Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2017, Vol. 5 Issue (1) : 42-54    https://doi.org/10.1007/s40484-017-0094-5
REVIEW
Phage engineering: how advances in molecular biology and synthetic biology are being utilized to enhance the therapeutic potential of bacteriophages
Russell Brown1,2,Andreas Lengeling3,Baojun Wang1,2()
1. School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
2. Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
3. Infection and Immunity Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
 Download: PDF(1627 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: The therapeutic potential of bacteriophages has been debated since their first isolation and characterisation in the early 20th century. However, a lack of consistency in application and observed efficacy during their early use meant that upon the discovery of antibiotic compounds research in the field of phage therapy quickly slowed. The rise of antibiotic resistance in bacteria and improvements in our abilities to modify and manipulate DNA, especially in the context of small viral genomes, has led to a recent resurgence of interest in utilising phage as antimicrobial therapeutics.

Results: In this article a number of results from the literature that have aimed to address key issues regarding the utility and efficacy of phage as antimicrobial therapeutics utilising molecular biology and synthetic biology approaches will be introduced and discussed, giving a general view of the recent progress in the field.

Conclusions: Advances in molecular biology and synthetic biology have enabled rapid progress in the field of phage engineering, with this article highlighting a number of promising strategies developed to optimise phages for the treatment of bacterial disease. Whilst many of the same issues that have historically limited the use of phages as therapeutics still exist, these modifications, or combinations thereof, may form a basis upon which future advances can be built. A focus on rigorous in vivo testing and investment in clinical trials for promising candidate phages may be required for the field to truly mature, but there is renewed hope that the potential benefits of phage therapy may finally be realised.

Author Summary  A bacteriophage (phage) is a virus that infects and replicates within bacteria, often leading to bacterial lysis and death. Phages that are able to efficiently kill specific bacterial pathogens have long been identified as having therapeutic potential in the context of treating bacterial disease in animals and humans; however the efficacies of phage therapies have rarely reached those of antibiotic drugs. This article aims to summarise recent developments in the field of phage engineering, where the tools of molecular biology and synthetic biology are being used to modify phages in ways that enhance or alter their natural antimicrobial function.
Keywords bacteriophage      phage therapy      phage engineering      synthetic biology     
PACS:     
Fund: 
Corresponding Author(s): Baojun Wang   
Issue Date: 22 March 2017
 Cite this article:   
Russell Brown,Andreas Lengeling,Baojun Wang. Phage engineering: how advances in molecular biology and synthetic biology are being utilized to enhance the therapeutic potential of bacteriophages[J]. Quant. Biol., 2017, 5(1): 42-54.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-017-0094-5
https://academic.hep.com.cn/qb/EN/Y2017/V5/I1/42
Fig.1  Schematics showing three representative methods used to generate or engineer a population of phages with altered or broadened host-range.

The traditional approach to expanding treatment specificity involves isolating a number of wild-type phages with broadly similar lytic properties but with different host-specificities. When these phage are mixed and applied to a bacterial population the diversity of available host-ranges allows for the concurrent targeting of a number of different bacterial species.

A second approach involves using genome engineering to swap tail fiber genes between two phage. Generally this approach will involve swapping tail fibers from a broadly infectious but poorly lytic (or lysogenic) phage into the genome of a highly lytic phage. By doing this, it is hoped that broad-infectivity is transferred to the engineered phage through exchanged tail fibers whilst retaining the lytic properties of the wild-type phage, thus expanding the host-range.

The third approach involves randomly altering the tail fiber genes of a phage to generate a library of variants. Here, polymerase chain reaction (PCR) mutagenesis is used to amplify a pool of tail fiber variants from the wild-type genome. This gene library can then be subsequently transferred into the wild-type phage genome by homologous recombination. It is then possible to rescue a library of phages with different tail fiber mutations that can then be screened for the ability to infect a mixed population of bacteria, or for the ability to infect a specific host that could not be infected by the wild-type phage.

Fig.2  Schematics showing the two methods for phagemid packaging into infectious phage particles.

In (A) helper plasmid is co-transformed into the phage production cell along with the phagemid. This helper plasmid is capable of expressing all essential genes necessary for phage assembly, replication of the phagemid into a form that can be packaged into the phage capsid, and exit of progeny phages from the host. Therefore upon co-transformation the production cell is capable of [often inducible] production of progeny phages packaged with the phagemid ready for purification and subsequent infections.

In (B) the phage production cell is first lysogenised with a lysogenic phage. This lysogen can subsequently be transformed with the phagemid construct, and contains the entire phage genome. Upon induction of lysis, the lysogen will begin to express these genes, and concurrently amplify and package both the lysogen DNA and the phagemid into progeny phage. This mixed population of lysogenic and phagemid-packaged progeny phages will be released upon completion of lysis, and can subsequently be purified and used in subsequent infections.

Fig.3  Schematics summarizing methods for modification of the host genome and engineering altered bacterial sensitivity used for onwards treatment after infection with a genetically engineered phage.

Genes can be introduced to infected bacteria in the form of a modified lysogen or a phagemid vector. Expression of genes from these sources can either be used to directly kill bacteria, for example by using conditional lethality genes from toxin-antitoxin systems, or to sensitise the bacteria to onwards treatment such as with dominant sensitive genes.

A second option is to introduce a gene editing system such as CRISPR-Cas9, where upon phagemid or lysogen entry, genetic markers can be specifically targeted and thereby inactivated. This allows for the killing or modification of bacteria in a sequence-dependent manner, minimising the risks of disruption in non-targeted commensal bacterial populations.

1 Summers, W. C. (2012) The strange history of phage therapy. Bacteriophage, 2, 130–133
https://doi.org/10.4161/bact.20757 pmid: 23050223
2 Twort, F. W. (1915) An investigation on the nature of ultra-microscopic viruses. Lancet, 186, 1241–1243
https://doi.org/10.1016/S0140-6736(01)20383-3
3 d’Herelle, F. (1917) On an invisible microbe antagonistic to dysentery bacili. CR Acad. Sci. Paris, 165, 373–375
4 Abedon, S. T., Kuhl, S. J., Blasdel, B. G. and Kutter, E. M. (2011) Phage treatment of human infections. Bacteriophage, 1, 66–85
https://doi.org/10.4161/bact.1.2.15845 pmid: 22334863
5 Neu, H. C. (1992) The crisis in antibiotic resistance. Science, 257, 1064–1073
https://doi.org/10.1126/science.257.5073.1064 pmid: 1509257
6 Davies, J. and Davies, D. (2010) Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 74, 417–433
https://doi.org/10.1128/MMBR.00016-10 pmid: 20805405
7 Bradley, R. W., Buck, M. and Wang, B. (2016) Tools and principles for microbial gene circuit engineering. J. Mol. Biol., 428, 862–888
https://doi.org/10.1016/j.jmb.2015.10.004 pmid: 26463592
8 Wang, B. and Buck, M. (2012) Customizing cell signaling using engineered genetic logic circuits. Trends Microbiol., 20, 376–384
https://doi.org/10.1016/j.tim.2012.05.001 pmid: 22682075
9 Wang, B., Kitney, R. I., Joly, N. and Buck, M. (2011) Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat. Commun., 2, 508
https://doi.org/10.1038/ncomms1516 pmid: 22009040
10 Wang, B., Barahona, M. and Buck, M. (2013) A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens. Bioelectron., 40, 368–376
https://doi.org/10.1016/j.bios.2012.08.011 pmid: 22981411
11 Bradley, R. W. and Wang, B. (2015) Designer cell signal processing circuits for biotechnology. N. Biotechnol., 32, 635–643
https://doi.org/10.1016/j.nbt.2014.12.009 pmid: 25579192
12 Haellman, V. and Fussenegger, M. (2016) Synthetic biology—toward therapeutic solutions. J. Mol. Biol., 428, 945–962
https://doi.org/10.1016/j.jmb.2015.08.020. pmid: 26334368
13 Smith, H. O., Hutchison, C. A. III, Pfannkoch, C. and Venter, J. C. (2003) Generating a synthetic genome by whole genome assembly: ΦX174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA, 100, 15440–15445
https://doi.org/10.1073/pnas.2237126100 pmid: 14657399
14 Chan, L.Y., Kosuri, S., and Endy, D. (2005) Refactoring bacteriophage T7. Mol. Syst. Biol. 1, 2005. 0018
https://doi.org/10.1038/msb4100025
15 Lu, T. K. and Koeris, M. S. (2011) The next generation of bacteriophage therapy. Curr. Opin. Microbiol., 14, 524–531
https://doi.org/10.1016/j.mib.2011.07.028 pmid: 21868281
16 Pires, D. P., Cleto, S., Sillankorva, S., Azeredo, J. and Lu, T. K. (2016) Genetically engineered phages: a review of advances over the last decade. Microbiol. Mol. Biol. Rev., 80, 523–543
https://doi.org/10.1128/MMBR.00069-15 pmid: 27250768
17 Rakhuba, D. V., Kolomiets, E. I., Dey, E. S. and Novik, G. I. (2010) Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol. J. Microbiol., 59, 145–155
pmid: 21033576
18 Crawford, J. T. and Goldberg, E. B. (1977) The effect of baseplate mutations on the requirement for tail-fiber binding for irreversible adsorption of bacteriophage T4. J. Mol. Biol., 111, 305–313
https://doi.org/10.1016/S0022-2836(77)80053-3 pmid: 325213
19 Crawford, J. T. and Goldberg, E. B. (1980) The function of tail fibers in triggering baseplate expansion of bacteriophage T4. J. Mol. Biol., 139, 679–690
https://doi.org/10.1016/0022-2836(80)90054-6 pmid: 6997499
20 Arscott, P. G. and Goldberg, E. B. (1976) Cooperative action of the T4 tail fibers and baseplate in triggering conformational change and in determining host range. Virology, 69, 15–22
https://doi.org/10.1016/0042-6822(76)90190-2 pmid: 1246820
21 Molineux, I. J. (2001) No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. Mol. Microbiol., 40, 1–8
https://doi.org/10.1046/j.1365-2958.2001.02357.x pmid: 11298271
22 Kemp, P., Garcia, L. R. and Molineux, I. J. (2005) Changes in bacteriophage T7 virion structure at the initiation of infection. Virology, 340, 307–317
https://doi.org/10.1016/j.virol.2005.06.039 pmid: 16054667
23 Heller, K. and Braun, V. (1979) Accelerated adsorption of bacteriophage T5 to Escherichia coli F, resulting from reversible tail fiber-lipopolysaccharide binding. J. Bacteriol., 139, 32–38
pmid: 378958
24 Heller, K. and Braun, V. (1982) Polymannose O-antigens of Escherichia coli, the binding sites for the reversible adsorption of bacteriophage T5+ via the L-shaped tail fibers. J. Virol., 41, 222–227
pmid: 7045389
25 Riede, I., Degen, M. and Henning, U. (1985) The receptor specificity of bacteriophages can be determined by a tail fiber modifying protein. EMBO J., 4, 2343–2346
pmid: 3000773
26 Montag, D., Riede, I., Eschbach, M.-L., Degen, M. and Henning, U. (1987) Receptor-recognizing proteins of T-even type bacteriophages: constant and hypervariable regions and an unusual case of evolution. J. Mol. Biol., 196, 165–174
https://doi.org/10.1016/0022-2836(87)90519-5 pmid: 2958637
27 Moody, M. F. (1973) Sheath of bacteriophage T4: III. contraction mechanism deduced from partially contracted sheaths. J. Mol. Biol., 80, 613–635
https://doi.org/10.1016/0022-2836(73)90200-3 pmid: 4589647
28 Wright, A., Hawkins, C. H., Änggård, E. E. and Harper, D. R. (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol., 34, 349–357
https://doi.org/10.1111/j.1749-4486.2009.01973.x pmid: 19673983
29 Gu, J., Liu, X., Li, Y., Han, W., Lei, L., Yang, Y., Zhao, H., Gao, Y., Song, J., Lu, R., (2012) A method for generation phage cocktail with great therapeutic potential. PLoS One, 7, e31698
https://doi.org/10.1371/journal.pone.0031698 pmid: 22396736
30 Oliveira, A., Sereno, R. and Azeredo, J. (2010) In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. Vet. Microbiol., 146, 303–308
https://doi.org/10.1016/j.vetmic.2010.05.015 pmid: 20605377
31 Jaiswal, A., Koley, H., Ghosh, A., Palit, A. and Sarkar, B. (2013) Efficacy of cocktail phage therapy in treating Vibrio cholerae infection in rabbit model. Microbes Infect., 15, 152–156
https://doi.org/10.1016/j.micinf.2012.11.002. pmid: 23159467
32 Chan, B. K. and Abedon, S. T. (2012). Chapter 1 – Phage therapy pharmacology: phage cocktails. In Advances in Applied Microbiology, Laskin, A.I., Sariaslani, S. and Gadd, G.M. ed. 1–23. Massachusetts: Academic Press
33 Chan, B. K., Abedon, S. T. and Loc-Carrillo, C. (2013) Phage cocktails and the future of phage therapy. Future Microbiol., 8, 769–783
https://doi.org/10.2217/fmb.13.47 pmid: 23701332
34 Gill, J. J. and Hyman, P. (2010) Phage choice, isolation, and preparation for phage therapy. Curr. Pharm. Biotechnol., 11, 2–14
https://doi.org/10.2174/138920110790725311 pmid: 20214604
35 Merabishvili, M., Pirnay, J.-P., Verbeken, G., Chanishvili, N., Tediashvili, M., Lashkhi, N., Glonti, T., Krylov, V., Mast, J., Van Parys, L., (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One, 4, e4944
https://doi.org/10.1371/journal.pone.0004944 pmid: 19300511
36 Kutter, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S. and Abedon, S. T. (2010) Phage therapy in clinical practice: treatment of human infections. Curr. Pharm. Biotechnol., 11, 69–86
https://doi.org/10.2174/138920110790725401 pmid: 20214609
37 Mahichi, F., Synnott, A. J., Yamamichi, K., Osada, T. and Tanji, Y. (2009) Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol. Lett., 295, 211–217
https://doi.org/10.1111/j.1574-6968.2009.01588.x pmid: 19453513
38 Yoichi, M., Abe, M., Miyanaga, K., Unno, H. and Tanji, Y. (2005) Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. J. Biotechnol., 115, 101–107
https://doi.org/10.1016/j.jbiotec.2004.08.003 pmid: 15607229
39 Pouillot, F., Blois, H. and Iris, F. (2010) Genetically engineered virulent phage banks in the detection and control of emergent pathogenic bacteria. Biosecur. Bioterror., 8, 155–169
https://doi.org/10.1089/bsp.2009.0057 pmid: 20569057
40 Krüger, D. H. and Schroeder, C. (1981) Bacteriophage T3 and bacteriophage T7 virus-host cell interactions. Microbiol. Rev., 45, 9–51
pmid: 6261110
41 Lin, T. -Y., Lo, Y. -H., Tseng, P. -W., Chang, S. -F., Lin, Y. -T. and Chen, T. -S. (2012) A T3 and T7 recombinant phage acquires efficient adsorption and a broader host range. PLoS One, 7, e30954
https://doi.org/10.1371/journal.pone.0030954 pmid: 22347414
42 Ando, H., Lemire, S., Pires, D. P. and Lu, T. K. (2015) Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst., 1, 187–196
https://doi.org/10.1016/j.cels.2015.08.013 pmid: 26973885
43 Friedman, D. I. (1992) Interaction between bacteriophage l and its Escherichia coli host. Curr. Opin. Genet. Dev., 2, 727–738
https://doi.org/10.1016/S0959-437X(05)80133-9. pmid: 1458022
44 Casjens, S. R., Gilcrease, E. B., Winn-Stapley, D. A., Schicklmaier, P., Schmieger, H., Pedulla, M. L., Ford, M. E., Houtz, J. M., Hatfull, G. F. and Hendrix, R. W. (2005) The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy. J. Bacteriol., 187, 1091–1104
https://doi.org/10.1128/JB.187.3.1091-1104.2005 pmid: 15659686
45 Casjens, S. (2003) Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol., 49, 277–300
https://doi.org/10.1046/j.1365-2958.2003.03580.x pmid: 12886937
46 Esvelt, K. M., Carlson, J. C. and Liu, D. R. (2011) A system for the continuous directed evolution of biomolecules. Nature, 472, 499–503
https://doi.org/10.1038/nature09929 pmid: 21478873
47 Bassalo, M. C., Liu, R. and Gill, R. T. (2016) Directed evolution and synthetic biology applications to microbial systems. Curr. Opin. Biotechnol., 39, 126–133
https://doi.org/10.1016/j.copbio.2016.03.016 pmid: 27054950
48 Prins, J. M., van Deventer, S. J., Kuijper, E. J. and Speelman, P. (1994) Clinical relevance of antibiotic-induced endotoxin release. Antimicrob. Agents Chemother., 38, 1211–1218
https://doi.org/10.1128/AAC.38.6.1211 pmid: 8092816
49 Slopek, S., Durlakowa, I., Weber-Dabrowska, B., Kucharewicz-Krukowska, A., Dabrowski, M. and Bisikiewicz, R. (1983) Results of bacteriophage treatment of suppurative bacterial infections. I. General evaluation of the results. Arch. Immunol. Ther. Exp. (Warsz.), 31, 267–291
pmid: 6651484
50 Gamage, S. D., Patton, A. K., Hanson, J. F. and Weiss, A. A. (2004) Diversity and host range of Shiga toxin-encoding phage. Infect. Immun., 72, 7131–7139
https://doi.org/10.1128/IAI.72.12.7131-7139.2004 pmid: 15557637
51 Krylov, V. N. (2001) Phagotherapy in terms of bacteriophage genetics: hopes, perspectives, safety, limitations. Genetika, 37, 869–887
pmid: 11558226
52 Jerne, N. K. and Avegno, P. (1956) The development of the phage-inactivating properties of serum during the course of specific immunization of an animal: reversible and irreversible inactivation. J. Immunol., 76, 200–208
pmid: 13306955
53 Hodyra-Stefaniak, K., Miernikiewicz, P., Drapała, J., Drab, M., Jończyk-Matysiak, E., Lecion, D., Kaźmierczak, Z., Beta, W., Majewska, J., Harhala, M., (2015) Mammalian Host-Versus-Phage immune response determines phage fate in vivo. Sci. Rep., 5, 14802
https://doi.org/10.1038/srep14802 pmid: 26440922
54 Sokoloff, A. V., Zhang, G., Sebestyén, M. G. and Wolff, J. A. (2000) The interactions of peptides with the innate immune system studied with use of T7 phage peptide display. Mol. Ther., 2, 131–139
https://doi.org/10.1006/mthe.2000.0110 pmid: 10947940
55 Merril, C. R., Biswas, B., Carlton, R., Jensen, N. C., Creed, G. J., Zullo, S. and Adhya, S. (1996) Long-circulating bacteriophage as antibacterial agents. Proc. Natl. Acad. Sci. USA, 93, 3188–3192
https://doi.org/10.1073/pnas.93.8.3188 pmid: 8622911
56 Vitiello, C. L., Merril, C. R. and Adhya, S. (2005) An amino acid substitution in a capsid protein enhances phage survival in mouse circulatory system more than a 1000-fold. Virus Res., 114, 101–103
https://doi.org/10.1016/j.virusres.2005.05.014 pmid: 16055223
57 Capparelli, R., Ventimiglia, I., Roperto, S., Fenizia, D. and Iannelli, D. (2006) Selection of an Escherichia coli O157:H7 bacteriophage for persistence in the circulatory system of mice infected experimentally. Clin. Microbiol. Infect., 12, 248–253
https://doi.org/10.1111/j.1469-0691.2005.01340.x pmid: 16451412
58 Capparelli, R., Parlato, M., Borriello, G., Salvatore, P. and Iannelli, D. (2007) Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob. Agents Chemother., 51, 2765–2773
https://doi.org/10.1128/AAC.01513-06 pmid: 17517843
59 Łusiak-Szelachowska, M., Żaczek, M., Weber-Dąbrowska, B., Międzybrodzki, R., Kłak, M., Fortuna, W., Letkiewicz, S., Rogóż, P., Szufnarowski, K., Jończyk-Matysiak, E., (2014) Phage neutralization by sera of patients receiving phage therapy. Viral Immunol., 27, 295–304
https://doi.org/10.1089/vim.2013.0128 pmid: 24893003
60 Loc-Carrillo, C. and Abedon, S. T. (2011) Pros and cons of phage therapy. Bacteriophage, 1, 111–114
https://doi.org/10.4161/bact.1.2.14590 pmid: 22334867
61 Hagens, S. and Bläsi, U. (2003) Genetically modified filamentous phage as bactericidal agents: a pilot study. Lett. Appl. Microbiol., 37, 318–323
https://doi.org/10.1046/j.1472-765X.2003.01400.x pmid: 12969496
62 Hagens, S., Habel, A., von Ahsen, U., von Gabain, A. and Bläsi, U. (2004) Therapy of experimental pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob. Agents Chemother., 48, 3817–3822
https://doi.org/10.1128/AAC.48.10.3817-3822.2004 pmid: 15388440
63 Matsuda, T., Freeman, T. A., Hilbert, D. W., Duff, M., Fuortes, M., Stapleton, P. P. and Daly, J. M. (2005) Lysis-deficient bacteriophage therapy decreases endotoxin and inflammatory mediator release and improves survival in a murine peritonitis model. Surgery, 137, 639–646
https://doi.org/10.1016/j.surg.2005.02.012 pmid: 15933632
64 Westwater, C., Kasman, L. M., Schofield, D. A., Werner, P. A., Dolan, J. W., Schmidt, M. G. and Norris, J. S. (2003) Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrob. Agents Chemother., 47, 1301–1307
https://doi.org/10.1128/AAC.47.4.1301-1307.2003 pmid: 12654662
65 Moradpour, Z., Sepehrizadeh, Z., Rahbarizadeh, F., Ghasemian, A., Yazdi, M. T. and Shahverdi, A. R. (2009) Genetically engineered phage harbouring the lethal catabolite gene activator protein gene with an inducer-independent promoter for biocontrol of Escherichia coli. FEMS Microbiol. Lett., 296, 67–71
https://doi.org/10.1111/j.1574-6968.2009.01620.x pmid: 19459966
66 Kasman, L. M., Kasman, A., Westwater, C., Dolan, J., Schmidt, M. G. and Norris, J. S. (2002) Overcoming the phage replication threshold: a mathematical model with implications for phage therapy. J. Virol., 76, 5557–5564
https://doi.org/10.1128/JVI.76.11.5557-5564.2002 pmid: 11991984
67 Krom, R. J., Bhargava, P., Lobritz, M. A. and Collins, J. J. (2015) Engineered phagemids for nonlytic, targeted antibacterial therapies. Nano Lett., 15, 4808–4813
https://doi.org/10.1021/acs.nanolett.5b01943 pmid: 26044909
68 Tamma, P. D., Cosgrove, S. E. and Maragakis, L. L. (2012) Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev., 25, 450–470
https://doi.org/10.1128/CMR.05041-11 pmid: 22763634
69 Gaj, T., Gersbach, C. A. and Barbas, C. F. III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol., 31, 397–405
