Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2020, Vol. 8 Issue (4) : 312-324    https://doi.org/10.1007/s40484-020-0222-5
RESEARCH ARTICLE
Prediction and analysis of human-herpes simplex virus type 1 protein-protein interactions by integrating multiple methods
Xianyi Lian1, Xiaodi Yang1, Jiqi Shao2, Fujun Hou3, Shiping Yang4(), Dongli Pan3, Ziding Zhang1()
1. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
2. National Demonstration Center for Experimental Biological Sciences Education, College of Biological Sciences, China Agricultural University, Beijing 100193, China
3. Department of Medical Microbiology and Parasitology, and Department of Infectious Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
4. State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
 Download: PDF(1022 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: Herpes simplex virus type 1 (HSV-1) is a ubiquitous infectious pathogen that widely affects human health. To decipher the complicated human-HSV-1 interactions, a comprehensive protein-protein interaction (PPI) network between human and HSV-1 is highly demanded.

Methods: To complement the experimental identification of human-HSV-1 PPIs, an integrative strategy to predict proteome-wide PPIs between human and HSV-1 was developed. For each human-HSV-1 protein pair, four popular PPI inference methods, including interolog mapping, the domain-domain interaction-based method, the domain-motif interaction-based method, and the machine learning-based method, were optimally implemented to generate four interaction probability scores, which were further integrated into a final probability score.

Results: As a result, a comprehensive high-confidence PPI network between human and HSV-1 was established, covering 10,432 interactions between 4,546 human proteins and 72 HSV-1 proteins. Functional and network analyses of the HSV-1 targeting proteins in the context of human interactome can recapitulate the known knowledge regarding the HSV-1 replication cycle, supporting the overall reliability of the predicted PPI network. Considering that HSV-1 infections are implicated in encephalitis and neurodegenerative diseases, we focused on exploring the biological significance of the brain-specific human-HSV-1 PPIs. In particular, the predicted interactions between HSV-1 proteins and Alzheimer’s-disease-related proteins were intensively investigated.

Conclusion: The current work can provide testable hypotheses to assist in the mechanistic understanding of the human-HSV-1 relationship and the anti-HSV-1 pharmaceutical target discovery. To make the predicted PPI network and the datasets freely accessible to the scientific community, a user-friendly database browser was released at http://www.zzdlab.com/HintHSV/index.php.

Keywords human-virus interaction      protein-protein interaction      prediction      herpes simplex virus type 1      Alzheimer’s disease     
Corresponding Author(s): Shiping Yang,Ziding Zhang   
Just Accepted Date: 30 September 2020   Online First Date: 07 December 2020    Issue Date: 24 December 2020
 Cite this article:   
Xianyi Lian,Xiaodi Yang,Jiqi Shao, et al. Prediction and analysis of human-herpes simplex virus type 1 protein-protein interactions by integrating multiple methods[J]. Quant. Biol., 2020, 8(4): 312-324.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-020-0222-5
https://academic.hep.com.cn/qb/EN/Y2020/V8/I4/312
Fig.1  Workflow for the prediction of human-HSV-1 PPIs.
Fig.2  Overlaps of the predicted PPIs among the four individual methods.
Fig.3  The number of human proteins predicted to interact with HSV-1 proteins.
Fig.4  Degree and betweenness centrality of human target proteins and non-target proteins.
Fig.5  Enriched GO terms of the brain-specific human proteins predicted to interact with HSV-1 proteins in the biological processes (A) and cellular component (B) categories.
Fig.6  Association between human-HSV-1 PPIs and the AD.
1 C. D. Conrady, , D. A. Drevets, and , D. J. J. Carr (2010) Herpes simplex type I (HSV-1) infection of the nervous system: is an immune response a good thing? J. Neuroimmunol., 220, 1–9
https://doi.org/10.1016/j.jneuroim.2009.09.013 pmid: 19819030
2 , R. Piacentini, G. De Chiara, , , D. D. Li Puma, , C. Ripoli, M. E. Marcocci, , , E. Garaci, , A. T. Palamara and C. Grassi, (2014) HSV-1 and Alzheimer’s disease: more than a hypothesis. Front. Pharmacol., 5, 97
https://doi.org/10.3389/fphar.2014.00097 pmid: 24847267
3 , D. Watanabe (2010) Medical application of herpes simplex virus. J. Dermatol. Sci., 57, 75–82
https://doi.org/10.1016/j.jdermsci.2009.10.014 pmid: 19939634
4 , G. De Chiara, R. Piacentini, , , M. Fabiani, , A. Mastrodonato, M. E. Marcocci, , , D. Limongi, , G. Napoletani, V. Protto, , , P. Coluccio, , I. Celestino, et al. (2019) Recurrent herpes simplex virus-1 infection induces hallmarks of neurodegeneration and cognitive deficits in mice. PLoS Pathog., 15, e1007617
https://doi.org/10.1371/journal.ppat.1007617 pmid: 30870531
5 , K. J. Looker, A. S. Magaret, , , M. T. May, , K. M. E. Turner, P. Vickerman, , , S. L. Gottlieb and , L. M. Newman (2015) Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012. PLoS One, 10, e0140765
https://doi.org/10.1371/journal.pone.0140765 pmid: 26510007
6 , P. Ashford, A. Hernandez, , , T. M. Greco, , A. Buch, B. Sodeik, , , I. M. Cristea, , K. Grünewald, A. Shepherd, and , M. Topf (2016) HVint: a strategy for identifying novel protein-protein interactions in herpes simplex virus type 1. Mol. Cell. Proteomics, 15, 2939–2953
https://doi.org/10.1074/mcp.M116.058552 pmid: 27384951
7 , R. F. Itzhaki (2018) Corroboration of a major role for herpes simplex virus type 1 in Alzheimer’s disease. Front. Aging Neurosci., 10, 324
https://doi.org/10.3389/fnagi.2018.00324 pmid: 30405395
8 , I. Steiner (2011) Herpes simplex virus encephalitis: new infection or reactivation? Curr. Opin. Neurol., 24, 268–274
https://doi.org/10.1097/WCO.0b013e328346be6f pmid: 21483260
9 , R. F. Itzhaki, W. R. Lin, , , D. Shang, G. K. Wilcock, , , B. Faragher and , G. A. Jamieson (1997) Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet, 349, 241–244
https://doi.org/10.1016/S0140-6736(96)10149-5 pmid: 9014911
10 , A. M. Agelidis and D. Shukla, (2015) Cell entry mechanisms of HSV: what we have learned in recent years. Future Virol., 10, 1145–1154
https://doi.org/10.2217/fvl.15.85 pmid: 27066105
11 , A. Orvedahl, D. Alexander, , , Z. Tallóczy, , Q. Sun, Y. Wei, , , W. Zhang, D. Burns, , , D. A. Leib and , B. Levine (2007) HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe, 1, 23–35
https://doi.org/10.1016/j.chom.2006.12.001 pmid: 18005679
12 , M. C. Smith, C. Boutell, and , D. J. Davido (2011) HSV-1 ICP0: paving the way for viral replication. Future Virol., 6, 421–429
https://doi.org/10.2217/fvl.11.24 pmid: 21765858
13 , K. F. Bryant, Z. Yan, , , D. H. Dreyfus and , D. M. Knipe (2012) Identification of a divalent metal cation binding site in herpes simplex virus 1 (HSV-1) ICP8 required for HSV replication. J. Virol., 86, 6825–6834
https://doi.org/10.1128/JVI.00374-12 pmid: 22491472
14 , S. E. Dremel and N. A. DeLuca, (2019) Herpes simplex viral nucleoprotein creates a competitive transcriptional environment facilitating robust viral transcription and host shut off. eLife, 8, e51109
https://doi.org/10.7554/eLife.51109 pmid: 31638576
15 , S. Yang, C. Fu, , , X. Lian, X. Dong, and , Z. Zhang (2019) Understanding human-virus protein-protein interactions using a human protein complex-based analysis framework. mSystems, 4, e00303–e00318
https://doi.org/10.1128/mSystems.00303-18 pmid: 30984872
16 , E. Nourani, F. Khunjush, and , S. Durmuş (2016) Computational prediction of virus-human protein-protein interactions using embedding kernelized heterogeneous data. Mol. Biosyst., 12, 1976–1986
https://doi.org/10.1039/C6MB00065G pmid: 27072625
17 , F.-E. Eid, M. ElHefnawi, and , L. S. Heath (2016) DeNovo: virus-host sequence-based protein-protein interaction prediction. Bioinformatics, 32, 1144–1150
https://doi.org/10.1093/bioinformatics/btv737 pmid: 26677965
18 , Y. Qi, O. Tastan, , , J. G. Carbonell, , J. Klein-Seetharaman and J. Weston, (2010) Semi-supervised multi-task learning for predicting interactions between HIV-1 and human proteins. Bioinformatics, 26, i645–i652
https://doi.org/10.1093/bioinformatics/btq394 pmid: 20823334
19 , Y. Zhou, Y. S. Zhou, , , F. He, J. Song, and , Z. Zhang (2012) Can simple codon pair usage predict protein-protein interaction? Mol. Biosyst., 8, 1396–1404
https://doi.org/10.1039/c2mb05427b pmid: 22392100
20 , Y. Guo, L. Yu, , , Z. Wen and M. Li, (2008) Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences. Nucleic Acids Res., 36, 3025–3030
https://doi.org/10.1093/nar/gkn159 pmid: 18390576
21 , M. Kotlyar, C. Pastrello, , , F. Pivetta, , A. Lo Sardo, C. Cumbaa, , , H. Li, , T. Naranian, Y. Niu, , , Z. Ding, F. Vafaee, , et al. (2015) In silico prediction of physical protein interactions and characterization of interactome orphans. Nat. Methods, 12, 79–84
https://doi.org/10.1038/nmeth.3178 pmid: 25402006
22 , Z.-G. Li, F. He, , , Z. Zhang and Y.-L. Peng, (2012) Prediction of protein-protein interactions between Ralstonia solanacearum and Arabidopsis thaliana. Amino Acids, 42, 2363–2371
https://doi.org/10.1007/s00726-011-0978-z pmid: 21786137
23 S. Schleker, J. Garcia-Garcia, , J. Klein-Seetharaman, and , B. Oliva (2012) Prediction and comparison of Salmonella-human and Salmonella-Arabidopsis interactomes. Chem. Biodivers., 9, 991–1018
https://doi.org/10.1002/cbdv.201100392 pmid: 22589098
24 , P. Evans, W. Dampier, , , L. Ungar and , A. Tozeren (2009) Prediction of HIV-1 virus-host protein interactions using virus and host sequence motifs. BMC Med. Genomics, 2, 27
https://doi.org/10.1186/1755-8794-2-27 pmid: 19450270
25 , S. A. Lee, C. H. Chan, , , C. H. Tsai, J. M. Lai, , , F. S. Wang, , C. Y. Kao and C. Y. Huang, (2008) Ortholog-based protein-protein interaction prediction and its application to inter-species interactions. BMC Bioinformatics, 9, S11
https://doi.org/10.1186/1471-2105-9-S12-S11 pmid: 19091010
26 , Z. Itzhaki (2011) Domain-domain interactions underlying herpesvirus-human protein-protein interaction networks. PLoS One, 6, e21724
https://doi.org/10.1371/journal.pone.0021724 pmid: 21760902
27 , E. A. Franzosa and Y. Xia, (2011) Structural principles within the human-virus protein-protein interaction network. Proc. Natl. Acad. Sci. USA, 108, 10538–10543
https://doi.org/10.1073/pnas.1101440108 pmid: 21680884
28 , T. Hagai, A. Azia, , , M. M. Babu and R. Andino, (2014) Use of host-like peptide motifs in viral proteins is a prevalent strategy in host-virus interactions. Cell Reports, 7, 1729–1739
https://doi.org/10.1016/j.celrep.2014.04.052 pmid: 24882001
29 , S. Yang, H. Li, , , H. He, Y. Zhou, and , Z. Zhang (2019) Critical assessment and performance improvement of plant-pathogen protein-protein interaction prediction methods. Brief. Bioinform., 20, 274–287
https://doi.org/10.1093/bib/bbx123 pmid: 29028906
30 , C. von Mering, L. J. Jensen, , , B. Snel, , S. D. Hooper, M. Krupp, , , M. Foglierini, , N. Jouffre, M. A. Huynen, and , P. Bork (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res., 33, D433–D437
https://doi.org/10.1093/nar/gki005 pmid: 15608232
31 , S. Bandyopadhyay, S. Ray, , , A. Mukhopadhyay and , U. Maulik (2015) A review of in silico approaches for analysis and prediction of HIV-1-human protein-protein interactions. Brief. Bioinform., 16, 830–851
https://doi.org/10.1093/bib/bbu041 pmid: 25479794
32 , M. L. Szpara, D. Gatherer, , , A. Ochoa, , B. Greenbaum, A. Dolan, , , R. J. Bowden, , L. W. Enquist, M. Legendre, and , A. J. Davison (2014) Evolution and diversity in human herpes simplex virus genomes. J. Virol., 88, 1209–1227
https://doi.org/10.1128/JVI.01987-13 pmid: 24227835
33 , L. Meyniel-Schicklin, B. de Chassey, , , P. André and , V. Lotteau (2012) Viruses and interactomes in translation. Mol. Cell. Proteomics, 11, M111.014738
34 , M. D. Dyer, T. M. Murali, and , B. W. Sobral (2008) The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog., 4, e32
https://doi.org/10.1371/journal.ppat.0040032 pmid: 18282095
35 , N. Zhang, J. Yan, , , G. Lu, Z. Guo, , , Z. Fan, , J. Wang, , Y. Shi, , J. Qi and G. F. Gao, (2011) Binding of herpes simplex virus glycoprotein D to nectin-1 exploits host cell adhesion. Nat. Commun., 2, 577
https://doi.org/10.1038/ncomms1571 pmid: 22146396
36 , W. Azab, A. Gramatica, , , A. Herrmann and , N. Osterrieder (2015) Binding of alphaherpesvirus glycoprotein H to surface α4β1-integrins activates calcium-signaling pathways and induces phosphatidylserine exposure on the plasma membrane. MBio, 6, e01552–15
https://doi.org/10.1128/mBio.01552-15 pmid: 26489864
37 , K. Zheng, M. Chen, , , Y. Xiang, K. Ma, , , F. Jin, , X. Wang, X. Wang, , , S. Wang and Y. Wang, (2014) Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB. Biochem. Biophys. Res. Commun., 446, 990–996.
https://doi.org/10.1016/j.bbrc.2014.03.050 pmid: 24657267
38 , R. J. O’Brien and P. C. Wong, (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci., 34, 185–204
https://doi.org/10.1146/annurev-neuro-061010-113613 pmid: 21456963
39 , M. Mayer-Proschel, J. M. Hogestyn, and , D. J. Mock (2018) Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology. Neural Regen. Res., 13, 211–221
https://doi.org/10.4103/1673-5374.226380 pmid: 29557362
40 , B. Readhead, J.-V. Haure-Mirande, , , C. C. Funk, , M. A. Richards, P. Shannon, , , V. Haroutunian, , M. Sano, W. S. Liang, , , N. D. Beckmann, , N. D. Price, et al. (2018) Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron, 99, 64–82.e7
https://doi.org/10.1016/j.neuron.2018.05.023 pmid: 29937276
41 , K. Bourgade, H. Garneau, , , G. Giroux, , A. Y. Le Page, C. Bocti, , , G. Dupuis, , E. H. Frost and T. Fülöp, Jr. (2015) b-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology, 16, 85–98
https://doi.org/10.1007/s10522-014-9538-8. pmid: 25376108
42 The UniProt Consortium. (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res., 47, D506–D515
https://doi.org/10.1093/nar/gky1049 pmid: 30395287
43 , X. Lian, S. Yang, , , H. Li, C. Fu, and , Z. Zhang (2019) Machine-learning-based predictor of human-bacteria protein-protein interactions by incorporating comprehensive host-network properties. J. Proteome Res., 18, 2195–2205
https://doi.org/10.1021/acs.jproteome.9b00074 pmid: 30983371
44 , G. Csárdi and T. Nepusz, (2006) The igraph software package for complex network research. InterJournal Complex Syst., 1695, 1–9
45 , C. Stark, B.-J. Breitkreutz, , , T. Reguly, , L. Boucher, A. Breitkreutz, and , M. Tyers (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res., 34, D535–D539
https://doi.org/10.1093/nar/gkj109 pmid: 16381927
46 , I. Xenarios, D. W. Rice, , , L. Salwinski, , M. K. Baron, E. M. Marcotte, and , D. Eisenberg (2000) DIP: the database of interacting proteins. Nucleic Acids Res., 28, 289–291
https://doi.org/10.1093/nar/28.1.289 pmid: 10592249
47 , M. G. Ammari, C. R. Gresham, , , F. M. McCarthy and , B. Nanduri (2016) HPIDB 2.0: a curated database for host-pathogen interactions. Database (Oxford), baw103
https://doi.org/10.1093/database/baw103 pmid: 27374121
48 , H. Hermjakob, L. Montecchi-Palazzi, , , C. Lewington, , S. Mudali, S. Kerrien, , , S. Orchard, , M. Vingron, B. Roechert, , , P. Roepstorff, , A. Valencia, et al. (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res., 32, D452–D455
https://doi.org/10.1093/nar/gkh052 pmid: 14681455
49 , A. R. Wattam, J. J. Davis, , , R. Assaf, , S. Boisvert, T. Brettin, , , C. Bun, , N. Conrad, E. M. Dietrich, , , T. Disz, , J. L. Gabbard, et al. (2017) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res., 45, D535–D542
https://doi.org/10.1093/nar/gkw1017 pmid: 27899627
50 , K. Breuer, A. K. Foroushani, , , M. R. Laird, , C. Chen, A. Sribnaia, , , R. Lo, , G. L. Winsor, R. E. W. Hancock, , , F. S. L. Brinkman and , D. J. Lynn (2013) InnateDB: systems biology of innate immunity and beyond−recent updates and continuing curation. Nucleic Acids Res., 41, D1228–D1233
https://doi.org/10.1093/nar/gks1147 pmid: 23180781
51 , T. Guirimand, S. Delmotte, and , V. Navratil (2015) VirHostNet 2.0: surfing on the web of virus/host molecular interactions data. Nucleic Acids Res., 43, D583–D587
https://doi.org/10.1093/nar/gku1121 pmid: 25392406
52 , M. H. Schaefer, J. F. Fontaine, , , A. Vinayagam, , P. Porras, E. E. Wanker, and M. A. Andrade-Navarro, (2012) HIPPIE: Integrating protein interaction networks with experiment based quality scores. PLoS One, 7, e31826
https://doi.org/10.1371/journal.pone.0031826 pmid: 22348130
53 , A. Stein, A. Céol, and , P. Aloy (2011) 3did: identification and classification of domain-based interactions of known three-dimensional structure. Nucleic Acids Res., 39, D718–D723
https://doi.org/10.1093/nar/gkq962 pmid: 20965963
54 , X. Liu, Y. Huang, , , J. Liang, , S. Zhang, Y. Li, , , J. Wang, Y. Shen, , , Z. Xu and , Y. Zhao (2014) Computational prediction of protein interactions related to the invasion of erythrocytes by malarial parasites. BMC Bioinformatics, 15, 393
https://doi.org/10.1186/s12859-014-0393-z pmid: 25433733
55 , S. El-Gebali, J. Mistry, , , A. Bateman, , S. R. Eddy, A. Luciani, , , S. C. Potter, , M. Qureshi, L. J. Richardson, , , G. A. Salazar, , A. Smart, et al. (2019) The Pfam protein families database in 2019. Nucleic Acids Res., 47, D427–D432
https://doi.org/10.1093/nar/gky995 pmid: 30357350
56 , S. R. Eddy (1998) Profile hidden Markov models. Bioinformatics, 14, 755–763
https://doi.org/10.1093/bioinformatics/14.9.755 pmid: 9918945
57 , S. Maere, K. Heymans, and , M. Kuiper (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 21, 3448–3449
https://doi.org/10.1093/bioinformatics/bti551 pmid: 15972284
58 , P. Shannon, A. Markiel, , , O. Ozier, , N. S. Baliga, J. T. Wang, , , D. Ramage, N. Amin, , , B. Schwikowski and , T. Ideker (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504
https://doi.org/10.1101/gr.1239303 pmid: 14597658
[1] QB-20222-OF-ZZD_suppl_1 Download
[2] QB-20222-OF-ZZD_suppl_2 Download
[3] QB-20222-OF-ZZD_suppl_3 Download
[4] QB-20222-OF-ZZD_suppl_4 Download
[1] Bo Yu, Yao Lu, Qiangfeng Cliff Zhang, Lin Hou. Prediction and differential analysis of RNA secondary structure[J]. Quant. Biol., 2020, 8(2): 109-118.
[2] Guojun Liu, Mikhail A. Bolkov, Irina A. Tuzankina, Irina G. Danilova. Identification of candidate disease genes in patients with common variable immunodeficiency[J]. Quant. Biol., 2019, 7(3): 190-201.
[3] Li Li, Huanqian Yan, Yonggang Lu. Selecting near-native protein structures from ab initio models using ensemble clustering[J]. Quant. Biol., 2018, 6(4): 307-312.
[4] Yongxiao Yang, Wei Wang, Yuan Lou, Jianxin Yin, Xinqi Gong. Geometric and amino acid type determinants for protein-protein interaction interfaces[J]. Quant. Biol., 2018, 6(2): 163-174.
[5] Sai Zhang, Muxuan Liang, Zhongjun Zhou, Chen Zhang, Ning Chen, Ting Chen, Jianyang Zeng. Elastic restricted Boltzmann machines for cancer data analysis[J]. Quant. Biol., 2017, 5(2): 159-172.
[6] Mohamed Nadhir Djekidel, Mengjie Wang, Michael Q. Zhang, Juntao Gao. HiC-3DViewer: a new tool to visualize Hi-C data in 3D space[J]. Quant. Biol., 2017, 5(2): 183-190.
[7] Hailin Meng, Yingfei Ma, Guoqin Mai, Yong Wang, Chenli Liu. Construction of precise support vector machine based models for predicting promoter strength[J]. Quant. Biol., 2017, 5(1): 90-98.
[8] Krishna Choudhary, Fei Deng, Sharon Aviran. Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions[J]. Quant. Biol., 2017, 5(1): 3-24.
[9] Zohreh Baharvand Irannia, Ting Chen. TACO: Taxonomic prediction of unknown OTUs through OTU co-abundance networks[J]. Quant. Biol., 2016, 4(3): 149-158.
[10] Hammad Naveed, Jingdong J. Han. Structure-based protein-protein interaction networks and drug design[J]. Quant. Biol., 2013, 1(3): 183-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed