Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2020, Vol. 8 Issue (1) : 4-10    https://doi.org/10.1007/s40484-020-0197-2
REVIEW
Combination of versatile platforms for the development of synthetic biology
Baizhu Chen, Zhuojun Dai()
Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
 Download: PDF(224 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: Synthetic biology has attracted enormous attention in recent years. A key focus of synthetic biology is to utilize modular biological building blocks to assemble the cell-based circuits.

Results: Scientists have programmed the living organisms using these circuits to attain multiple, delicate and well-defined functions. With the integration of tools or technologies from other disciplines, these rewired cells can achieve even more complex tasks.

Conclusions: In this review, we will focus on the recent achievements in new materials and devices assembly, next generation therapeutics development and versatile manufacturing by combining the synthetic gene circuits, various tools and technologies from multiple fields, such as printing technology, material engineering and electronic engineering.

Keywords synthetic biology      material engineering      printing technology      electronic engineering     
Corresponding Author(s): Zhuojun Dai   
Online First Date: 06 March 2020    Issue Date: 23 March 2020
 Cite this article:   
Baizhu Chen,Zhuojun Dai. Combination of versatile platforms for the development of synthetic biology[J]. Quant. Biol., 2020, 8(1): 4-10.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-020-0197-2
https://academic.hep.com.cn/qb/EN/Y2020/V8/I1/4
Fig.1  Synthetic biology integrated multiple disciplines to achieve various applications.
1 D. E. Cameron, , C. J. Bashor, and J. J. Collins, (2014) A brief history of synthetic biology. Nat. Rev. Microbiol., 12, 381–390
https://doi.org/10.1038/nrmicro3239. pmid: 24686414
2 F. Jacob, and J. Monod, (1961) On the regulation of gene activity. Cold Spring Harb. Symp. Quant. Biol., 26, 193–211
https://doi.org/10.1101/SQB.1961.026.01.024.
3 T. S. Gardner, , C. R. Cantor, and J. J. Collins, (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342
https://doi.org/10.1038/35002131. pmid: 10659857
4 M. B. Elowitz, and S. Leibler, (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338
https://doi.org/10.1038/35002125. pmid: 10659856
5 J. J. Y. Teo, , S. S. Woo, and R. Sarpeshkar, (2015) Synthetic biology: A unifying view and review using analog circuits. IEEE Trans. Biomed. Circuits Syst., 9, 453–474
https://doi.org/10.1109/TBCAS.2015.2461446. pmid: 26372648
6 H. Ye, and M. Fussenegger, (2014) Synthetic therapeutic gene circuits in mammalian cells. FEBS Lett., 588, 2537–2544
https://doi.org/10.1016/j.febslet.2014.05.003. pmid: 24844435
7 T. S. Gardner, , C. R. Cantor, and J. J. Collins, (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342
https://doi.org/10.1038/35002131. pmid: 10659857
8 J. Stricker, , S. Cookson, , M. R. Bennett, , W. H. Mather, , L. S. Tsimring, and J. Hasty, (2008) A fast, robust and tunable synthetic gene oscillator. Nature, 456, 516–519
https://doi.org/10.1038/nature07389. pmid: 18971928
9 T. Ellis, , X. Wang, and J. J. Collins, (2009) Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol., 27, 465–471
https://doi.org/10.1038/nbt.1536. pmid: 19377462
10 A. E. Friedland, , T. K. Lu, , X. Wang, , D. Shi, , G. Church, and J. J. Collins, (2009) Synthetic gene networks that count. Science, 324, 1199–1202
https://doi.org/10.1126/science.1172005. pmid: 19478183
11 T. Danino, , O. Mondragón-Palomino, , L. Tsimring, and J. Hasty, (2010) A synchronized quorum of genetic clocks. Nature, 463, 326–330
https://doi.org/10.1038/nature08753. pmid: 20090747
12 J. J. Tabor, , H. M. Salis, , Z. B. Simpson, , A. A. Chevalier, , A. Levskaya, , E. M. Marcotte, , C. A. Voigt, and A. D. Ellington, (2009) A synthetic genetic edge detection program. Cell, 137, 1272–1281
https://doi.org/10.1016/j.cell.2009.04.048. pmid: 19563759
13 S. Basu, , Y. Gerchman, , C. H. Collins, , F. H. Arnold, and R. Weiss, (2005) A synthetic multicellular system for programmed pattern formation. Nature, 434, 1130–1134
https://doi.org/10.1038/nature03461. pmid: 15858574
14 T. Bulter, , S. G. Lee, , W. W. Wong, , E. Fung, , M. R. Connor, and J. C. Liao, (2004) Design of artificial cell-cell communication using gene and metabolic networks. Proc. Natl. Acad. Sci. USA, 101, 2299–2304
https://doi.org/10.1073/pnas.0306484101. pmid: 14983004
15 T. Zhao, and C. Zhong, (2017) Applications of synthetic biology in materials science. Chinese Journal of Biotechnology, 33, 494–505, in Chinese
pmid: 28941347.
16 I. C. MacDonald, and T. L. Deans, (2016) Tools and applications in synthetic biology. Adv. Drug Deliv. Rev., 105, 20–34
https://doi.org/10.1016/j.addr.2016.08.008. pmid: 27568463
17 H. J. Wagner, , A. Sprenger, , B. Rebmann, and W. Weber, (2016) Upgrading biomaterials with synthetic biological modules for advanced medical applications. Adv. Drug Deliv. Rev., 105, 77–95
https://doi.org/10.1016/j.addr.2016.05.004. pmid: 27179764
18 K. A. Schwarz, and J. N. Leonard, (2016) Engineering cell-based therapies to interface robustly with host physiology. Adv. Drug Deliv. Rev., 105, 55–65
https://doi.org/10.1016/j.addr.2016.05.019. pmid: 27266446
19 A. S. Khalil, and J. J. Collins, (2010) Synthetic biology: applications come of age. Nat. Rev. Genet., 11, 367–379
https://doi.org/10.1038/nrg2775. pmid: 20395970
20 M. J. Smanski, , H. Zhou, , J. Claesen, , B. Shen, , M. A. Fischbach, and C. A. Voigt, (2016) Synthetic biology to access and expand nature’s chemical diversity. Nat. Rev. Microbiol., 14, 135–149
https://doi.org/10.1038/nrmicro.2015.24. pmid: 26876034
21 L. L. Looger, , M. A. Dwyer, , J. J. Smith, and H. W. Hellinga, (2003) Computational design of receptor and sensor proteins with novel functions. Nature, 423, 185–190
https://doi.org/10.1038/nature01556. pmid: 12736688
22 D. K. Ro, , E. M. Paradise, , M. Ouellet, , K. J. Fisher, , K. L. Newman, , J. M. Ndungu, , K. A. Ho, , R. A. Eachus, , T. S. Ham, , J. Kirby, , et al. (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 440, 940–943
https://doi.org/10.1038/nature04640. pmid: 16612385
23 T. R. Shepherd, , L. Du, , J. Liljeruhm, , J. Samudyata, Wang, , M. O. D. Sjödin, , M. Wetterhall, , T. Yomo, and A. C. Forster (2017) De novo design and synthesis of a 30-cistron translation-factor module. Nucleic Acids Res., 45, 10895–10905
https://doi.org/10.1093/nar/gkx753. pmid: 28977654
24 B. Koepnick, , J. Flatten, , T. Husain, , A. Ford, , D. A. Silva, , M. J. Bick, , A. Bauer, , G. Liu, , Y. Ishida, , A. Boykov, , et al. (2019) De novo protein design by citizen scientists. Nature, 570, 390–394
https://doi.org/10.1038/s41586-019-1274-4. pmid: 31168091
25 T. Si, and H. Zhao, (2016) A brief overview of synthetic biology research programs and roadmap studies in the United States. Synth. Syst. Biotechnol., 1, 258–264
https://doi.org/10.1016/j.synbio.2016.08.003. pmid: 29062951
26 H. Zhao, (2013) Synthetic Biology: Tools And Applications. Amsterdam: Academic Press-Elsevier
27 T. H. Segall-Shapiro, , E. D. Sontag, and C. A. Voigt, (2018) Engineered promoters enable constant gene expression at any copy number in bacteria. Nat. Biotechnol., 36, 352–358
https://doi.org/10.1038/nbt.4111. pmid: 29553576
28 N. Nandagopal, and M.B. Elowitz, (2011) Synthetic Biology: Integrated Gene Circuits. Science, 333, 1244–1248
29 J. Crocker, and G. R. Ilsley, (2017) Using synthetic biology to study gene regulatory evolution. Curr. Opin. Genet. Dev., 47, 91–101
https://doi.org/10.1016/j.gde.2017.09.001. pmid: 28968519
30 F. Lienert, , J. J. Lohmueller, , A. Garg, and P. A. Silver, (2014) Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat. Rev. Mol. Cell Biol., 15, 95–107
https://doi.org/10.1038/nrm3738. pmid: 24434884
31 , C.J. Bashor, , N.C. Helman, , S. Yan, and , W.A. Lim (2008) Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science, 319, 1539–1543
32 , S.G. Peisajovich, , J.E. Garbarino, , P. Wei, , W.A. Lim (2010) Rapid diversification of cell signaling phenotypes by modular domain recombination. Science, 328, 368–372
33 R. J. Johnston, Jr and C. Desplan, (2010) Preview. A penetrating look at stochasticity in development. Cell, 140, 610–612
https://doi.org/10.1016/j.cell.2010.02.018. pmid: 20211129
34 A. Y. Chen, , C. Zhong, and T. K. Lu, (2015) Engineering living functional materials. ACS Synth. Biol., 4, 8–11
https://doi.org/10.1021/sb500113b. pmid: 25592034
35 R. A. Le Feuvre, and N. S. Scrutton, (2018) A living foundry for synthetic biological materials: a synthetic biology roadmap to new advanced materials. Synth. Syst. Biotechnol., 3, 105–112
https://doi.org/10.1016/j.synbio.2018.04.002. pmid: 29900423
36 M. O. Din, , T. Danino, , A. Prindle, , M. Skalak, , J. Selimkhanov, , K. Allen, , E. Julio, , E. Atolia, , L. S. Tsimring, , S. N. Bhatia, , et al. (2016) Synchronized cycles of bacterial lysis for in vivo delivery. Nature, 536, 81–85
https://doi.org/10.1038/nature18930. pmid: 27437587
37 P. V. Raje, and N. C. Murmu, (2014) A review on electrohydrodynamic-inkjet printing technology. IjetaeCom, 4, 174–183
38 T. Srimongkon, , S. Mandai, and T. Enomae, (2015) Application of biomaterials and inkjet printing to develop bacterial culture system. Adv. Mater. Sci. Eng., 2015, 1–9
https://doi.org/10.1155/2015/290790.
39 J. Merrin, , S. Leibler, and J. S. Chuang, (2007) Printing multistrain bacterial patterns with a piezoelectric inkjet printer. PLoS One, 2, e663
https://doi.org/10.1371/journal.pone.0000663. pmid: 17653283
40 Y. Cao, , Y. Feng, , M. D. Ryser, , K. Zhu, , G. Herschlag, , C. Cao, , K. Marusak, , S. Zauscher, and L. You, (2017) Programmable assembly of pressure sensors using pattern-forming bacteria. Nat. Biotechnol., 35, 1087–1093
https://doi.org/10.1038/nbt.3978. pmid: 28991268
41 T. D. Ngo, , A. Kashani, , G. Imbalzano, , K. T. Q. Nguyen, and D. Hui, (2018) Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos., Part B Eng., 143, 172–196
https://doi.org/10.1016/j.compositesb.2018.02.012.
42 X. Wang, , S. Xu, , S. Zhou, , W. Xu, , M. Leary, , P. Choong, , M. Qian, , M. Brandt, and Y. M. Xie, (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83, 127–141
https://doi.org/10.1016/j.biomaterials.2016.01.012. pmid: 26773669
43 N. Labeaga-Martínez, , M. Sanjurjo-Rivo, , J. Díaz-Álvarez, and J. Martínez-Frías, (2017) Additive manufacturing for a Moon village. Procedia. Manuf., 13, 794–801
https://doi.org/10.1016/j.promfg.2017.09.186.
44 A. Goyanes, , J. Wang, , A. Buanz, , R. MartVnez-Pacheco, , R. Telford, , S. Gaisford, and A. W. Basit, (2015) 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol. Pharm., 12, 4077–4084
https://doi.org/10.1021/acs.molpharmaceut.5b00510. pmid: 26473653
45 J. S. Chohan, , R. Singh, , K. S. Boparai, , R. Penna, and F. Fraternali, (2017) Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications. Compos., Part B Eng., 117, 138–149
https://doi.org/10.1016/j.compositesb.2017.02.045.
46 C. Zhang, , J. Huang, , J. Zhang, , S. Liu, , M. Cui, , B. An, , X. Wang, , J. Pu, , T. Zhao, , C. Fan, , et al. (2019) Engineered Bacillus subtilis biofilms as living glues. Mater. Today, 28, 40–48
https://doi.org/10.1016/j.mattod.2018.12.039.
47 J. Huang, , S. Liu, , C. Zhang, , X. Wang, , J. Pu, , F. Ba, , S. Xue, , H. Ye, , T. Zhao, , K. Li, , et al. (2019) Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nat. Chem. Biol., 15, 34–41
https://doi.org/10.1038/s41589-018-0169-2. pmid: 30510190
48 S. Kyle, (2018) 3D printing of bacteria: the next frontier in biofabrication. Trends Biotechnol., 36, 340–341
https://doi.org/10.1016/j.tibtech.2018.01.010. pmid: 29402473
49 , M Schaffner, , P.A. Rühs, , F. Coulter, S. Kilcher,, and A.R. Studart, (2017) 3D printing of bacteria into functional complex materials. Sci. Adv. 3, eaao6804
50 B. A. E. Lehner, , D. T. Schmieden, and A. S. Meyer, (2017) A straightforward approach for 3D bacterial printing. ACS Synth. Biol., 6, 1124–1130
https://doi.org/10.1021/acssynbio.6b00395. pmid: 28225616
51 L. M. González, , N. Mukhitov, and C. A. Voigt, (2019) Resilient living materials built by printing bacterial spores. Nat. Chem. Biol.
https://doi.org/10.1038/s41589-019-0412-5. pmid: 31792444
52 M. K. Nguyen, and D. S. Lee, (2010) Injectable biodegradable hydrogels. Macromol. Biosci., 10, 563–579
https://doi.org/10.1002/mabi.200900402. pmid: 20196065
53 H. Naderi, , M. M. Matin, and A. R. Bahrami, (2011) Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J. Biomater. Appl., 26, 383–417
https://doi.org/10.1177/0885328211408946. pmid: 21926148
54 N. M. B. Smeets, and T. Hoare, (2013) Designing responsive microgels for drug delivery applications. J. Polymer Sci. Chem, 51, 3027–3043
55 H. Suo, , D. Zhang, , J. Yin, , J. Qian, , Z. L. Wu, and J. Fu, (2018) Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering. Mater. Sci. Eng. C, 92, 612–620
https://doi.org/10.1016/j.msec.2018.07.016. pmid: 30184788
56 Z. Dai, and S. Huang, (2018) Functional dynamics inside nano- or microscale bio-hybrid systems. Front Chem., 6, 621
https://doi.org/10.3389/fchem.2018.00621. pmid: 30619829
57 I. Gorelikov, , L. M. Field, and E. Kumacheva, (2004) Hybrid microgels photoresponsive in the near-infrared spectral range. J. Am. Chem. Soc., 126, 15938–15939
https://doi.org/10.1021/ja0448869. pmid: 15584708
58 Z. Gu, , T. T. Dang, , M. Ma, , B. C. Tang, , H. Cheng, , S. Jiang, , Y. Dong, , Y. Zhang, and D. G. Anderson, (2013) Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano, 7, 6758–6766
https://doi.org/10.1021/nn401617u. pmid: 23834678
59 T. Trongsatitkul, and B. Budhlall, (2013) Microgels or microcapsules? Role of morphology on the release kinetics of thermoresponsive PNIPAm-co-PEGMa hydrogels. Polym. Chem., 4, 1502–1516
https://doi.org/10.1039/C2PY20889J.
60 , M.A. English, , L.R. Soenksen, , R. V. Gayet,, H. de Puig, N.M. Angenent-Mari,, A.S. Mao,, P. Q. Nguyen, and J. J. Collins, (2019) Programmable CRISPR-responsive smart materials. Science, 365,780–785
61 T. Bulter, , S. G. Lee, , W. W. Wong, , E. Fung, , M. R. Connor, and J. C. Liao, (2004) Design of artificial cell-cell communication using gene and metabolic networks. Proc. Natl. Acad. Sci. USA, 101, 2299–2304
https://doi.org/10.1073/pnas.0306484101. pmid: 14983004
62 Y. Higashikuni, , W. C. Chen, and T. K. Lu, (2017) Advancing therapeutic applications of synthetic gene circuits. Curr. Opin. Biotechnol., 47, 133–141
https://doi.org/10.1016/j.copbio.2017.06.011. pmid: 28750201
63 S. Xue, , J. Yin, , J. Shao, , Y. Yu, , L. Yang, , Y. Wang, , M. Xie, , M. Fussenegger, and H. Ye, (2017) A synthetic-biology-inspired therapeutic strategy for targeting and treating hepatogenous diabetes. Mol. Ther., 25, 443–455
https://doi.org/10.1016/j.ymthe.2016.11.008. pmid: 28153094
64 N. M. Mount, , S. J. Ward, , P. Kefalas, and J. Hyllner, (2015) Cell-based therapy technology classifications and translational challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci., 370, 20150017
https://doi.org/10.1098/rstb.2015.0017. pmid: 26416686
65 H. Ye, , M. Xie, , S. Xue, , G. Charpin-El Hamri, , J. Yin, , H. Zulewski, and M. Fussenegger, (2017) Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat. Biomed. Eng., 1, 0005
https://doi.org/10.1038/s41551-016-0005. pmid: 28480128
66 T. Abraham, , M. Mao, and C. Tan, (2018) Engineering approaches of smart, bio-inspired vesicles for biomedical applications. Phys. Biol., 15, 061001
https://doi.org/10.1088/1478-3975/aac7a2. pmid: 29794337
67 Y. Ding, , L. E. Contreras-Llano, , E. Morris, , M. Mao, and C. Tan, (2018) Minimizing context dependency of gene networks using artificial cells. ACS Appl. Mater. Interfaces, 10, 30137–30146
https://doi.org/10.1021/acsami.8b10029. pmid: 30113814
68 Z. Dai, , A. J. Lee, , S. Roberts, , T. A. Sysoeva, , S. Huang, , M. Dzuricky, , X. Yang, , X. Zhang, , Z. Liu, , A. Chilkoti, , et al. (2019) Versatile biomanufacturing through stimulus-responsive cell-material feedback. Nat. Chem. Biol., 15, 1017–1024
https://doi.org/10.1038/s41589-019-0357-8. pmid: 31527836
69 M. M. Barnhart, and M. R. Chapman, (2006) Curli biogenesis and function. Annu. Rev. Microbiol., 60, 131–147
https://doi.org/10.1146/annurev.micro.60.080805.142106. pmid: 16704339
70 Z. Bian, and S. Normark, (1997) Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli. EMBO J., 16, 5827–5836
https://doi.org/10.1093/emboj/16.19.5827. pmid: 9312041
71 M. R. Chapman, , L. S. Robinson, , J. S. Pinkner, , R. Roth, , J. Heuser, , M. Hammar, , S. Normark, and S. J. Hultgren, (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science, 295, 851–855
https://doi.org/10.1126/science.1067484. pmid: 11823641
72 A. Y. Chen, , Z. Deng, , A. N. Billings, , U. O. Seker, , M. Y. Lu, , R. J. Citorik, , B. Zakeri, and T. K. Lu, (2014) Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater., 13, 515–523
https://doi.org/10.1038/nmat3912. pmid: 24658114
73 X. Wang, , J. Pu, , B. An, , Y. Li, , Y. Shang, , Z. Ning, , Y. Liu, , F. Ba, , J. Zhang, and C. Zhong, (2018) Programming cells for dynamic assembly of inorganic nano-objects with spatiotemporal control. Adv. Mater., 30, e1705968
https://doi.org/10.1002/adma.201705968. pmid: 29516606
74 X. Wang, , J. Pu, , Y. Liu, , F. Ba, , M. Cui, , K. Li, , Y. Xie, , Y. Nie, , Q. Mi, , T. Li, , et al. (2019) Immobilization of functional nano-objects in living engineered bacterial biofilms for catalytic applications. Natl. Sci. Rev., 6, 929–943
https://doi.org/10.1093/nsr/nwz104.
75 J. Shao, , S. Xue, , G. Yu, , Y. Yu, , X. Yang, , Y. Bai, , S. Zhu, , L. Yang, , J. Yin, , Y. Wang, , et al. (2017) Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci. Transl. Med., 9, 1–14
https://doi.org/10.1126/scitranslmed.aal2298. pmid: 28446682
76 , K.B. Justus, , T. Hellebrekers, , D.D. Lewis, A. Wood,, C. Ingham,, C. Majidi,, P.R. LeDuc,, and C. Tan, (2019) A biosensing soft robot: Autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Sci Robot., 4, eaax0765
77 M. Mimee,, P. Nadeau,, A. Hayward,, S. Carim,, S. Flanagan,, L. Jerger,, J. Collins,, S. McDonnell, , R. Swartwout,, R.J Citorik,. et al. (2018) An ingestible bacterial-electronic system to monitor gastrointestinal health. Science, 360, 915–918
[1] Lei Wei, Ye Yuan, Tao Hu, Shuailin Li, Tianrun Cheng, Jinzhi Lei, Zhen Xie, Michael Q. Zhang, Xiaowo Wang. Regulation by competition: a hidden layer of gene regulatory network[J]. Quant. Biol., 2019, 7(2): 110-121.
[2] Meiyan Wang, Yuanhuan Yu, Jiawei Shao, Boon Chin Heng, Haifeng Ye. Engineering synthetic optogenetic networks for biomedical applications[J]. Quant. Biol., 2017, 5(2): 111-123.
[3] David J Menn, Ri-Qi Su, Xiao Wang. Control of synthetic gene networks and its applications[J]. Quant. Biol., 2017, 5(2): 124-135.
[4] Keith C. Heyde, MaryJoe K. Rice, Sung-Ho Paek, Felicia Y. Scott, Ruihua Zhang, Warren C. Ruder. Modeling information exchange between living and artificial cells[J]. Quant. Biol., 2017, 5(1): 76-89.
[5] Mehdi Sadeghpour, Alan Veliz-Cuba, Gábor Orosz, Krešimir Josić, Matthew R. Bennett. Bistability and oscillations in co-repressive synthetic microbial consortia[J]. Quant. Biol., 2017, 5(1): 55-66.
[6] Russell Brown, Andreas Lengeling, Baojun Wang. Phage engineering: how advances in molecular biology and synthetic biology are being utilized to enhance the therapeutic potential of bacteriophages[J]. Quant. Biol., 2017, 5(1): 42-54.
[7] Derek Eidum,Kanishk Asthana,Samir Unni,Michael Deng,Lingchong You. Construction, visualization, and analysis of biological network models in Dynetica[J]. Quant. Biol., 2014, 2(4): 142-150.
[8] Haoqian Zhang, Ying Sheng, Qianzhu Wu, Ao Liu, Yuheng Lu, Zhenzhen Yin, Yuansheng Cao, Weiqian Zeng, Qi Ouyang. Rational design of a biosensor circuit with semi-log dose-response function in Escherichia coli[J]. Quant. Biol., 2013, 1(3): 209-220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed