| 
					
						|  |  
    					|  |  
    					| Modeling the relationship between gene expression and mutational signature |  
						| Limin Jiang, Hui Yu, Yan Guo(  ) |  
						| Department of Internal Medicine, Comprehensive Cancer Center, University of New Mexico Albuquerque, NM 87109, USA |  
						|  |  
					
						| 
								
									|  
          
          
            
              
				
								                
													
													    |  |  
														| 
													
													    | Abstract Background: Mutational signatures computed from somatic mutations, allow an in-depth understanding of tumorigenesis and may illuminate early prevention strategies. Many studies have shown the regulation effects between somatic mutation and gene expression dysregulation. Methods: We hypothesized that there are potential associations between mutational signature and gene expression. We capitalized upon RNA-seq data to model 49 established mutational signatures in 33 cancer types. Both accuracy and area under the curve were used as performance measures in five-fold cross-validation. Results: A total of 475 models using unconstrained genes, and 112 models using protein-coding genes were selected for future inference purposes. An independent gene expression dataset on lung cancer smoking status was used for validation which achieved over 80% for both accuracy and area under the curve. Conclusion: These results demonstrate that the associations between gene expression and somatic mutations can translate into the associations between gene expression and mutational signatures. |  
															| Keywords 
																																																				mutational signature  
																		  																																				gene expression  
																		  																																				support vector machine  
																		  																																				random forest  
																		  																																				extreme gradient boost |  
															| Corresponding Author(s):
																Yan Guo |  
															| Online First Date: 13 January 2023   
																																														Issue Date: 13 March 2023 |  |  
								            
								                
																																												
															| 1 | E. N., Bergstrom, M. N., Huang, U., Mahto, M., Barnes, M. R., Stratton, S. G. Rozen, L. Alexandrov, (2019). SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics, 20: 685 https://doi.org/10.1186/s12864-019-6041-2
 |  
															| 2 | L. Alexandrov, S., Nik-Zainal, D. C., Wedge, P. J., Campbell, M. Stratton, (2013). Deciphering signatures of mutational processes operative in human cancer. Cell Rep., 3: 246–259 https://doi.org/10.1016/j.celrep.2012.12.008
 |  
															| 3 | M., Petljak, L. B., Alexandrov, J. S., Brammeld, S., Price, D. C., Wedge, S., Grossmann, K. J., Dawson, Y. S., Ju, F., Iorio, J. M. C. Tubio, et al.. (2019). Characterizing mutational mignatures in muman cancer cell lines reveals episodic APOBEC mutagenesis. Cell, 176: 1282–1294.e20 https://doi.org/10.1016/j.cell.2019.02.012
 |  
															| 4 | L. B., Alexandrov, S., Nik-Zainal, D. C., Wedge, S. A., Aparicio, S., Behjati, A. V., Biankin, G. R., Bignell, N., Bolli, A., Borg, A. L. rresen-Dale, et al.. (2013). Signatures of mutational processes in human cancer. Nature, 500: 415–421 https://doi.org/10.1038/nature12477
 |  
															| 5 | L. B., Alexandrov, S., Nik-Zainal, D. C., Wedge, P. J. Campbell, M. Stratton, (2013). Deciphering signatures of mutational processes operative in human cancer. Cell Rep., 3: 246–259 https://doi.org/10.1016/j.celrep.2012.12.008
 |  
															| 6 | J., Shinde, V., Renault, G., Couchy, J. F., Blanc, E., Tubacher, Q., Bayard, D., Bacq, V., Meyer, J. Semhoun, et al.. (2017). Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat. Commun., 8: 1315 https://doi.org/10.1038/s41467-017-01358-x
 |  
															| 7 | P., Polak, J., Kim, L. Z., Braunstein, R., Karlic, N. J., Haradhavala, G., Tiao, D., Rosebrock, D., Livitz, K., bler, K. W. Mouw, et al.. (2017). A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat. Genet., 49: 1476–1486 https://doi.org/10.1038/ng.3934
 |  
															| 8 | M. Petljak, L. Alexandrov, (2016). Understanding mutagenesis through delineation of mutational signatures in human cancer. Carcinogenesis, 37: 531–540 https://doi.org/10.1093/carcin/bgw055
 |  
															| 9 | L. B., Alexandrov, Y. S., Ju, K., Haase, P., Van Loo, I., Martincorena, S., Nik-Zainal, Y., Totoki, A., Fujimoto, H., Nakagawa, T. Shibata, et al.. (2016). Mutational signatures associated with tobacco smoking in human cancer. Science, 354: 618–622 https://doi.org/10.1126/science.aag0299
 |  
															| 10 | L. B., Alexandrov, P. H., Jones, D. C., Wedge, J. E., Sale, P. J., Campbell, S. Nik-Zainal, M. Stratton, (2015). Clock-like mutational processes in human somatic cells. Nat. Genet., 47: 1402–1407 https://doi.org/10.1038/ng.3441
 |  
															| 11 | J. E., Kucab, X., Zou, S., Morganella, M., Joel, A. S., Nanda, E., Nagy, C., Gomez, A., Degasperi, R., Harris, S. P. Jackson, et al.. (2019). A compendium of mutational signatures of environmental agents. Cell, 177: 821–836.e16 https://doi.org/10.1016/j.cell.2019.03.001
 |  
															| 12 | D. C., Gulhan, J. J. Lee, G. E. M., Melloni, I. s-Ciriano, P. Park, (2019). Detecting the mutational signature of homologous recombination deficiency in clinical samples. Nat. Genet., 51: 912–919 https://doi.org/10.1038/s41588-019-0390-2
 |  
															| 13 | D. L. Masica, (2011). Correlation of somatic mutation and expression identifies genes important in human glioblastoma progression and survival. Cancer Res., 71: 4550–4561 https://doi.org/10.1158/0008-5472.CAN-11-0180
 |  
															| 14 | J., Ping, O., Oyebamiji, H., Yu, S., Ness, J., Chien, F., Ye, H., Kang, D., Samuels, S., Ivanov, D. Chen, et al.. (2020). MutEx: a multifaceted gateway for exploring integrative pan-cancer genomic data. Brief. Bioinform., 21: 1479–1486 https://doi.org/10.1093/bib/bbz084
 |  
															| 15 | X., Wang, Q., Sun, C., Chen, R., Yin, X., Huang, X., Wang, R., Shi, L. Xu, (2016). ZYG11A serves as an oncogene in non-small cell lung cancer and influences CCNE1 expression. Oncotarget, 7: 8029–8042 https://doi.org/10.18632/oncotarget.6904
 |  
															| 16 | D. J., Shen, Y. H., Jiang, J. Q., Li, L. W. Xu, K. Tao, (2020). The RNA-binding protein RBM47 inhibits non-small cell lung carcinoma metastasis through modulation of AXIN1 mRNA stability and Wnt/β-catentin signaling. Surg. Oncol., 34: 31–39 https://doi.org/10.1016/j.suronc.2020.02.011
 |  
															| 17 | H., Zhang, X., Chen, J., Wang, W., Guang, W., Han, H., Zhang, X. Tan, (2014). EGR1 decreases the malignancy of human non-small cell lung carcinoma by regulating KRT18 expression. Sci. Rep., 4: 5416 https://doi.org/10.1038/srep05416
 |  
															| 18 | G. J., Inman, J., Wang, A., Nagano, L. B., Alexandrov, K. J., Purdie, R. G., Taylor, V., Sherwood, J., Thomson, S., Hogan, L. C. Spender, et al.. (2018). The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nat. Commun., 9: 3667 https://doi.org/10.1038/s41467-018-06027-1
 |  
															| 19 | A. W. T., Ng, S. L., Poon, M. N., Huang, J. Q., Lim, A., Boot, W., Yu, Y., Suzuki, S., Thangaraju, C. C. Y., Ng, P. Tan, et al.. (2017). Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. Sci. Transl. Med., 9: eaan6446 |  
															| 20 | H., Davies, D., Glodzik, S., Morganella, L. R., Yates, J., Staaf, X., Zou, M., Ramakrishna, S., Martin, S., Boyault, A. M. Sieuwerts, et al.. (2017). HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med., 23: 517–525 https://doi.org/10.1038/nm.4292
 |  
															| 21 | L. B., Alexandrov, S., Nik-Zainal, H. C., Siu, S. Y. Leung, M. Stratton, (2015). A mutational signature in gastric cancer suggests therapeutic strategies. Nat. Commun., 6: 8683 https://doi.org/10.1038/ncomms9683
 |  
															| 22 | T. G., Meijer, N. S., Verkaik, A. M., Sieuwerts, J., van Riet, K. A. T., Naipal, C. H. M., van Deurzen, M. A., den Bakker, H. F. B. M., Sleddens, H. J., Dubbink, T. D. den Toom, et al.. (2018). Functional ex vivo assay reveals homologous recombination deficiency in breast cancer beyond BRCA gene defects. Clin. Cancer Res., 24: 6277–6287 https://doi.org/10.1158/1078-0432.CCR-18-0063
 |  
															| 23 | N., Waddell, M., Pajic, A. M., Patch, D. K., Chang, K. S., Kassahn, P., Bailey, A. L., Johns, D., Miller, K., Nones, K. Quek, et al.. (2015). Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 518: 495–501 https://doi.org/10.1038/nature14169
 |  
															| 24 | S., Morganella, L. B., Alexandrov, D., Glodzik, X., Zou, H., Davies, J., Staaf, A. M., Sieuwerts, A. B., Brinkman, S., Martin, M. Ramakrishna, et al.. (2016). The topography of mutational processes in breast cancer genomes. Nat. Commun., 7: 11383 https://doi.org/10.1038/ncomms11383
 |  
															| 25 | N. J., Haradhvala, J., Kim, Y. E., Maruvka, P., Polak, D., Rosebrock, D., Livitz, J. M., Hess, I., Leshchiner, A., Kamburov, K. W. Mouw, et al.. (2018). Distinct mutational signatures characterize concurrent loss of polymerase proofreading and mismatch repair. Nat. Commun., 9: 1746 https://doi.org/10.1038/s41467-018-04002-4
 |  
															| 26 | Q., ShengD. C., SamuelsH., YuS., NessY. Y. Zhao. (2020) Cancer-specific expression quantitative loci are affected by expression dysregulation. Brief. Bioinform, 21, 338−347. |  
															| 27 | B., Ye, J., Shi, H., Kang, O., Oyebamiji, D., Hill, H., Yu, S., Ness, F., Ye, J., Ping, J. He, et al.. (2020). Advancing pan-cancer gene expression survial analysis by inclusion of non-coding RNA. RNA Biol., 17: 1666–1673 https://doi.org/10.1080/15476286.2019.1679585
 |  
															| 28 | S., Georganos, T., Grippa, S., Vanhuysse, M., Lennert, M. Shimoni, (2018). Very high resolution object-based land use-land cover urban classification using extreme gradient boosting. IEEE Geosci. Remote Sens. Lett., 15: 607–611 https://doi.org/10.1109/LGRS.2018.2803259
 |  
															| 29 | P. Manikandaprabhu, (2016). Unified RF-SVM model based digital radiography classification for Inferior Alveolar Nerve Injury (IANI) identification. Biomed Res-India, 27: 1107–1117 |  
															| 30 | Y. Shao, R. Lunetta, (2012). Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens., 70: 78–87 https://doi.org/10.1016/j.isprsjprs.2012.04.001
 |  
															| 31 | F., Blokzijl, R., Janssen, R. van Boxtel, (2018). MutationalPatterns: comprehensive genome-wide analysis of mutational processes. Genome Med., 10: 33 https://doi.org/10.1186/s13073-018-0539-0
 |  
															| 32 | V., Thorsson, D. L., Gibbs, S. D., Brown, D., Wolf, D. S. Bortone, O. T. H., Yang, E., Porta-Pardo, G. F., Gao, C. L., Plaisier, J. A. Eddy, et al.. (2019). The immune landscape of cancer. Immunity, 51: 411–412 |  
								            
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |