|
|
|
Phage engineering: how advances in molecular biology and synthetic biology are being utilized to enhance the therapeutic potential of bacteriophages |
Russell Brown1,2,Andreas Lengeling3,Baojun Wang1,2( ) |
1. School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
2. Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
3. Infection and Immunity Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK |
|
|
|
|
Abstract Background: The therapeutic potential of bacteriophages has been debated since their first isolation and characterisation in the early 20th century. However, a lack of consistency in application and observed efficacy during their early use meant that upon the discovery of antibiotic compounds research in the field of phage therapy quickly slowed. The rise of antibiotic resistance in bacteria and improvements in our abilities to modify and manipulate DNA, especially in the context of small viral genomes, has led to a recent resurgence of interest in utilising phage as antimicrobial therapeutics.
Results: In this article a number of results from the literature that have aimed to address key issues regarding the utility and efficacy of phage as antimicrobial therapeutics utilising molecular biology and synthetic biology approaches will be introduced and discussed, giving a general view of the recent progress in the field.
Conclusions: Advances in molecular biology and synthetic biology have enabled rapid progress in the field of phage engineering, with this article highlighting a number of promising strategies developed to optimise phages for the treatment of bacterial disease. Whilst many of the same issues that have historically limited the use of phages as therapeutics still exist, these modifications, or combinations thereof, may form a basis upon which future advances can be built. A focus on rigorous in vivo testing and investment in clinical trials for promising candidate phages may be required for the field to truly mature, but there is renewed hope that the potential benefits of phage therapy may finally be realised.
|
| Author Summary A bacteriophage (phage) is a virus that infects and replicates within bacteria, often leading to bacterial lysis and death. Phages that are able to efficiently kill specific bacterial pathogens have long been identified as having therapeutic potential in the context of treating bacterial disease in animals and humans; however the efficacies of phage therapies have rarely reached those of antibiotic drugs. This article aims to summarise recent developments in the field of phage engineering, where the tools of molecular biology and synthetic biology are being used to modify phages in ways that enhance or alter their natural antimicrobial function. |
| Keywords
bacteriophage
phage therapy
phage engineering
synthetic biology
|
|
|
| Fund: |
|
Corresponding Author(s):
Baojun Wang
|
|
Issue Date: 22 March 2017
|
|
| 1 |
Summers, W. C. (2012) The strange history of phage therapy. Bacteriophage, 2, 130–133
https://doi.org/10.4161/bact.20757
pmid: 23050223
|
| 2 |
Twort, F. W. (1915) An investigation on the nature of ultra-microscopic viruses. Lancet, 186, 1241–1243
https://doi.org/10.1016/S0140-6736(01)20383-3
|
| 3 |
d’Herelle, F. (1917) On an invisible microbe antagonistic to dysentery bacili. CR Acad. Sci. Paris, 165, 373–375
|
| 4 |
Abedon, S. T., Kuhl, S. J., Blasdel, B. G. and Kutter, E. M. (2011) Phage treatment of human infections. Bacteriophage, 1, 66–85
https://doi.org/10.4161/bact.1.2.15845
pmid: 22334863
|
| 5 |
Neu, H. C. (1992) The crisis in antibiotic resistance. Science, 257, 1064–1073
https://doi.org/10.1126/science.257.5073.1064
pmid: 1509257
|
| 6 |
Davies, J. and Davies, D. (2010) Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 74, 417–433
https://doi.org/10.1128/MMBR.00016-10
pmid: 20805405
|
| 7 |
Bradley, R. W., Buck, M. and Wang, B. (2016) Tools and principles for microbial gene circuit engineering. J. Mol. Biol., 428, 862–888
https://doi.org/10.1016/j.jmb.2015.10.004
pmid: 26463592
|
| 8 |
Wang, B. and Buck, M. (2012) Customizing cell signaling using engineered genetic logic circuits. Trends Microbiol., 20, 376–384
https://doi.org/10.1016/j.tim.2012.05.001
pmid: 22682075
|
| 9 |
Wang, B., Kitney, R. I., Joly, N. and Buck, M. (2011) Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat. Commun., 2, 508
https://doi.org/10.1038/ncomms1516
pmid: 22009040
|
| 10 |
Wang, B., Barahona, M. and Buck, M. (2013) A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens. Bioelectron., 40, 368–376
https://doi.org/10.1016/j.bios.2012.08.011
pmid: 22981411
|
| 11 |
Bradley, R. W. and Wang, B. (2015) Designer cell signal processing circuits for biotechnology. N. Biotechnol., 32, 635–643
https://doi.org/10.1016/j.nbt.2014.12.009
pmid: 25579192
|
| 12 |
Haellman, V. and Fussenegger, M. (2016) Synthetic biology—toward therapeutic solutions. J. Mol. Biol., 428, 945–962
https://doi.org/10.1016/j.jmb.2015.08.020.
pmid: 26334368
|
| 13 |
Smith, H. O., Hutchison, C. A. III, Pfannkoch, C. and Venter, J. C. (2003) Generating a synthetic genome by whole genome assembly: ΦX174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA, 100, 15440–15445
https://doi.org/10.1073/pnas.2237126100
pmid: 14657399
|
| 14 |
Chan, L.Y., Kosuri, S., and Endy, D. (2005) Refactoring bacteriophage T7. Mol. Syst. Biol. 1, 2005. 0018
https://doi.org/10.1038/msb4100025
|
| 15 |
Lu, T. K. and Koeris, M. S. (2011) The next generation of bacteriophage therapy. Curr. Opin. Microbiol., 14, 524–531
https://doi.org/10.1016/j.mib.2011.07.028
pmid: 21868281
|
| 16 |
Pires, D. P., Cleto, S., Sillankorva, S., Azeredo, J. and Lu, T. K. (2016) Genetically engineered phages: a review of advances over the last decade. Microbiol. Mol. Biol. Rev., 80, 523–543
https://doi.org/10.1128/MMBR.00069-15
pmid: 27250768
|
| 17 |
Rakhuba, D. V., Kolomiets, E. I., Dey, E. S. and Novik, G. I. (2010) Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol. J. Microbiol., 59, 145–155
pmid: 21033576
|
| 18 |
Crawford, J. T. and Goldberg, E. B. (1977) The effect of baseplate mutations on the requirement for tail-fiber binding for irreversible adsorption of bacteriophage T4. J. Mol. Biol., 111, 305–313
https://doi.org/10.1016/S0022-2836(77)80053-3
pmid: 325213
|
| 19 |
Crawford, J. T. and Goldberg, E. B. (1980) The function of tail fibers in triggering baseplate expansion of bacteriophage T4. J. Mol. Biol., 139, 679–690
https://doi.org/10.1016/0022-2836(80)90054-6
pmid: 6997499
|
| 20 |
Arscott, P. G. and Goldberg, E. B. (1976) Cooperative action of the T4 tail fibers and baseplate in triggering conformational change and in determining host range. Virology, 69, 15–22
https://doi.org/10.1016/0042-6822(76)90190-2
pmid: 1246820
|
| 21 |
Molineux, I. J. (2001) No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. Mol. Microbiol., 40, 1–8
https://doi.org/10.1046/j.1365-2958.2001.02357.x
pmid: 11298271
|
| 22 |
Kemp, P., Garcia, L. R. and Molineux, I. J. (2005) Changes in bacteriophage T7 virion structure at the initiation of infection. Virology, 340, 307–317
https://doi.org/10.1016/j.virol.2005.06.039
pmid: 16054667
|
| 23 |
Heller, K. and Braun, V. (1979) Accelerated adsorption of bacteriophage T5 to Escherichia coli F, resulting from reversible tail fiber-lipopolysaccharide binding. J. Bacteriol., 139, 32–38
pmid: 378958
|
| 24 |
Heller, K. and Braun, V. (1982) Polymannose O-antigens of Escherichia coli, the binding sites for the reversible adsorption of bacteriophage T5+ via the L-shaped tail fibers. J. Virol., 41, 222–227
pmid: 7045389
|
| 25 |
Riede, I., Degen, M. and Henning, U. (1985) The receptor specificity of bacteriophages can be determined by a tail fiber modifying protein. EMBO J., 4, 2343–2346
pmid: 3000773
|
| 26 |
Montag, D., Riede, I., Eschbach, M.-L., Degen, M. and Henning, U. (1987) Receptor-recognizing proteins of T-even type bacteriophages: constant and hypervariable regions and an unusual case of evolution. J. Mol. Biol., 196, 165–174
https://doi.org/10.1016/0022-2836(87)90519-5
pmid: 2958637
|
| 27 |
Moody, M. F. (1973) Sheath of bacteriophage T4: III. contraction mechanism deduced from partially contracted sheaths. J. Mol. Biol., 80, 613–635
https://doi.org/10.1016/0022-2836(73)90200-3
pmid: 4589647
|
| 28 |
Wright, A., Hawkins, C. H., Änggård, E. E. and Harper, D. R. (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol., 34, 349–357
https://doi.org/10.1111/j.1749-4486.2009.01973.x
pmid: 19673983
|
| 29 |
Gu, J., Liu, X., Li, Y., Han, W., Lei, L., Yang, Y., Zhao, H., Gao, Y., Song, J., Lu, R., (2012) A method for generation phage cocktail with great therapeutic potential. PLoS One, 7, e31698
https://doi.org/10.1371/journal.pone.0031698
pmid: 22396736
|
| 30 |
Oliveira, A., Sereno, R. and Azeredo, J. (2010) In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. Vet. Microbiol., 146, 303–308
https://doi.org/10.1016/j.vetmic.2010.05.015
pmid: 20605377
|
| 31 |
Jaiswal, A., Koley, H., Ghosh, A., Palit, A. and Sarkar, B. (2013) Efficacy of cocktail phage therapy in treating Vibrio cholerae infection in rabbit model. Microbes Infect., 15, 152–156
https://doi.org/10.1016/j.micinf.2012.11.002.
pmid: 23159467
|
| 32 |
Chan, B. K. and Abedon, S. T. (2012). Chapter 1 – Phage therapy pharmacology: phage cocktails. In Advances in Applied Microbiology, Laskin, A.I., Sariaslani, S. and Gadd, G.M. ed. 1–23. Massachusetts: Academic Press
|
| 33 |
Chan, B. K., Abedon, S. T. and Loc-Carrillo, C. (2013) Phage cocktails and the future of phage therapy. Future Microbiol., 8, 769–783
https://doi.org/10.2217/fmb.13.47
pmid: 23701332
|
| 34 |
Gill, J. J. and Hyman, P. (2010) Phage choice, isolation, and preparation for phage therapy. Curr. Pharm. Biotechnol., 11, 2–14
https://doi.org/10.2174/138920110790725311
pmid: 20214604
|
| 35 |
Merabishvili, M., Pirnay, J.-P., Verbeken, G., Chanishvili, N., Tediashvili, M., Lashkhi, N., Glonti, T., Krylov, V., Mast, J., Van Parys, L., (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One, 4, e4944
https://doi.org/10.1371/journal.pone.0004944
pmid: 19300511
|
| 36 |
Kutter, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S. and Abedon, S. T. (2010) Phage therapy in clinical practice: treatment of human infections. Curr. Pharm. Biotechnol., 11, 69–86
https://doi.org/10.2174/138920110790725401
pmid: 20214609
|
| 37 |
Mahichi, F., Synnott, A. J., Yamamichi, K., Osada, T. and Tanji, Y. (2009) Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol. Lett., 295, 211–217
https://doi.org/10.1111/j.1574-6968.2009.01588.x
pmid: 19453513
|
| 38 |
Yoichi, M., Abe, M., Miyanaga, K., Unno, H. and Tanji, Y. (2005) Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. J. Biotechnol., 115, 101–107
https://doi.org/10.1016/j.jbiotec.2004.08.003
pmid: 15607229
|
| 39 |
Pouillot, F., Blois, H. and Iris, F. (2010) Genetically engineered virulent phage banks in the detection and control of emergent pathogenic bacteria. Biosecur. Bioterror., 8, 155–169
https://doi.org/10.1089/bsp.2009.0057
pmid: 20569057
|
| 40 |
Krüger, D. H. and Schroeder, C. (1981) Bacteriophage T3 and bacteriophage T7 virus-host cell interactions. Microbiol. Rev., 45, 9–51
pmid: 6261110
|
| 41 |
Lin, T. -Y., Lo, Y. -H., Tseng, P. -W., Chang, S. -F., Lin, Y. -T. and Chen, T. -S. (2012) A T3 and T7 recombinant phage acquires efficient adsorption and a broader host range. PLoS One, 7, e30954
https://doi.org/10.1371/journal.pone.0030954
pmid: 22347414
|
| 42 |
Ando, H., Lemire, S., Pires, D. P. and Lu, T. K. (2015) Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst., 1, 187–196
https://doi.org/10.1016/j.cels.2015.08.013
pmid: 26973885
|
| 43 |
Friedman, D. I. (1992) Interaction between bacteriophage l and its Escherichia coli host. Curr. Opin. Genet. Dev., 2, 727–738
https://doi.org/10.1016/S0959-437X(05)80133-9.
pmid: 1458022
|
| 44 |
Casjens, S. R., Gilcrease, E. B., Winn-Stapley, D. A., Schicklmaier, P., Schmieger, H., Pedulla, M. L., Ford, M. E., Houtz, J. M., Hatfull, G. F. and Hendrix, R. W. (2005) The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy. J. Bacteriol., 187, 1091–1104
https://doi.org/10.1128/JB.187.3.1091-1104.2005
pmid: 15659686
|
| 45 |
Casjens, S. (2003) Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol., 49, 277–300
https://doi.org/10.1046/j.1365-2958.2003.03580.x
pmid: 12886937
|
| 46 |
Esvelt, K. M., Carlson, J. C. and Liu, D. R. (2011) A system for the continuous directed evolution of biomolecules. Nature, 472, 499–503
https://doi.org/10.1038/nature09929
pmid: 21478873
|
| 47 |
Bassalo, M. C., Liu, R. and Gill, R. T. (2016) Directed evolution and synthetic biology applications to microbial systems. Curr. Opin. Biotechnol., 39, 126–133
https://doi.org/10.1016/j.copbio.2016.03.016
pmid: 27054950
|
| 48 |
Prins, J. M., van Deventer, S. J., Kuijper, E. J. and Speelman, P. (1994) Clinical relevance of antibiotic-induced endotoxin release. Antimicrob. Agents Chemother., 38, 1211–1218
https://doi.org/10.1128/AAC.38.6.1211
pmid: 8092816
|
| 49 |
Slopek, S., Durlakowa, I., Weber-Dabrowska, B., Kucharewicz-Krukowska, A., Dabrowski, M. and Bisikiewicz, R. (1983) Results of bacteriophage treatment of suppurative bacterial infections. I. General evaluation of the results. Arch. Immunol. Ther. Exp. (Warsz.), 31, 267–291
pmid: 6651484
|
| 50 |
Gamage, S. D., Patton, A. K., Hanson, J. F. and Weiss, A. A. (2004) Diversity and host range of Shiga toxin-encoding phage. Infect. Immun., 72, 7131–7139
https://doi.org/10.1128/IAI.72.12.7131-7139.2004
pmid: 15557637
|
| 51 |
Krylov, V. N. (2001) Phagotherapy in terms of bacteriophage genetics: hopes, perspectives, safety, limitations. Genetika, 37, 869–887
pmid: 11558226
|
| 52 |
Jerne, N. K. and Avegno, P. (1956) The development of the phage-inactivating properties of serum during the course of specific immunization of an animal: reversible and irreversible inactivation. J. Immunol., 76, 200–208
pmid: 13306955
|
| 53 |
Hodyra-Stefaniak, K., Miernikiewicz, P., Drapała, J., Drab, M., Jończyk-Matysiak, E., Lecion, D., Kaźmierczak, Z., Beta, W., Majewska, J., Harhala, M., (2015) Mammalian Host-Versus-Phage immune response determines phage fate in vivo. Sci. Rep., 5, 14802
https://doi.org/10.1038/srep14802
pmid: 26440922
|
| 54 |
Sokoloff, A. V., Zhang, G., Sebestyén, M. G. and Wolff, J. A. (2000) The interactions of peptides with the innate immune system studied with use of T7 phage peptide display. Mol. Ther., 2, 131–139
https://doi.org/10.1006/mthe.2000.0110
pmid: 10947940
|
| 55 |
Merril, C. R., Biswas, B., Carlton, R., Jensen, N. C., Creed, G. J., Zullo, S. and Adhya, S. (1996) Long-circulating bacteriophage as antibacterial agents. Proc. Natl. Acad. Sci. USA, 93, 3188–3192
https://doi.org/10.1073/pnas.93.8.3188
pmid: 8622911
|
| 56 |
Vitiello, C. L., Merril, C. R. and Adhya, S. (2005) An amino acid substitution in a capsid protein enhances phage survival in mouse circulatory system more than a 1000-fold. Virus Res., 114, 101–103
https://doi.org/10.1016/j.virusres.2005.05.014
pmid: 16055223
|
| 57 |
Capparelli, R., Ventimiglia, I., Roperto, S., Fenizia, D. and Iannelli, D. (2006) Selection of an Escherichia coli O157:H7 bacteriophage for persistence in the circulatory system of mice infected experimentally. Clin. Microbiol. Infect., 12, 248–253
https://doi.org/10.1111/j.1469-0691.2005.01340.x
pmid: 16451412
|
| 58 |
Capparelli, R., Parlato, M., Borriello, G., Salvatore, P. and Iannelli, D. (2007) Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob. Agents Chemother., 51, 2765–2773
https://doi.org/10.1128/AAC.01513-06
pmid: 17517843
|
| 59 |
Łusiak-Szelachowska, M., Żaczek, M., Weber-Dąbrowska, B., Międzybrodzki, R., Kłak, M., Fortuna, W., Letkiewicz, S., Rogóż, P., Szufnarowski, K., Jończyk-Matysiak, E., (2014) Phage neutralization by sera of patients receiving phage therapy. Viral Immunol., 27, 295–304
https://doi.org/10.1089/vim.2013.0128
pmid: 24893003
|
| 60 |
Loc-Carrillo, C. and Abedon, S. T. (2011) Pros and cons of phage therapy. Bacteriophage, 1, 111–114
https://doi.org/10.4161/bact.1.2.14590
pmid: 22334867
|
| 61 |
Hagens, S. and Bläsi, U. (2003) Genetically modified filamentous phage as bactericidal agents: a pilot study. Lett. Appl. Microbiol., 37, 318–323
https://doi.org/10.1046/j.1472-765X.2003.01400.x
pmid: 12969496
|
| 62 |
Hagens, S., Habel, A., von Ahsen, U., von Gabain, A. and Bläsi, U. (2004) Therapy of experimental pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob. Agents Chemother., 48, 3817–3822
https://doi.org/10.1128/AAC.48.10.3817-3822.2004
pmid: 15388440
|
| 63 |
Matsuda, T., Freeman, T. A., Hilbert, D. W., Duff, M., Fuortes, M., Stapleton, P. P. and Daly, J. M. (2005) Lysis-deficient bacteriophage therapy decreases endotoxin and inflammatory mediator release and improves survival in a murine peritonitis model. Surgery, 137, 639–646
https://doi.org/10.1016/j.surg.2005.02.012
pmid: 15933632
|
| 64 |
Westwater, C., Kasman, L. M., Schofield, D. A., Werner, P. A., Dolan, J. W., Schmidt, M. G. and Norris, J. S. (2003) Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrob. Agents Chemother., 47, 1301–1307
https://doi.org/10.1128/AAC.47.4.1301-1307.2003
pmid: 12654662
|
| 65 |
Moradpour, Z., Sepehrizadeh, Z., Rahbarizadeh, F., Ghasemian, A., Yazdi, M. T. and Shahverdi, A. R. (2009) Genetically engineered phage harbouring the lethal catabolite gene activator protein gene with an inducer-independent promoter for biocontrol of Escherichia coli. FEMS Microbiol. Lett., 296, 67–71
https://doi.org/10.1111/j.1574-6968.2009.01620.x
pmid: 19459966
|
| 66 |
Kasman, L. M., Kasman, A., Westwater, C., Dolan, J., Schmidt, M. G. and Norris, J. S. (2002) Overcoming the phage replication threshold: a mathematical model with implications for phage therapy. J. Virol., 76, 5557–5564
https://doi.org/10.1128/JVI.76.11.5557-5564.2002
pmid: 11991984
|
| 67 |
Krom, R. J., Bhargava, P., Lobritz, M. A. and Collins, J. J. (2015) Engineered phagemids for nonlytic, targeted antibacterial therapies. Nano Lett., 15, 4808–4813
https://doi.org/10.1021/acs.nanolett.5b01943
pmid: 26044909
|
| 68 |
Tamma, P. D., Cosgrove, S. E. and Maragakis, L. L. (2012) Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev., 25, 450–470
https://doi.org/10.1128/CMR.05041-11
pmid: 22763634
|
| 69 |
Gaj, T., Gersbach, C. A. and Barbas, C. F. III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol., 31, 397–405
https://doi.org/10.1016/j.tibtech.2013.04.004
pmid: 23664777
|
| 70 |
Citorik, R. J., Mimee, M. and Lu, T. K. (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol., 32, 1141–1145
https://doi.org/10.1038/nbt.3011
pmid: 25240928
|
| 71 |
Bikard, D., Euler, C., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duportet, X., Fischetti, V. A. and Marraffini,L. A. (2014) Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases. Nat. Biotechnol., 32, 1146–1150
https://doi.org/10.1038/nbt.3043
pmid: 25282355
|
| 72 |
Yosef, I., Manor, M., Kiro, R. and Qimron, U. (2015) Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. USA, 112, 7267–7272
https://doi.org/10.1073/pnas.1500107112
pmid: 26060300
|
| 73 |
Yacoby, I., Bar, H. and Benhar, I. (2007) Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrob. Agents Chemother., 51, 2156–2163
https://doi.org/10.1128/AAC.00163-07
pmid: 17404004
|
| 74 |
Lu, T. K. and Collins, J. J. (2009) Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl. Acad. Sci. USA, 106, 4629–4634
https://doi.org/10.1073/pnas.0800442106
pmid: 19255432
|
| 75 |
Edgar, R., Friedman, N., Molshanski-Mor, S. and Qimron, U. (2012) Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Appl. Environ. Microbiol., 78, 744–751
https://doi.org/10.1128/AEM.05741-11
pmid: 22113912
|
| 76 |
Libis, V. K., Bernheim, A. G., Basier, C., Jaramillo-Riveri, S., Deyell, M., Aghoghogbe, I., Atanaskovic, I., Bencherif, A. C., Benony, M., Koutsoubelis, N., (2014) Silencing of antibiotic resistance in E. coli with engineered phage bearing small regulatory RNAs. ACS Synth. Biol., 3, 1003–1006
https://doi.org/10.1021/sb500033d
pmid: 25524110
|
| 77 |
Bárdy, P., Pantůček, R., Benešík, M. and Doškař, J. (2016) Genetically modified bacteriophages in applied microbiology. J. Appl. Microbiol., 121, 618–633
https://doi.org/10.1111/jam.13207
pmid: 27321680
|
| 78 |
Frey, J. (2007) Biological safety concepts of genetically modified live bacterial vaccines. Vaccine, 25, 5598–5605
https://doi.org/10.1016/j.vaccine.2006.11.058
pmid: 17239999
|
| 79 |
|
| 80 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|