Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2017, Vol. 5 Issue (1) : 25-41    https://doi.org/10.1007/s40484-017-0097-2
REVIEW
Recent advances in molecular machines based on toehold-mediated strand displacement reaction
Yijun Guo1,Bing Wei1,2,Shiyan Xiao1,Dongbao Yao1,Hui Li1,Huaguo Xu3,Tingjie Song1,Xiang Li1,Haojun Liang1,2()
1. CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
2. Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
3. College of Materials and Textile Engineering institute, Jiaxing University, Jiaxing 314000, China
 Download: PDF(4277 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: The DNA strand displacement reaction, which uses flexible and programmable DNA molecules as reaction components, is the basis of dynamic DNA nanotechnology, and has been widely used in the design of complex autonomous behaviors.

Results: In this review, we first briefly introduce the concept of toehold-mediated strand displacement reaction and its kinetics regulation in pure solution. Thereafter, we review the recent progresses in DNA complex circuit, the assembly of AuNPs driven by DNA molecular machines, and the detection of single nucleotide polymorphism (SNP) using DNA toehold exchange probes in pure solution and in interface state. Lastly, the applications of toehold-mediated strand displacement in the genetic regulation and silencing through combining gene circuit with RNA interference systems are reviewed.

Conclusions: The toehold-mediated strand displacement reaction makes DNA an excellent material for the fabrication of molecular machines and complex circuit, and may potentially be used in the disease diagnosis and the regulation of gene silencing in the near future.

Author Summary  The controllable kinetics of strand displacement reaction, along with the programmability of DNA sequence, make DNA an excellent material for the fabrication of molecular machines and complex circuit, and may potentially be used in the disease diagnosis. In this review, we discuss the applications of toehold-mediated strand displacement in the constructions of exquisite molecular devices, complex functional circuits and reaction networks, and biomedical applications such as SNP discrimination and gene-induced disease detection and gene regulation.
Keywords toehold-mediated strand displacement      DNA molecular machines      SNP      gene expression regulation     
PACS:     
Fund: 
Corresponding Author(s): Haojun Liang   
Just Accepted Date: 22 January 2017   Issue Date: 22 March 2017
 Cite this article:   
Yijun Guo,Bing Wei,Shiyan Xiao, et al. Recent advances in molecular machines based on toehold-mediated strand displacement reaction[J]. Quant. Biol., 2017, 5(1): 25-41.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-017-0097-2
https://academic.hep.com.cn/qb/EN/Y2017/V5/I1/25
Fig.1  Mechanism of toehold exchange reaction.
Fig.2  Toehold control and Intuitive Energy Landscape (IEL) model of DNA strand displacement.

(A) Experiments show that kinetics of strand displacement depend on sequence and length of toeholds. The “Maximum” (green) shows the kinetics of strand displacement mediated by strong toehold (only G/C nucleotides), whereas the “Minimum” (red) shows that of weak toehold (only A/T nucleotides), and the “Typical” (black) shows that of toehold with equal numbers of all four nucleotides; reprinted with permission from Ref. [17], Copyright 2009 American Chemical Society. (B) The IEL models strand displacement by dividing the free energy into several states (A–F) with the parameters of sawtooth amplitude (ΔGs) and plateau height (ΔGp); reprinted with permission from Ref. [18], Copyright 2013 Oxford University Press.

Fig.3  Various “coverings” for toehold hiding.

Toeholds are hidden by (A) hybridization; reprinted with permission from Ref. [20], Copyright 2008 American Chemical Society. (B) Bulge-loop structure; reprinted with permission from Ref. [21], Copyright 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (C) Hairpin; reprinted with permission from Ref. [22], Copyright 2013 American Chemical Society. (D) Nucleobase-caging groups; reprinted with permission from Ref. [24], Copyright 2013 American Chemical Society. (E) Parallel Hoogsteen motif; reprinted with permission from Ref. [25], Copyright 2014 American Chemical Society.

Fig.4  Toehold split schemes.

(A) The toehold domain and the branch migration (BM) domain were distributed on different strands (C-TH and C-BM), and they formed the “associative toehold” (C-duplex) via additional hybridization. (B) Experiment results of the strand displacement mediated by “associative toehold”. (A) and (B), reprinted with permission from Ref. [26], Copyright 2012 American Chemical Society. (C) The toehold domain and the BM domain were distributed on the same strand and interspaced by a spacer domain, leading to the formation of “remote toehold”. (D) Experiment results of the strand displacement mediated by “remote toehold”. (C) and (D), reprinted with permission from Ref. [29], Copyright 2011 American Chemical Society.

Fig.5  DNA-AuNP assembly.

The architect of prescribed nanoparticle arrays through programming the (A) primary; reprinted with permission from Ref. [46], Copyright 2008 Nature Publishing Group. (B, C) three-dimensional structures of DNA. (B), reprinted with permission from Ref. [48], Copyright 2015 Nature Publishing Group. (C), reprinted with permission from Ref. [49], Copyright 2016 Nature Publishing Group.

Fig.6  Graphical representation of the dynamic DNA-fueled molecular machine strategy and the mechanism of DNA-AuNP assembly.

Reprinted with permission from Ref. [12], Copyright 2012 American Chemical Society.

Fig.7  Toehold-mediated strand displacement reaction on the chip surface to discriminate SNP.

(A) Schematic representation of the DNA toehold exchange process on chip surface to detect single-base changes. (B) Real-time DPI measurements of surface mass decrease on a sensor chip surface modified with a dsDNA probe (PC) with the addition of correct target ssDNA (Correct). Different spurious targets have a single-base mismatch at different positions (m1T to m19T). (C) Calculated toehold exchange efficiencies on chip surface with the addition of correct target ssDNA and different spurious targets; reprinted with permission from Ref. [13], Copyright 2014 Royal Society of Chemistry.

Fig.8  QCM?sensing?platform?application.

(A) Schematic representation of the designed QCM-D biosensing platform for real-time detection of target p53 using a self-assembled DNA nanostructure as an efficient signal amplifier. QCM-D response curves show the corresponding frequency and dissipation shifts of 20 nM of target p53 for the above three steps; reprinted with permission from Ref. [74], Copyright 2012 Royal Society of Chemistry. (B) Schematic representation of the construction and rationale of DNA-SA dendrimer-amplified QCM sensing platform; reprinted with permission from Ref. [75], Copyright 2015 Royal Society of Chemistry.

Fig.9  Schematic representation of the design rationale of discrimination of a single-base change on platform of QCM.

Reprinted with permission from Ref. [78], Copyright 2015 Royal Society of Chemistry.

Fig.10  DNA-AuNP assembly applied to graphical representation SNP discrimination.

(A) Graphical representation of SNP discrimination using DNA-fueled molecular machine-based DNA-AuNP assembly; reprinted with permission from Ref. [15], Copyright 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (B) Graphical representation of the integrating catalytic circuit with self-assembly of DNA-AuNP conjugates; reprinted with permission from Ref. [14], Copyright 2015 American Chemical Society.

Fig.11  Schematics of RNA-based riboregulator biosensors and synthetic biology applications by RNA toehold-mediated strand displacement reaction.

(A) Conventional riboregulators repress the gene by trapping the RBS through a hairpin structure, which is released under the existence of the trans-acting RNA (taRNA). (B) Toehold switches repress translation by locking the start codon (AUG) sequence and placing the RBS through the stem structure. In RNA–RNA interactions, the toehold reaction activates translation and aligns the hairpin structure via binding with a complementary RNA (trigger RNA); reprinted with permission from Ref. [10], Copyright 2014 Elsevier Inc.

Fig.12  The creation of synthetic biology platforms on paper.

The cell-free transcription and translation systems are combined with the created synthetic gene networks and then freeze-dried onto paper discs to establish stability for long-term extracellular storage of synthetic gene network. The synthetic biology platforms can be observed for the corresponding response when response factor RNA or small molecules are added.

Fig.13  The workflow of paper-based RNA toehold displacement sensors for Zika virus detection.

The sequence of toehold switches of paper-based RNA sensor were designed to the desired device parameters in silico, combined with the RNA sensor and cell-free protein expression system embedded into paper discs, and freeze-dried for stable diagnostic. The Zika virus RNA can be selected by a color change in the paper, which were isothermally amplified to a proper concentration via NASBA and NASBACC, and used to rehydrate the paper sensor for activating reaction; reprinted with permission from Ref. [98], Copyright 2016 Elsevier Inc.

Fig.14  Conditional RNAi regulated by strand displacement.

(A) Schematic illustrations of the designed activatable siRNA system; reprinted with permission from Ref. [101]. Copyright 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (B) Schematic illustration of MONi-RNAi strategy and mechanism; reprinted with permission from Ref. [102], Copyright 2011 American Chemical Society.

Fig.15  The biosensor device for mRNA signal and the signal transduction process.

The mRNA signal contains a “trigger-sequence motif” 43-nt long. The biosensor device consists of a Pr:As duplex which “protecting” (Pr) strand is pre-annealed to an “antisense” (As) strand with two 10-nt single-stranded overhangs, and a single “sense” (S) strand. The Pr:As duplex can interact with the trigger-sequence motif. After the strand migration, the released As strand hybridizes with the single-stranded S strand to form a canonical siRNA duplex S: As; reprinted with permission from Ref. [104], Copyright 2010 Oxford University Press.

1 Yurke, B., Turberfield, A. J., Mills, A. P. Jr, Simmel, F. C. and Neumann, J. L. (2000) A DNA-fuelled molecular machine made of DNA. Nature, 406, 605–608
https://doi.org/10.1038/35020524 pmid: 10949296
2 Zhang, D. Y. and Seelig, G. (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem., 3, 103–113
https://doi.org/10.1038/nchem.957 pmid: 21258382
3 Pan, J., Li, F., Cha, T. G., Chen, H. and Choi, J. H. (2015) Recent progress on DNA based walkers. Curr. Opin. Biotechnol., 34, 56–64
https://doi.org/10.1016/j.copbio.2014.11.017 pmid: 25498478
4 You, M., Peng, L., Shao, N., Zhang, L., Qiu, L., Cui, C. and Tan, W. (2014) DNA “nano-claw”: logic-based autonomous cancer targeting and therapy. J. Am. Chem. Soc., 136, 1256–1259
https://doi.org/10.1021/ja4114903 pmid: 24367989
5 Rudchenko, M., Taylor, S., Pallavi, P., Dechkovskaia, A., Khan, S., Butler, V. P. Jr, Rudchenko, S. and Stojanovic, M. N. (2013) Autonomous molecular cascades for evaluation of cell surfaces. Nat. Nanotechnol., 8, 580–586
https://doi.org/10.1038/nnano.2013.142 pmid: 23892986
6 Andersen, E. S., Dong, M., Nielsen, M. M., Jahn, K., Subramani, R., Mamdouh, W., Golas, M. M., Sander, B., Stark, H., Oliveira, C. L. P., (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature, 459, 73–76
https://doi.org/10.1038/nature07971 pmid: 19424153
7 Parolini, L., Kotar, J., Di Michele, L. and Mognetti, B. M. (2016) Controlling self-assembly kinetics of DNA-functionalized liposomes using toehold exchange mechanism. ACS Nano, 10, 2392–2398
https://doi.org/10.1021/acsnano.5b07201 pmid: 26845414
8 Hellyer, T. J. and Nadeau, J. G. (2004) Strand displacement amplification: a versatile tool for molecular diagnostics. Expert Rev. Mol. Diagn., 4, 251–261
https://doi.org/10.1586/14737159.4.2.251 pmid: 14995911
9 Kushwaha, M., Rostain, W., Prakash, S., Duncan, J. N. and Jaramillo, A. (2016) Using RNA as molecular code for programming cellular function. ACS Synth. Biol., 5, 795–809
https://doi.org/10.1021/acssynbio.5b00297 pmid: 26999422
10 Green, A. A., Silver, P. A., Collins, J. J. and Yin, P. (2014) Toehold switches: de-novo-designed regulators of gene expression. Cell, 159, 925–939
https://doi.org/10.1016/j.cell.2014.10.002 pmid: 25417166
11 Qian, L. and Winfree, E. (2011) Scaling up digital circuit computation with DNA strand displacement cascades. Science, 332, 1196–1201
https://doi.org/10.1126/science.1200520 pmid: 21636773
12 Song, T. and Liang, H. (2012) Synchronized assembly of gold nanoparticles driven by a dynamic DNA-fueled molecular machine. J. Am. Chem. Soc., 134, 10803–10806
https://doi.org/10.1021/ja304746k pmid: 22703552
13 Xu, H., Deng, W., Huang, F., Xiao, S., Liu, G. and Liang, H. (2014) Enhanced DNA toehold exchange reaction on a chip surface to discriminate single-base changes. Chem. Commun. (Camb.), 50, 14171–14174
https://doi.org/10.1039/C4CC07272C pmid: 25277154
14 Yao, D., Song, T., Sun, X., Xiao, S., Huang, F. and Liang, H. (2015) Integrating DNA-strand-displacement circuitry with self-assembly of spherical nucleic acids. J. Am. Chem. Soc., 137, 14107–14113
https://doi.org/10.1021/jacs.5b07453 pmid: 26485090
15 Song, T., Xiao, S., Yao, D., Huang, F., Hu, M. and Liang, H. (2014) An efficient DNA-fueled molecular machine for the discrimination of single-base changes. Adv. Mater., 26, 6181–6185
https://doi.org/10.1002/adma.201402314 pmid: 25066311
16 Zhang, D. Y., Turberfield, A. J., Yurke, B. and Winfree, E. (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science, 318, 1121–1125
https://doi.org/10.1126/science.1148532 pmid: 18006742
17 Zhang, D. Y. and Winfree, E. (2009) Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc., 131, 17303–17314
https://doi.org/10.1021/ja906987s pmid: 19894722
18 Srinivas, N., Ouldridge, T. E., Šulc, P., Schaeffer, J. M., Yurke, B., Louis, A. A., Doye, J. P. K. and Winfree, E. (2013) On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res., 41, 10641–10658
https://doi.org/10.1093/nar/gkt801 pmid: 24019238
19 Machinek, R. R. F., Ouldridge, T. E., Haley, N. E. C., Bath, J. and Turberfield, A. J. (2014) Programmable energy landscapes for kinetic control of DNA strand displacement. Nat. Commun., 5, 5324
https://doi.org/10.1038/ncomms6324 pmid: 25382214
20 Nakayama, S., Yan, L. and Sintim, H. O. (2008) Junction probes- sequence specific detection of nucleic acids via template enhanced hybridization processes. J. Am. Chem. Soc., 130, 12560–12561
https://doi.org/10.1021/ja803146f pmid: 18759403
21 Xing, Y., Yang, Z. and Liu, D. (2011) A responsive hidden toehold to enable controllable DNA strand displacement reactions. Angew. Chem. Int. Ed. Engl., 50, 11934–11936
https://doi.org/10.1002/anie.201105923 pmid: 22012587
22 Huang, F., You, M., Han, D., Xiong, X., Liang, H. and Tan, W. (2013) DNA branch migration reactions through photocontrollable toehold formation. J. Am. Chem. Soc., 135, 7967–7973
https://doi.org/10.1021/ja4018495 pmid: 23642046
23 Hemphill, J. and Deiters, A. (2013) DNA computation in mammalian cells: microRNA logic operations. J. Am. Chem. Soc., 135, 10512–10518
https://doi.org/10.1021/ja404350s pmid: 23795550
24 Prokup, A., Hemphill, J., Liu, Q. and Deiters, A. (2015) Optically controlled signal amplification for DNA computation. ACS Synth. Biol., 4, 1064–1069
https://doi.org/10.1021/sb500279w pmid: 25621535
25 Amodio, A., Zhao, B., Porchetta, A., Idili, A., Castronovo, M., Fan, C. and Ricci, F. (2014) Rational design of pH-controlled DNA strand displacement. J. Am. Chem. Soc., 136, 16469–16472
https://doi.org/10.1021/ja508213d pmid: 25369216
26 Chen, X. (2012) Expanding the rule set of DNA circuitry with associative toehold activation. J. Am. Chem. Soc., 134, 263–271
https://doi.org/10.1021/ja206690a pmid: 22129141
27 Zhu, J., Zhang, L., Zhou, Z., Dong, S. and Wang, E. (2014) Aptamer-based sensing platform using three-way DNA junction-driven strand displacement and its application in DNA logic circuit. Anal. Chem., 86, 312–316
https://doi.org/10.1021/ac403235y pmid: 24308699
28 Zhu, J., Zhang, L., Dong, S. and Wang, E. (2013) Four-way junction-driven DNA strand displacement and its application in building majority logic circuit. ACS Nano, 7, 10211–10217
https://doi.org/10.1021/nn4044854 pmid: 24134127
29 Genot, A. J., Zhang, D. Y., Bath, J. and Turberfield, A. J. (2011) Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. J. Am. Chem. Soc., 133, 2177–2182
https://doi.org/10.1021/ja1073239 pmid: 21268641
30 Bommarito, S., Peyret, N. and SantaLucia, J. Jr (2000) Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Res., 28, 1929–1934
https://doi.org/10.1093/nar/28.9.1929 pmid: 10756193
31 SantaLucia, J. Jr and Hicks, D. (2004) The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct., 33, 415–440
https://doi.org/10.1146/annurev.biophys.32.110601.141800 pmid: 15139820
32 Wang, C., Bae, J. H. and Zhang, D. Y. (2016) Native characterization of nucleic acid motif thermodynamics via non-covalent catalysis. Nat. Commun., 7, 10319
https://doi.org/10.1038/ncomms10319 pmid: 26782977
33 Protozanova, E., Yakovchuk, P. and Frank-Kamenetskii, M. D. (2004) Stacked-unstacked equilibrium at the nick site of DNA. J. Mol. Biol., 342, 775–785
https://doi.org/10.1016/j.jmb.2004.07.075 pmid: 15342236
34 Pyshnyi, D. V. and Ivanova, E. M. (2002) Thermodynamic parameters of coaxial stacking on stacking hybridization of oligodeoxyribonucleotides. Russ. Chem. Bull., 51, 1145–1155
https://doi.org/10.1023/A:1020954307319
35 Yurke, B. and Mills, A. P. (2003) Using DNA to power nanostructures. Genet. Program. Evolvable Mach., 4, 111–122
https://doi.org/10.1023/A:1023928811651
36 Yang, X., Tang, Y., Traynor, S. M. and Li, F. (2016) Regulation of DNA strand displacement using allosteric DNA toehold. J. Am. Chem. Soc., 138, 14076–14082
https://doi.org/10.1021/jacs.6b08794 pmid: 27704809
37 Khimji, I., Shin, J. and Liu, J. (2013) DNA duplex stabilization in crowded polyanion solutions. Chem. Commun. (Camb.), 49, 1306–1308
https://doi.org/10.1039/c2cc38627e pmid: 23302897
38 Smith, B. D. and Liu, J. (2010) Assembly of DNA-functionalized nanoparticles in alcoholic solvents reveals opposite thermodynamic and kinetic trends for DNA hybridization. J. Am. Chem. Soc., 132, 6300–6301
https://doi.org/10.1021/ja101973g pmid: 20402504
39 Zhang, T., Shang, C., Duan, R., Hakeem, A., Zhang, Z., Lou, X. and Xia, F. (2015) Polar organic solvents accelerate the rate of DNA strand replacement reaction. Analyst, 140, 2023–2028
https://doi.org/10.1039/C4AN02302A pmid: 25675278
40 Dave, N. and Liu, J. (2010) Fast molecular beacon hybridization in organic solvents with improved target specificity. J. Phys. Chem. B, 114, 15694–15699
https://doi.org/10.1021/jp106754k pmid: 21062084
41 Kang, D., Duan, R., Tan, Y., Hong, F., Wang, B., Chen, Z., Xu, S., Lou, X., Wei, W., Yurke, B. and Xia, F. (2014) Speeding up the self-assembly of a DNA nanodevice using a variety of polar solvents. Nanoscale, 6, 14153–14157
https://doi.org/10.1039/C4NR02257B
42 Wu, L. R., Wang, J. S., Fang, J. Z., Evans, E. R., Pinto, A., Pekker, I., Boykin, R., Ngouenet, C., Webster, P. J., Beechem, J., (2015) Continuously tunable nucleic acid hybridization probes. Nat. Methods, 12, 1191–1196
https://doi.org/10.1038/nmeth.3626 pmid: 26480474
43 Mirkin, C. A., Letsinger, R. L., Mucic, R. C. and Storhoff, J. J. (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 382, 607–609
https://doi.org/10.1038/382607a0 pmid: 8757129
44 Alivisatos, A. P., Johnsson, K. P., Peng, X., Wilson, T. E., Loweth, C. J., Bruchez, M. P. Jr and Schultz, P. G. (1996) Organization of “nanocrystal molecules” using DNA. Nature, 382, 609–611
https://doi.org/10.1038/382609a0 pmid: 8757130
45 Nykypanchuk, D., Maye, M. M., van der Lelie, D. and Gang, O. (2008) DNA-guided crystallization of colloidal nanoparticles. Nature, 451, 549–552
https://doi.org/10.1038/nature06560 pmid: 18235496
46 Park, S. Y., Lytton-Jean, A. K. R., Lee, B., Weigand, S., Schatz, G. C. and Mirkin, C. A. (2008) DNA-programmable nanoparticle crystallization. Nature, 451, 553–556
https://doi.org/10.1038/nature06508 pmid: 18235497
47 Macfarlane, R. J., Jones, M. R., Senesi, A. J., Young, K. L., Lee, B., Wu, J. and Mirkin, C. A. (2010) Establishing the design rules for DNA-mediated programmable colloidal crystallization. Angew. Chem. Int. Ed. Engl., 49, 4589–4592
https://doi.org/10.1002/anie.201000633 pmid: 20486143
48 O’Brien, M. N., Jones, M. R., Lee, B. and Mirkin, C. A. (2015) Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nat. Mater., 14, 833–839
https://doi.org/10.1038/nmat4293 pmid: 26006002
49 Jones, M. R., Seeman, N. C. and Mirkin, C. A. (2015) Programmable materials and the nature of the DNA bond. Science, 347, 1260901
https://doi.org/10.1126/science.1260901 pmid: 25700524
50 Sharma, J., Chhabra, R., Cheng, A., Brownell, J., Liu, Y. and Yan, H. (2009) Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science, 323, 112–116
https://doi.org/10.1126/science.1165831 pmid: 19119229
51 Shen, X., Song, C., Wang, J., Shi, D., Wang, Z., Liu, N. and Ding, B. (2012) Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc., 134, 146–149
https://doi.org/10.1021/ja209861x pmid: 22148355
52 Lan, X., Lu, X., Shen, C., Ke, Y., Ni, W. and Wang, Q. (2015) Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc., 137, 457–462
https://doi.org/10.1021/ja511333q pmid: 25516475
53 Tian, Y., Wang, T., Liu, W., Xin, H. L., Li, H., Ke, Y., Shih, W. M. and Gang, O. (2015) Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat. Nanotechnol., 10, 637–644
https://doi.org/10.1038/nnano.2015.105 pmid: 26005999
54 Liu, W., Halverson, J., Tian, Y., Tkachenko, A. V. and Gang, O. (2016) Self-organized architectures from assorted DNA-framed nanoparticles. Nat. Chem., 8, 867–873
https://doi.org/10.1038/nchem.2540 pmid: 27554413
55 Rogers, W. B., Shih, W. M. and Manoharan, V. N. (2016) Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nat Rev Mater., 1, 16008
https://doi.org/10.1038/natrevmats.2016.8
56 Saha, K., Agasti, S. S., Kim, C., Li, X. and Rotello, V. M. (2012) Gold nanoparticles in chemical and biological sensing. Chem. Rev., 112, 2739–2779
https://doi.org/10.1021/cr2001178 pmid: 22295941
57 Wilner, O. I. and Willner, I. (2012) Functionalized DNA nanostructures. Chem. Rev., 112, 2528–2556
https://doi.org/10.1021/cr200104q pmid: 22233123
58 Zhao, Y., Chen, F., Li, Q., Wang, L. and Fan, C. (2015) Isothermal amplification of nucleic acids. Chem. Rev., 115, 12491–12545.
https://doi.org/10.1021/acs.chemrev.5b00428 pmid: 26551336
59 Rosi, N. L. and Mirkin, C. A. (2005) Nanostructures in biodiagnostics. Chem. Rev., 105, 1547–1562
https://doi.org/10.1021/cr030067f pmid: 15826019
60 Liu, J., Cao, Z. and Lu, Y. (2009) Functional nucleic acid sensors. Chem. Rev., 109, 1948–1998
https://doi.org/10.1021/cr030183i pmid: 19301873
61 Wu, P., Hwang, K., Lan, T. and Lu, Y. (2013) A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J. Am. Chem. Soc., 135, 5254–5257
https://doi.org/10.1021/ja400150v pmid: 23531046
62 Liang, H., Zhang, X.-B., Lv, Y., Gong, L., Wang, R., Zhu, X., Yang, R. and Tan, W. (2014) Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy. Acc. Chem. Res., 47, 1891–1901
https://doi.org/10.1021/ar500078f pmid: 24780000
63 Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. and Erlich, H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491
https://doi.org/10.1126/science.2448875 pmid: 2448875
64 Gunderson, K. L., Steemers, F. J., Lee, G., Mendoza, L. G. and Chee, M. S. (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat. Genet., 37, 549–554
https://doi.org/10.1038/ng1547 pmid: 15838508
65 Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470
https://doi.org/10.1126/science.270.5235.467 pmid: 7569999
66 Mardis, E. R. (2008) Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet., 9, 387–402
https://doi.org/10.1146/annurev.genom.9.081307.164359 pmid: 18576944
67 Zhang, D. Y., Chen, S. X. and Yin, P. (2012) Optimizing the specificity of nucleic acid hybridization. Nat. Chem., 4, 208–214
https://doi.org/10.1038/nchem.1246 pmid: 22354435
68 Chen, S. X., Zhang, D. Y. and Seelig, G. (2013) Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA. Nat. Chem., 5, 782–789
https://doi.org/10.1038/nchem.1713 pmid: 23965681
69 Wang, J. S. and Zhang, D. Y. (2015) Simulation-guided DNA probe design for consistently ultraspecific hybridization. Nat. Chem., 7, 545–553
https://doi.org/10.1038/nchem.2266 pmid: 26100802
70 Chen, S. X. and Seelig, G. (2016) An engineered kinetic amplification mechanism for single nucleotide variant discrimination by DNA hybridization probes. J. Am. Chem. Soc., 138, 5076–5086
https://doi.org/10.1021/jacs.6b00277 pmid: 27010123
71 Karim, K., Taylor, J. D., Cullen, D. C., Swann, M. J. and Freeman, N. J. (2007) Measurement of conformational changes in the structure of transglutaminase on binding calcium ions using optical evanescent dual polarisation interferometry. Anal. Chem., 79, 3023–3031
https://doi.org/10.1021/ac051254b pmid: 17367112
72 Mashaghi, A., Swann, M., Popplewell, J., Textor, M. and Reimhult, E. (2008) Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics. Anal. Chem., 80, 3666–3676
https://doi.org/10.1021/ac800027s pmid: 18422336
73 Xu, P., Huang, F. and Liang, H. (2013) Real-time study of a DNA strand displacement reaction using dual polarization interferometry. Biosens. Bioelectron., 41, 505–510
https://doi.org/10.1016/j.bios.2012.09.008 pmid: 23040877
74 Tang, W., Wang, D., Xu, Y., Li, N. and Liu, F. (2012) A self-assembled DNA nanostructure-amplified quartz crystal microbalance with dissipation biosensing platform for nucleic acids. Chem. Commun. (Camb.), 48, 6678–6680
https://doi.org/10.1039/c2cc32747c pmid: 22641067
75 Zhao, Y., Wang, H., Tang, W., Hu, S., Li, N. and Liu, F. (2015) An in situ assembly of a DNA-streptavidin dendrimer nanostructure: a new amplified quartz crystal microbalance platform for nucleic acid sensing. Chem. Commun. (Camb.), 51, 10660–10663
https://doi.org/10.1039/C5CC03568F pmid: 26051267
76 Tang, W., Hu, S., Wang, H., Zhao, Y., Li, N. and Liu, F. (2014) A universal molecular translator for non-nucleic acid targets that enables dynamic DNA assemblies and logic operations. Chem. Commun. (Camb.), 50, 14352–14355
https://doi.org/10.1039/C4CC07041K pmid: 25295484
77 Wang, D., Chen, G., Wang, H., Tang, W., Pan, W., Li, N. and Liu, F. (2013) A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation. Biosens. Bioelectron., 48, 276–280
https://doi.org/10.1016/j.bios.2013.04.035 pmid: 23708749
78 Li, H., Xiao, S., Yao, D., Lam, M. H.-W. and Liang, H. (2015) A smart DNA-gold nanoparticle probe for detecting single-base changes on the platform of a quartz crystal microbalance. Chem. Commun. (Camb.), 51, 4670–4673
https://doi.org/10.1039/C4CC10114F pmid: 25690314
79 Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol., 14, 303–308
https://doi.org/10.1038/nbt0396-303 pmid: 9630890
80 Papadopoulou, E. and Bell, S. E. J. (2011) Label-free detection of single-base mismatches in DNA by surface-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. Engl., 50, 9058–9061
https://doi.org/10.1002/anie.201102776 pmid: 21774045
81 Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. and Mirkin, C. A. (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 277, 1078–1081
https://doi.org/10.1126/science.277.5329.1078 pmid: 9262471
82 Taton, T. A., Mirkin, C. A. and Letsinger, R. L. (2000) Scanometric DNA array detection with nanoparticle probes. Science, 289, 1757–1760
https://doi.org/10.1126/science.289.5485.1757 pmid: 10976070
83 Yao, D., Song, T., Zheng, B., Xiao, S., Huang, F. and Liang, H. (2015) The combination of gold nanorods and nanoparticles with DNA nanodevices for logic gates construction. Nanotechnology, 26, 425601
https://doi.org/10.1088/0957-4484/26/42/425601 pmid: 26421440
84 Yao, D., Li, H., Guo, Y., Zhou, X., Xiao, S. and Liang, H. (2016) A pH-responsive DNA nanomachine-controlled catalytic assembly of gold nanoparticles. Chem. Commun. (Camb.), 52, 7556–7559
https://doi.org/10.1039/C6CC03089K pmid: 27225943
85 Hobom, B. (1980) Surgery of genes — at the doorstep of synthetic biology. Med. Klin., 75, 14–21
86 Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342
https://doi.org/10.1038/35002131 pmid: 10659857
87 Elowitz, M. B. and Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338
https://doi.org/10.1038/35002125 pmid: 10659856
88 Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G. and Collins, J. J. (2009) Synthetic gene networks that count. Science, 324, 1199–1202
https://doi.org/10.1126/science.1172005 pmid: 19478183
89 Ausländer, S., Ausländer, D., Müller, M., Wieland, M. and Fussenegger, M. (2012) Programmable single-cell mammalian biocomputers. Nature, 487, 123–127
pmid: 22722847
90 Moon, T. S., Lou, C., Tamsir, A., Stanton, B. C. and Voigt, C. A. (2012) Genetic programs constructed from layered logic gates in single cells. Nature, 491, 249–253
https://doi.org/10.1038/nature11516 pmid: 23041931
91 Siuti, P., Yazbek, J. and Lu, T. K. (2013) Synthetic circuits integrating logic and memory in living cells. Nat. Biotechnol., 31, 448–452
https://doi.org/10.1038/nbt.2510 pmid: 23396014
92 Win, M. N. and Smolke, C. D. (2008) Higher-order cellular information processing with synthetic RNA devices. Science, 322, 456–460
https://doi.org/10.1126/science.1160311 pmid: 18927397
93 Hong, S. H., Ntai, I., Haimovich, A. D., Kelleher, N. L., Isaacs, F. J. and Jewett, M. C. (2014) Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation. ACS Synth. Biol., 3, 398–409
https://doi.org/10.1021/sb400140t pmid: 24328168
94 Karzbrun, E., Tayar, A. M., Noireaux, V. and Bar-Ziv, R. H. (2014) Programmable on-chip DNA compartments as artificial cells. Science, 345, 829–832
https://doi.org/10.1126/science.1255550 pmid: 25124443
95 Sun, Z. Z., Yeung, E., Hayes, C. A., Noireaux, V. and Murray, R. M. (2014) Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synth. Biol., 3, 387–397
https://doi.org/10.1021/sb400131a pmid: 24303785
96 Takahashi, M. K., Chappell, J., Hayes, C. A., Sun, Z. Z., Kim, J., Singhal, V., Spring, K. J., Al-Khabouri, S., Fall, C. P., Noireaux, V., (2015) Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription-translation (TX-TL) systems. ACS Synth. Biol., 4, 503–515
https://doi.org/10.1021/sb400206c pmid: 24621257
97 Pardee, K., Green, A. A., Ferrante, T., Cameron, D. E., DaleyKeyser, A., Yin, P. and Collins, J. J. (2014) Paper-based synthetic gene networks. Cell, 159, 940–954
https://doi.org/10.1016/j.cell.2014.10.004 pmid: 25417167
98 Pardee, K., Green, A. A., Takahashi, M. K., Braff, D., Lambert, G., Lee, J. W., Ferrante, T., Ma, D., Donghia, N., Fan, M., (2016) Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell, 165, 1255–1266
https://doi.org/10.1016/j.cell.2016.04.059 pmid: 27160350
99 Hannon, G. J. and Rossi, J. J. (2004) Unlocking the potential of the human genome with RNA interference. Nature, 431, 371–378
https://doi.org/10.1038/nature02870 pmid: 15372045
100 Wiznerowicz, M., Szulc, J. and Trono, D. (2006) Tuning silence: conditional systems for RNA interference. Nat. Methods, 3, 682–688
https://doi.org/10.1038/nmeth914 pmid: 16929312
101 Beisel, C. L., Bayer, T. S., Hoff, K. G. and Smolke, C. D. (2008) Model-guided design of ligand-regulated RNAi for programmable control of gene expression. Mol. Syst. Biol., 4, 224
https://doi.org/10.1038/msb.2008.62 pmid: 18956013
102 Masu, H., Narita, A., Tokunaga, T., Ohashi, M., Aoyama, Y. and Sando, S. (2009) An activatable siRNA probe: trigger-RNA-dependent activation of RNAi function. Angew. Chem. Int. Ed. Engl., 48, 9481–9483
https://doi.org/10.1002/anie.200903925 pmid: 19904783
103 Kumar, D., Kim, S. H. and Yokobayashi, Y. (2011) Combinatorially inducible RNA interference triggered by chemically modified oligonucleotides. J. Am. Chem. Soc., 133, 2783–2788
https://doi.org/10.1021/ja1107436 pmid: 21294507
104 Kumar, D., An, C.-I. and Yokobayashi, Y. (2009) Conditional RNA interference mediated by allosteric ribozyme. J. Am. Chem. Soc., 131, 13906–13907
https://doi.org/10.1021/ja905596t pmid: 19788322
105 Xie, Z., Liu, S. J., Bleris, L. and Benenson, Y. (2010) Logic integration of mRNA signals by an RNAi-based molecular computer. Nucleic Acids Res., 38,2692–2701
[1] Krishna Choudhary, Fei Deng, Sharon Aviran. Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions[J]. Quant. Biol., 2017, 5(1): 3-24.
[2] Russell Brown, Andreas Lengeling, Baojun Wang. Phage engineering: how advances in molecular biology and synthetic biology are being utilized to enhance the therapeutic potential of bacteriophages[J]. Quant. Biol., 2017, 5(1): 42-54.
[3] Mehdi Sadeghpour, Alan Veliz-Cuba, Gábor Orosz, Krešimir Josić, Matthew R. Bennett. Bistability and oscillations in co-repressive synthetic microbial consortia[J]. Quant. Biol., 2017, 5(1): 55-66.
[4] Jingwen Guan, Xu Shi, Roberto Burgos, Lanying Zeng. Visualization of phage DNA degradation by a type I CRISPR-Cas system at the single-cell level[J]. Quant. Biol., 2017, 5(1): 67-75.
[5] Keith C. Heyde, MaryJoe K. Rice, Sung-Ho Paek, Felicia Y. Scott, Ruihua Zhang, Warren C. Ruder. Modeling information exchange between living and artificial cells[J]. Quant. Biol., 2017, 5(1): 76-89.
[6] Hailin Meng, Yingfei Ma, Guoqin Mai, Yong Wang, Chenli Liu. Construction of precise support vector machine based models for predicting promoter strength[J]. Quant. Biol., 2017, 5(1): 90-98.
[7] Weizhong Tu, Shaozhen Ding, Ling Wu, Zhe Deng, Hui Zhu, Xiaotong Xu, Chen Lin, Chaonan Ye, Minlu Han, Mengna Zhao, Juan Liu, Zixin Deng, Junni Chen, Dong-Qing Wei, Qian-Nan Hu. SynBioEcoli: a comprehensive metabolism network of engineered E. coli in three dimensional visualization[J]. Quant. Biol., 2017, 5(1): 99-104.
[8] Bingxiang Xu, Zhihua Zhang. Computational inference of physical spatial organization of eukaryotic genomes[J]. Quant. Biol., 2016, 4(4): 302-309.
[9] Guanghui Zhu, Xing-Ming Zhao, Jun Wu. A survey on biomarker identification based on molecular networks[J]. Quant. Biol., 2016, 4(4): 310-319.
[10] Yasen Jiao, Pufeng Du. Performance measures in evaluating machine learning based bioinformatics predictors for classifications[J]. Quant. Biol., 2016, 4(4): 320-330.
[11] Zhun Miao, Xuegong Zhang. Differential expression analyses for single-cell RNA-Seq: old questions on new data[J]. Quant. Biol., 2016, 4(4): 243-260.
[12] Petr Kloucek, Armin von Gunten. On the possibility of identifying human subjects using behavioural complexity analyses[J]. Quant. Biol., 2016, 4(4): 261-269.
[13] Sebastián Torcida, Paula Gonzalez, Federico Lotto. A resistant method for landmark-based analysis of individual asymmetry in two dimensions[J]. Quant. Biol., 2016, 4(4): 270-282.
[14] Jing Qin, Bin Yan, Yaohua Hu, Panwen Wang, Junwen Wang. Applications of integrative OMICs approaches to gene regulation studies[J]. Quant. Biol., 2016, 4(4): 283-301.
[15] Zohreh Baharvand Irannia, Ting Chen. TACO: Taxonomic prediction of unknown OTUs through OTU co-abundance networks[J]. Quant. Biol., 2016, 4(3): 149-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed