbiol., 12, 381–390
https://doi.org/10.1038/nrmicro3239.
pmid: 24686414
|
| 2 |
F. Jacob, and J. Monod, (1961) On the regulation of gene activity. Cold Spring Harb. Symp. Quant. Biol., 26, 193–211
https://doi.org/10.1101/SQB.1961.026.01.024.
|
| 3 |
T. S. Gardner, , C. R. Cantor, and J. J. Collins, (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342
https://doi.org/10.1038/35002131.
pmid: 10659857
|
| 4 |
M. B. Elowitz, and S. Leibler, (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338
https://doi.org/10.1038/35002125.
pmid: 10659856
|
| 5 |
J. J. Y. Teo, , S. S. Woo, and R. Sarpeshkar, (2015) Synthetic biology: A unifying view and review using analog circuits. IEEE Trans. Biomed. Circuits Syst., 9, 453–474
https://doi.org/10.1109/TBCAS.2015.2461446.
pmid: 26372648
|
| 6 |
H. Ye, and M. Fussenegger, (2014) Synthetic therapeutic gene circuits in mammalian cells. FEBS Lett., 588, 2537–2544
https://doi.org/10.1016/j.febslet.2014.05.003.
pmid: 24844435
|
| 7 |
T. S. Gardner, , C. R. Cantor, and J. J. Collins, (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342
https://doi.org/10.1038/35002131.
pmid: 10659857
|
| 8 |
J. Stricker, , S. Cookson, , M. R. Bennett, , W. H. Mather, , L. S. Tsimring, and J. Hasty, (2008) A fast, robust and tunable synthetic gene oscillator. Nature, 456, 516–519
https://doi.org/10.1038/nature07389.
pmid: 18971928
|
| 9 |
T. Ellis, , X. Wang, and J. J. Collins, (2009) Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol., 27, 465–471
https://doi.org/10.1038/nbt.1536.
pmid: 19377462
|
| 10 |
A. E. Friedland, , T. K. Lu, , X. Wang, , D. Shi, , G. Church, and J. J. Collins, (2009) Synthetic gene networks that count. Science, 324, 1199–1202
https://doi.org/10.1126/science.1172005.
pmid: 19478183
|
| 11 |
T. Danino, , O. Mondragón-Palomino, , L. Tsimring, and J. Hasty, (2010) A synchronized quorum of genetic clocks. Nature, 463, 326–330
https://doi.org/10.1038/nature08753.
pmid: 20090747
|
| 12 |
J. J. Tabor, , H. M. Salis, , Z. B. Simpson, , A. A. Chevalier, , A. Levskaya, , E. M. Marcotte, , C. A. Voigt, and A. D. Ellington, (2009) A synthetic genetic edge detection program. Cell, 137, 1272–1281
https://doi.org/10.1016/j.cell.2009.04.048.
pmid: 19563759
|
| 13 |
S. Basu, , Y. Gerchman, , C. H. Collins, , F. H. Arnold, and R. Weiss, (2005) A synthetic multicellular system for programmed pattern formation. Nature, 434, 1130–1134
https://doi.org/10.1038/nature03461.
pmid: 15858574
|
| 14 |
T. Bulter, , S. G. Lee, , W. W. Wong, , E. Fung, , M. R. Connor, and J. C. Liao, (2004) Design of artificial cell-cell communication using gene and metabolic networks. Proc. Natl. Acad. Sci. USA, 101, 2299–2304
https://doi.org/10.1073/pnas.0306484101.
pmid: 14983004
|
| 15 |
T. Zhao, and C. Zhong, (2017) Applications of synthetic biology in materials science. Chinese Journal of Biotechnology, 33, 494–505, in Chinese
pmid: 28941347.
|
| 16 |
I. C. MacDonald, and T. L. Deans, (2016) Tools and applications in synthetic biology. Adv. Drug Deliv. Rev., 105, 20–34
https://doi.org/10.1016/j.addr.2016.08.008.
pmid: 27568463
|
| 17 |
H. J. Wagner, , A. Sprenger, , B. Rebmann, and W. Weber, (2016) Upgrading biomaterials with synthetic biological modules for advanced medical applications. Adv. Drug Deliv. Rev., 105, 77–95
https://doi.org/10.1016/j.addr.2016.05.004.
pmid: 27179764
|
| 18 |
K. A. Schwarz, and J. N. Leonard, (2016) Engineering cell-based therapies to interface robustly with host physiology. Adv. Drug Deliv. Rev., 105, 55–65
https://doi.org/10.1016/j.addr.2016.05.019.
pmid: 27266446
|
| 19 |
A. S. Khalil, and J. J. Collins, (2010) Synthetic biology: applications come of age. Nat. Rev. Genet., 11, 367–379
https://doi.org/10.1038/nrg2775.
pmid: 20395970
|
| 20 |
M. J. Smanski, , H. Zhou, , J. Claesen, , B. Shen, , M. A. Fischbach, and C. A. Voigt, (2016) Synthetic biology to access and expand nature’s chemical diversity. Nat. Rev. Microbiol., 14, 135–149
https://doi.org/10.1038/nrmicro.2015.24.
pmid: 26876034
|
| 21 |
L. L. Looger, , M. A. Dwyer, , J. J. Smith, and H. W. Hellinga, (2003) Computational design of receptor and sensor proteins with novel functions. Nature, 423, 185–190
https://doi.org/10.1038/nature01556.
pmid: 12736688
|
| 22 |
D. K. Ro, , E. M. Paradise, , M. Ouellet, , K. J. Fisher, , K. L. Newman, , J. M. Ndungu, , K. A. Ho, , R. A. Eachus, , T. S. Ham, , J. Kirby, , et al. (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 440, 940–943
https://doi.org/10.1038/nature04640.
pmid: 16612385
|
| 23 |
T. R. Shepherd, , L. Du, , J. Liljeruhm, , J. Samudyata, Wang, , M. O. D. Sjödin, , M. Wetterhall, , T. Yomo, and A. C. Forster (2017) De novo design and synthesis of a 30-cistron translation-factor module. Nucleic Acids Res., 45, 10895–10905
https://doi.org/10.1093/nar/gkx753.
pmid: 28977654
|
| 24 |
B. Koepnick, , J. Flatten, , T. Husain, , A. Ford, , D. A. Silva, , M. J. Bick, , A. Bauer, , G. Liu, , Y. Ishida, , A. Boykov, , et al. (2019) De novo protein design by citizen scientists. Nature, 570, 390–394
https://doi.org/10.1038/s41586-019-1274-4.
pmid: 31168091
|
| 25 |
T. Si, and H. Zhao, (2016) A brief overview of synthetic biology research programs and roadmap studies in the United States. Synth. Syst. Biotechnol., 1, 258–264
https://doi.org/10.1016/j.synbio.2016.08.003.
pmid: 29062951
|
| 26 |
H. Zhao, (2013) Synthetic Biology: Tools And Applications. Amsterdam: Academic Press-Elsevier
|
| 27 |
T. H. Segall-Shapiro, , E. D. Sontag, and C. A. Voigt, (2018) Engineered promoters enable constant gene expression at any copy number in bacteria. Nat. Biotechnol., 36, 352–358
https://doi.org/10.1038/nbt.4111.
pmid: 29553576
|
| 28 |
N. Nandagopal, and M.B. Elowitz, (2011) Synthetic Biology: Integrated Gene Circuits. Science, 333, 1244–1248
|
| 29 |
J. Crocker, and G. R. Ilsley, (2017) Using synthetic biology to study gene regulatory evolution. Curr. Opin. Genet. Dev., 47, 91–101
https://doi.org/10.1016/j.gde.2017.09.001.
pmid: 28968519
|
| 30 |
F. Lienert, , J. J. Lohmueller, , A. Garg, and P. A. Silver, (2014) Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat. Rev. Mol. Cell Biol., 15, 95–107
https://doi.org/10.1038/nrm3738.
pmid: 24434884
|
| 31 |
, C.J. Bashor, , N.C. Helman, , S. Yan, and , W.A. Lim (2008) Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science, 319, 1539–1543
|
| 32 |
, S.G. Peisajovich, , J.E. Garbarino, , P. Wei, , W.A. Lim (2010) Rapid diversification of cell signaling phenotypes by modular domain recombination. Science, 328, 368–372
|
| 33 |
R. J. Johnston, Jr and C. Desplan, (2010) Preview. A penetrating look at stochasticity in development. Cell, 140, 610–612
https://doi.org/10.1016/j.cell.2010.02.018.
pmid: 20211129
|
| 34 |
A. Y. Chen, , C. Zhong, and T. K. Lu, (2015) Engineering living functional materials. ACS Synth. Biol., 4, 8–11
https://doi.org/10.1021/sb500113b.
pmid: 25592034
|
| 35 |
R. A. Le Feuvre, and N. S. Scrutton, (2018) A living foundry for synthetic biological materials: a synthetic biology roadmap to new advanced materials. Synth. Syst. Biotechnol., 3, 105–112
https://doi.org/10.1016/j.synbio.2018.04.002.
pmid: 29900423
|
| 36 |
M. O. Din, , T. Danino, , A. Prindle, , M. Skalak, , J. Selimkhanov, , K. Allen, , E. Julio, , E. Atolia, , L. S. Tsimring, , S. N. Bhatia, , et al. (2016) Synchronized cycles of bacterial lysis for in vivo delivery. Nature, 536, 81–85
https://doi.org/10.1038/nature18930.
pmid: 27437587
|
| 37 |
P. V. Raje, and N. C. Murmu, (2014) A review on electrohydrodynamic-inkjet printing technology. IjetaeCom, 4, 174–183
|
| 38 |
T. Srimongkon, , S. Mandai, and T. Enomae, (2015) Application of biomaterials and inkjet printing to develop bacterial culture system. Adv. Mater. Sci. Eng., 2015, 1–9
https://doi.org/10.1155/2015/290790.
|
| 39 |
J. Merrin, , S. Leibler, and J. S. Chuang, (2007) Printing multistrain bacterial patterns with a piezoelectric inkjet printer. PLoS One, 2, e663
https://doi.org/10.1371/journal.pone.0000663.
pmid: 17653283
|
| 40 |
Y. Cao, , Y. Feng, , M. D. Ryser, , K. Zhu, , G. Herschlag, , C. Cao, , K. Marusak, , S. Zauscher, and L. You, (2017) Programmable assembly of pressure sensors using pattern-forming bacteria. Nat. Biotechnol., 35, 1087–1093
https://doi.org/10.1038/nbt.3978.
pmid: 28991268
|
| 41 |
T. D. Ngo, , A. Kashani, , G. Imbalzano, , K. T. Q. Nguyen, and D. Hui, (2018) Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos., Part B Eng., 143, 172–196
https://doi.org/10.1016/j.compositesb.2018.02.012.
|
| 42 |
X. Wang, , S. Xu, , S. Zhou, , W. Xu, , M. Leary, , P. Choong, , M. Qian, , M. Brandt, and Y. M. Xie, (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83, 127–141
https://doi.org/10.1016/j.biomaterials.2016.01.012.
pmid: 26773669
|
| 43 |
N. Labeaga-Martínez, , M. Sanjurjo-Rivo, , J. Díaz-Álvarez, and J. Martínez-Frías, (2017) Additive manufacturing for a Moon village. Procedia. Manuf., 13, 794–801
https://doi.org/10.1016/j.promfg.2017.09.186.
|
| 44 |
A. Goyanes, , J. Wang, , A. Buanz, , R. MartVnez-Pacheco, , R. Telford, , S. Gaisford, and A. W. Basit, (2015) 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol. Pharm., 12, 4077–4084
https://doi.org/10.1021/acs.molpharmaceut.5b00510.
pmid: 26473653
|
| 45 |
J. S. Chohan, , R. Singh, , K. S. Boparai, , R. Penna, and F. Fraternali, (2017) Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications. Compos., Part B Eng., 117, 138–149
https://doi.org/10.1016/j.compositesb.2017.02.045.
|
| 46 |
C. Zhang, , J. Huang, , J. Zhang, , S. Liu, , M. Cui, , B. An, , X. Wang, , J. Pu, , T. Zhao, , C. Fan, , et al. (2019) Engineered Bacillus subtilis biofilms as living glues. Mater. Today, 28, 40–48
https://doi.org/10.1016/j.mattod.2018.12.039.
|
| 47 |
J. Huang, , S. Liu, , C. Zhang, , X. Wang, , J. Pu, , F. Ba, , S. Xue, , H. Ye, , T. Zhao, , K. Li, , et al. (2019) Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nat. Chem. Biol., 15, 34–41
https://doi.org/10.1038/s41589-018-0169-2.
pmid: 30510190
|
| 48 |
S. Kyle, (2018) 3D printing of bacteria: the next frontier in biofabrication. Trends Biotechnol., 36, 340–341
https://doi.org/10.1016/j.tibtech.2018.01.010.
pmid: 29402473
|
| 49 |
, M Schaffner, , P.A. Rühs, , F. Coulter, S. Kilcher,, and A.R. Studart, (2017) 3D printing of bacteria into functional complex materials. Sci. Adv. 3, eaao6804
|
| 50 |
B. A. E. Lehner, , D. T. Schmieden, and A. S. Meyer, (2017) A straightforward approach for 3D bacterial printing. ACS Synth. Biol., 6, 1124–1130
https://doi.org/10.1021/acssynbio.6b00395.
pmid: 28225616
|
| 51 |
L. M. González, , N. Mukhitov, and C. A. Voigt, (2019) Resilient living materials built by printing bacterial spores. Nat. Chem. Biol.
https://doi.org/10.1038/s41589-019-0412-5.
pmid: 31792444
|
| 52 |
M. K. Nguyen, and D. S. Lee, (2010) Injectable biodegradable hydrogels. Macromol. Biosci., 10, 563–579
https://doi.org/10.1002/mabi.200900402.
pmid: 20196065
|
| 53 |
H. Naderi, , M. M. Matin, and A. R. Bahrami, (2011) Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J. Biomater. Appl., 26, 383–417
https://doi.org/10.1177/0885328211408946.
pmid: 21926148
|
| 54 |
N. M. B. Smeets, and T. Hoare, (2013) Designing responsive microgels for drug delivery applications. J. Polymer Sci. Chem, 51, 3027–3043
|
| 55 |
H. Suo, , D. Zhang, , J. Yin, , J. Qian, , Z. L. Wu, and J. Fu, (2018) Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering. Mater. Sci. Eng. C, 92, 612–620
https://doi.org/10.1016/j.msec.2018.07.016.
pmid: 30184788
|
| 56 |
Z. Dai, and S. Huang, (2018) Functional dynamics inside nano- or microscale bio-hybrid systems. Front Chem., 6, 621
https://doi.org/10.3389/fchem.2018.00621.
pmid: 30619829
|
| 57 |
I. Gorelikov, , L. M. Field, and E. Kumacheva, (2004) Hybrid microgels photoresponsive in the near-infrared spectral range. J. Am. Chem. Soc., 126, 15938–15939
https://doi.org/10.1021/ja0448869.
pmid: 15584708
|
| 58 |
Z. Gu, , T. T. Dang, , M. Ma, , B. C. Tang, , H. Cheng, , S. Jiang, , Y. Dong, , Y. Zhang, and D. G. Anderson, (2013) Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano, 7, 6758–6766
https://doi.org/10.1021/nn401617u.
pmid: 23834678
|
| 59 |
T. Trongsatitkul, and B. Budhlall, (2013) Microgels or microcapsules? Role of morphology on the release kinetics of thermoresponsive PNIPAm-co-PEGMa hydrogels. Polym. Chem., 4, 1502–1516
https://doi.org/10.1039/C2PY20889J.
|
| 60 |
, M.A. English, , L.R. Soenksen, , R. V. Gayet,, H. de Puig, N.M. Angenent-Mari,, A.S. Mao,, P. Q. Nguyen, and J. J. Collins, (2019) Programmable CRISPR-responsive smart materials. Science, 365,780–785
|
| 61 |
T. Bulter, , S. G. Lee, , W. W. Wong, , E. Fung, , M. R. Connor, and J. C. Liao, (2004) Design of artificial cell-cell communication using gene and metabolic networks. Proc. Natl. Acad. Sci. USA, 101, 2299–2304
https://doi.org/10.1073/pnas.0306484101.
pmid: 14983004
|
| 62 |
Y. Higashikuni, , W. C. Chen, and T. K. Lu, (2017) Advancing therapeutic applications of synthetic gene circuits. Curr. Opin. Biotechnol., 47, 133–141
https://doi.org/10.1016/j.copbio.2017.06.011.
pmid: 28750201
|
| 63 |
S. Xue, , J. Yin, , J. Shao, , Y. Yu, , L. Yang, , Y. Wang, , M. Xie, , M. Fussenegger, and H. Ye, (2017) A synthetic-biology-inspired therapeutic strategy for targeting and treating hepatogenous diabetes. Mol. Ther., 25, 443–455
https://doi.org/10.1016/j.ymthe.2016.11.008.
pmid: 28153094
|
| 64 |
N. M. Mount, , S. J. Ward, , P. Kefalas, and J. Hyllner, (2015) Cell-based therapy technology classifications and translational challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci., 370, 20150017
https://doi.org/10.1098/rstb.2015.0017.
pmid: 26416686
|
| 65 |
H. Ye, , M. Xie, , S. Xue, , G. Charpin-El Hamri, , J. Yin, , H. Zulewski, and M. Fussenegger, (2017) Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat. Biomed. Eng., 1, 0005
https://doi.org/10.1038/s41551-016-0005.
pmid: 28480128
|
| 66 |
T. Abraham, , M. Mao, and C. Tan, (2018) Engineering approaches of smart, bio-inspired vesicles for biomedical applications. Phys. Biol., 15, 061001
https://doi.org/10.1088/1478-3975/aac7a2.
pmid: 29794337
|
| 67 |
Y. Ding, , L. E. Contreras-Llano, , E. Morris, , M. Mao, and C. Tan, (2018) Minimizing context dependency of gene networks using artificial cells. ACS Appl. Mater. Interfaces, 10, 30137–30146
https://doi.org/10.1021/acsami.8b10029.
pmid: 30113814
|
| 68 |
Z. Dai, , A. J. Lee, , S. Roberts, , T. A. Sysoeva, , S. Huang, , M. Dzuricky, , X. Yang, , X. Zhang, , Z. Liu, , A. Chilkoti, , et al. (2019) Versatile biomanufacturing through stimulus-responsive cell-material feedback. Nat. Chem. Biol., 15, 1017–1024
https://doi.org/10.1038/s41589-019-0357-8.
pmid: 31527836
|
| 69 |
M. M. Barnhart, and M. R. Chapman, (2006) Curli biogenesis and function. Annu. Rev. Microbiol., 60, 131–147
https://doi.org/10.1146/annurev.micro.60.080805.142106.
pmid: 16704339
|
| 70 |
Z. Bian, and S. Normark, (1997) Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli. EMBO J., 16, 5827–5836
https://doi.org/10.1093/emboj/16.19.5827.
pmid: 9312041
|
| 71 |
M. R. Chapman, , L. S. Robinson, , J. S. Pinkner, , R. Roth, , J. Heuser, , M. Hammar, , S. Normark, and S. J. Hultgren, (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science, 295, 851–855
https://doi.org/10.1126/science.1067484.
pmid: 11823641
|
| 72 |
A. Y. Chen, , Z. Deng, , A. N. Billings, , U. O. Seker, , M. Y. Lu, , R. J. Citorik, , B. Zakeri, and T. K. Lu, (2014) Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater., 13, 515–523
https://doi.org/10.1038/nmat3912.
pmid: 24658114
|
| 73 |
X. Wang, , J. Pu, , B. An, , Y. Li, , Y. Shang, , Z. Ning, , Y. Liu, , F. Ba, , J. Zhang, and C. Zhong, (2018) Programming cells for dynamic assembly of inorganic nano-objects with spatiotemporal control. Adv. Mater., 30, e1705968
https://doi.org/10.1002/adma.201705968.
pmid: 29516606
|
| 74 |
X. Wang, , J. Pu, , Y. Liu, , F. Ba, , M. Cui, , K. Li, , Y. Xie, , Y. Nie, , Q. Mi, , T. Li, , et al. (2019) Immobilization of functional nano-objects in living engineered bacterial biofilms for catalytic applications. Natl. Sci. Rev., 6, 929–943
https://doi.org/10.1093/nsr/nwz104.
|
| 75 |
J. Shao, , S. Xue, , G. Yu, , Y. Yu, , X. Yang, , Y. Bai, , S. Zhu, , L. Yang, , J. Yin, , Y. Wang, , et al. (2017) Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci. Transl. Med., 9, 1–14
https://doi.org/10.1126/scitranslmed.aal2298.
pmid: 28446682
|
| 76 |
, K.B. Justus, , T. Hellebrekers, , D.D. Lewis, A. Wood,, C. Ingham,, C. Majidi,, P.R. LeDuc,, and C. Tan, (2019) A biosensing soft robot: Autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Sci Robot., 4, eaax0765
|
| 77 |
M. Mimee,, P. Nadeau,, A. Hayward,, S. Carim,, S. Flanagan,, L. Jerger,, J. Collins,, S. McDonnell, , R. Swartwout,, R.J Citorik,. et al. (2018) An ingestible bacterial-electronic system to monitor gastrointestinal health. Science, 360, 915–918
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|