https://doi.org/10.1016/j.tibtech.2013.04.004 pmid: 23664777
70 Citorik, R. J., Mimee, M. and Lu, T. K. (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol., 32, 1141–1145
https://doi.org/10.1038/nbt.3011 pmid: 25240928
71 Bikard, D., Euler, C., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duportet, X., Fischetti, V. A. and Marraffini,L. A. (2014) Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases. Nat. Biotechnol., 32, 1146–1150
https://doi.org/10.1038/nbt.3043 pmid: 25282355
72 Yosef, I., Manor, M., Kiro, R. and Qimron, U. (2015) Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. USA, 112, 7267–7272
https://doi.org/10.1073/pnas.1500107112 pmid: 26060300
73 Yacoby, I., Bar, H. and Benhar, I. (2007) Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrob. Agents Chemother., 51, 2156–2163
https://doi.org/10.1128/AAC.00163-07 pmid: 17404004
74 Lu, T. K. and Collins, J. J. (2009) Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl. Acad. Sci. USA, 106, 4629–4634
https://doi.org/10.1073/pnas.0800442106 pmid: 19255432
75 Edgar, R., Friedman, N., Molshanski-Mor, S. and Qimron, U. (2012) Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Appl. Environ. Microbiol., 78, 744–751
https://doi.org/10.1128/AEM.05741-11 pmid: 22113912
76 Libis, V. K., Bernheim, A. G., Basier, C., Jaramillo-Riveri, S., Deyell, M., Aghoghogbe, I., Atanaskovic, I., Bencherif, A. C., Benony, M., Koutsoubelis, N., (2014) Silencing of antibiotic resistance in E. coli with engineered phage bearing small regulatory RNAs. ACS Synth. Biol., 3, 1003–1006
https://doi.org/10.1021/sb500033d pmid: 25524110
77 Bárdy, P., Pantůček, R., Benešík, M. and Doškař, J. (2016) Genetically modified bacteriophages in applied microbiology. J. Appl. Microbiol., 121, 618–633
https://doi.org/10.1111/jam.13207 pmid: 27321680
78 Frey, J. (2007) Biological safety concepts of genetically modified live bacterial vaccines. Vaccine, 25, 5598–5605
https://doi.org/10.1016/j.vaccine.2006.11.058 pmid: 17239999
79
80
[1] Baizhu Chen, Zhuojun Dai. Combination of versatile platforms for the development of synthetic biology[J]. Quant. Biol., 2020, 8(1): 4-10.
[2] Lei Wei, Ye Yuan, Tao Hu, Shuailin Li, Tianrun Cheng, Jinzhi Lei, Zhen Xie, Michael Q. Zhang, Xiaowo Wang. Regulation by competition: a hidden layer of gene regulatory network[J]. Quant. Biol., 2019, 7(2): 110-121.
[3] Meiyan Wang, Yuanhuan Yu, Jiawei Shao, Boon Chin Heng, Haifeng Ye. Engineering synthetic optogenetic networks for biomedical applications[J]. Quant. Biol., 2017, 5(2): 111-123.
[4] David J Menn, Ri-Qi Su, Xiao Wang. Control of synthetic gene networks and its applications[J]. Quant. Biol., 2017, 5(2): 124-135.
[5] Keith C. Heyde, MaryJoe K. Rice, Sung-Ho Paek, Felicia Y. Scott, Ruihua Zhang, Warren C. Ruder. Modeling information exchange between living and artificial cells[J]. Quant. Biol., 2017, 5(1): 76-89.
[6] Jingwen Guan, Xu Shi, Roberto Burgos, Lanying Zeng. Visualization of phage DNA degradation by a type I CRISPR-Cas system at the single-cell level[J]. Quant. Biol., 2017, 5(1): 67-75.
[7] Mehdi Sadeghpour, Alan Veliz-Cuba, Gábor Orosz, Krešimir Josić, Matthew R. Bennett. Bistability and oscillations in co-repressive synthetic microbial consortia[J]. Quant. Biol., 2017, 5(1): 55-66.
[8] Derek Eidum,Kanishk Asthana,Samir Unni,Michael Deng,Lingchong You. Construction, visualization, and analysis of biological network models in Dynetica[J]. Quant. Biol., 2014, 2(4): 142-150.
[9] Haoqian Zhang, Ying Sheng, Qianzhu Wu, Ao Liu, Yuheng Lu, Zhenzhen Yin, Yuansheng Cao, Weiqian Zeng, Qi Ouyang. Rational design of a biosensor circuit with semi-log dose-response function in Escherichia coli[J]. Quant. Biol., 2013, 1(3): 209-220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed