|
|
|
A survey on biomarker identification based on molecular networks |
Guanghui Zhu, Xing-Ming Zhao( ), Jun Wu( ) |
| Department of Computer Science and Technology, Tongji University, Shanghai 201804, China |
|
|
|
|
Abstract Background: Identifying biomarkers for accurate diagnosis and prognosis of diseases is important for the prevention of disease development. The molecular networks that describe the functional relationships among molecules provide a global view of the complex biological systems. With the molecular networks, the molecular mechanisms underlying diseases can be unveiled, which helps identify biomarkers in a systematic way. Results: In this survey, we report the recent progress on identifying biomarkers based on the topology of molecular networks, and we categorize those biomarkers into three groups, including node biomarkers, edge biomarkers and network biomarkers. These distinct types of biomarkers can be detected under different conditions depending on the data available. Conclusions: The biomarkers identified based on molecular networks can provide more accurate diagnosis and prognosis. The pros and cons of different types of biomarkers as well as future directions to improve the methods for identifying biomarkers are also discussed.
|
| Author Summary The biomarkers identified based on molecular networks can be of help for accurate diagnosis and prognosis in a more systematic way. In this survey, three types of network based biomarkers are introduced, including node biomarkers, edge biomarkers and network biomarkers. The computational approaches for detecting the network based biomarkers are also introduced. |
| Keywords
biomarker
molecular network
module
pathway
|
|
Corresponding Author(s):
Xing-Ming Zhao,Jun Wu
|
| About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
|
Just Accepted Date: 28 September 2016
Online First Date: 09 November 2016
Issue Date: 01 December 2016
|
|
| 1 |
R. Akbani, , P. K. Ng, , H. M. Werner, , M. Shahmoradgoli, , F. Zhang, , Z. Ju, , W. Liu, , J. Y. Yang, , K. Yoshihara, , J. Li, , et al. (2014) A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat. Commun., 5, 3887
https://doi.org/10.1038/ncomms4887
pmid: 24871328
|
| 2 |
D. Bell, , A. Berchuck, , M. Birrer, , J. Chien, , D. W. Cramer, , F. Dao, , R. Dhir, , P. DiSaia, , H. Gabra, , P. Glenn, , et al. (2011) Integrated genomic analyses of ovarian carcinoma. Nature, 474, 609–615
https://doi.org/10.1038/nature10166
pmid: 21720365
|
| 3 |
R. G. Verhaak, , P. Tamayo, , J. Y. Yang, , D. Hubbard, , H. Zhang, , C. J. Creighton, , S. Fereday, , M. Lawrence, , S. L. Carter, , C. H. Mermel, , et al. (2013) Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J. Clin. Invest., 123, 517–525
pmid: 23257362
|
| 4 |
G. Wu, and L. Stein, (2012) A network module-based method for identifying cancer prognostic signatures. Genome Biol., 13, R112
https://doi.org/10.1186/gb-2012-13-12-r112
pmid: 23228031
|
| 5 |
W. Zhang, , J. Zang, , X. Jing, , Z. Sun, , W. Yan, , D. Yang, , B. Shen, and F. Guo, (2014) Identification of candidate miRNA biomarkers from miRNA regulatory network with application to prostate cancer. J. Transl. Med., 12, 66
https://doi.org/10.1186/1479-5876-12-66
pmid: 24618011
|
| 6 |
Y. Li, , W. Vongsangnak, , L. Chen, and B. Shen, (2014) Integrative analysis reveals disease-associated genes and biomarkers for prostate cancer progression. BMC Med. Genomics, 7, S3
https://doi.org/10.1186/1755-8794-7-S1-S3
pmid: 25080090
|
| 7 |
J. A. Santiago, and J. A. Potashkin, (2015) Network-based metaanalysis identifies HNF4A and PTBP1 as longitudinally dynamic biomarkers for Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 112, 2257–2262
https://doi.org/10.1073/pnas.1423573112
pmid: 25646437
|
| 8 |
Y. Li, , J. Xu, , H. Chen, , J. Bai, , S. Li, , Z. Zhao, , T. Shao, , T. Jiang, , H. Ren, , C. Kang,, et al. (2013) Comprehensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression. Nucleic Acids Res., 41, e203
https://doi.org/10.1093/nar/gkt1054
pmid: 24194606
|
| 9 |
A. Ozgür, , T. Vu, , G. Erkan, and D. R. Radev, (2008) Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics, 24, i277–i285
https://doi.org/10.1093/bioinformatics/btn182
pmid: 18586725
|
| 10 |
D. Bertrand, , K. R. Chng, , F. G. Sherbaf, , A. Kiesel, , B. K. H. Chia, , Y. Y. Sia, , S. K. Huang, , D. S. B. Hoon, , E. T. Liu, , A. Hillmer, , et al. (2015) Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles. Nucleic Acids Res., 43, e44
https://doi.org/10.1093/nar/gku1393
pmid: 25572314
|
| 11 |
C. Suo, , O. Hrydziuszko, , D. Lee, , S. Pramana, , D. Saputra, , H. Joshi, , S. Calza, and Y. Pawitan, (2015) Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. Bioinformatics, 31, 2607–2613
https://doi.org/10.1093/bioinformatics/btv164
pmid: 25810432
|
| 12 |
C. Gao, , X. Dang, , Y. Chen, and D. Wilkins, ( 2009) Graph ranking for exploratory gene data analysis. BMC Bioinformatics, 10, S19
https://doi.org/10.1186/1471-2105-10-S11-S19
pmid: 19811684
|
| 13 |
Y. Cun, and H. Fröhlich, (2013) Network and data integration for biomarker signature discovery via network smoothed T-statistics. PLoS One, 8, e73074
https://doi.org/10.1371/journal.pone.0073074
pmid: 24019896
|
| 14 |
M. Hofree, , J. P. Shen, , H. Carter, , A. Gross, and T. Ideker, (2013) Network-based stratification of tumor mutations. Nat. Methods, 10, 1108–1115
https://doi.org/10.1038/nmeth.2651
pmid: 24037242
|
| 15 |
Qin, G. M. Li, R. Y. and Zhao X. M. (2016) Identifying disease associated miRNAs based on protein domains. IEEE/ACM Trans. Comput. Biol. Bioinform
https://doi.org/10.1109/TCBB.2016.2515608
|
| 16 |
W. Zhang, , T. Zeng, and L. Chen, (2014) EdgeMarker: identifying differentially correlated molecule pairs as edge-biomarkers. J. Theor. Biol., 362, 35–43
https://doi.org/10.1016/j.jtbi.2014.05.041
pmid: 24931676
|
| 17 |
X. Liu, , Z. P. Liu, , X. M. Zhao, and L. Chen, (2012) Identifying disease genes and module biomarkers by differential interactions. J. Am. Med. Inform. Assoc., 19, 241–248
https://doi.org/10.1136/amiajnl-2011-000658
pmid: 22190040
|
| 18 |
R. Ben-Hamo, , M. Gidoni, and S. Efroni, (2014) PhenoNet: identification of key networks associated with disease phenotype. Bioinformatics, 30, 2399–2405
https://doi.org/10.1093/bioinformatics/btu199
pmid: 24812342
|
| 19 |
S. Ma, , T. Jiang, and R. Jiang, (2015) Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data. Bioinformatics, 31, 563–571
https://doi.org/10.1093/bioinformatics/btu672
pmid: 25322838
|
| 20 |
Y. Li, , C. Liang, , K. C. Wong, , K. Jin, and Z. Zhang, (2014) Inferring probabilistic miRNA-mRNA interaction signatures in cancers: a role-switch approach. Nucleic Acids Res., 42, e76
https://doi.org/10.1093/nar/gku182
pmid: 24609385
|
| 21 |
X. Yu, , G. Li, and L. Chen, (2014) Prediction and early diagnosis of complex diseases by edge-network. Bioinformatics, 30, 852–859
https://doi.org/10.1093/bioinformatics/btt620
pmid: 24177717
|
| 22 |
K. Q. Liu, , Z. P. Liu, , J. K. Hao, , L. Chen, and X. M. Zhao, (2012) Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinformatics, 13, 126
https://doi.org/10.1186/1471-2105-13-126
pmid: 22676414
|
| 23 |
Y. Wang, , J. Chen, , Q. Li, , H. Wang, , G. Liu, , Q. Jing, and B. Shen, (2011) Identifying novel prostate cancer associated pathways based on integrative microarray data analysis. Comput. Biol. Chem., 35, 151–158
https://doi.org/10.1016/j.compbiolchem.2011.04.003
pmid: 21704261
|
| 24 |
X. M. Zhao, , K. Q. Liu, , G. Zhu, , F. He, , B. Duval, , J. M. Richer, , D. S. Huang, , C. J. Jiang, , J. K. Hao, and L. Chen, (2015) Identifying cancer-related microRNAs based on gene expression data. Bioinformatics, 31, 1226–1234
https://doi.org/10.1093/bioinformatics/btu811
pmid: 25505085
|
| 25 |
G. D. Bader, and C. W. Hogue, (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4, 2
https://doi.org/10.1186/1471-2105-4-2
pmid: 12525261
|
| 26 |
T. Nepusz, , H. Yu, and A. Paccanaro, (2012) Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods, 9, 471–472
https://doi.org/10.1038/nmeth.1938
pmid: 22426491
|
| 27 |
X. Zhang, , L. Gao, , Z. P. Liu, and L. Chen, (2015) Identifying module biomarker in type 2 diabetes mellitus by discriminative area of functional activity. BMC Bioinformatics, 16, 92
https://doi.org/10.1186/s12859-015-0519-y
pmid: 25888350
|
| 28 |
H. Y. Chuang, , E. Lee, , Y. T. Liu, , D. Lee, and T. Ideker, (2007) Network-based classification of breast cancer metastasis. Mol. Syst. Biol., 3, 140
https://doi.org/10.1038/msb4100180
pmid: 17940530
|
| 29 |
T. Zeng, , D. C. Wang, , X. Wang, , F. Xu, and L. Chen, (2014) Prediction of dynamical drug sensitivity and resistance by module network rewiring-analysis based on transcriptional profiling. Drug Resist. Updat., 17, 64–76
https://doi.org/10.1016/j.drup.2014.08.002
pmid: 25156319
|
| 30 |
T. Zeng, , W. Zhang, , X. Yu, , X. Liu, , M. Li, and L. Chen, (2015) Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals. Brief. Bioinform., 17, 576–592
pmid: 26411472
|
| 31 |
A. Leung, , G. D. Bader, and J. Reimand, (2014) HyperModules: identifying clinically and phenotypically significant network modules with disease mutations for biomarker discovery. Bioinformatics, 30, 2230–2232
https://doi.org/10.1093/bioinformatics/btu172
pmid: 24713437
|
| 32 |
Y. A. Kim, , D. Y. Cho, , P. Dao, and T. M. Przytycka, (2015) MEMCover: integrated analysis of mutual exclusivity and functional network reveals dysregulated pathways across multiple cancer types. Bioinformatics, 31, i284–i292
https://doi.org/10.1093/bioinformatics/btv247
pmid: 26072494
|
| 33 |
Y. A. Kim, , R. Salari, , S. Wuchty, and T. M. Przytycka, (2013) Module cover—a new approach to genotype-phenotype studies, In Proceedings of the Pacific Symposium, Biocomputing, 135–146, Singapore: World Scientific
pmid: PMID:23424119
|
| 34 |
L. Chen, , R. Liu, , Z. P. Liu, , M. Li, and K. Aihara, (2012) Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep., 2, 342
https://doi.org/10.1038/srep00342
pmid: 22461973
|
| 35 |
R. Liu, , M. Li, , Z. P. Liu, , J. Wu, , L. Chen, and K. Aihara, (2012) Identifying critical transitions and their leading biomolecular networks in complex diseases. Sci. Rep., 2, 813
https://doi.org/10.1038/srep00813
pmid: 23230504
|
| 36 |
Y. Li, , S. Jin, , L. Lei, , Z. Pan, and X. Zou, (2015) Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis. Sci. Rep., 5, 9283
https://doi.org/10.1038/srep09283
pmid: 25788156
|
| 37 |
T. Zeng, , C. C. Zhang, , W. Zhang, , R. Liu, , J. Liu, and L. Chen, (2014) Deciphering early development of complex diseases by progressive module network. Methods, 67, 334–343
https://doi.org/10.1016/j.ymeth.2014.01.021
pmid: 24561825
|
| 38 |
A. Allahyar, and J. de Ridder, (2015) FERAL: network-based classifier with application to breast cancer outcome prediction. Bioinformatics, 31, i311–i319
https://doi.org/10.1093/bioinformatics/btv255
pmid: 26072498
|
| 39 |
A. de Gramont, , S. Watson, , L. M. Ellis, , J. Rodón, , J. Tabernero, , A. de Gramont, and S. R. Hamilton, (2015) Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat. Rev. Clin. Oncol., 12, 197–212
https://doi.org/10.1038/nrclinonc.2014.202
pmid: 25421275
|
| 40 |
G. Qin, and X. M. Zhao, (2014) A survey on computational approaches to identifying disease biomarkers based on molecular networks. J. Theor. Biol., 362, 9–16
https://doi.org/10.1016/j.jtbi.2014.06.007
pmid: 24931674
|
| 41 |
R. Liu, , X. Wang, , K. Aihara, and L. Chen, (2014) Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers. Med. Res. Rev., 34, 455–478
https://doi.org/10.1002/med.21293
pmid: 23775602
|
| 42 |
T. Zeng, , W. Zhang, , X. Yu, , X. Liu, , M. Li, , R. Liu, and L. Chen, (2014) Edge biomarkers for classification and prediction of phenotypes. Sci. China Life Sci., 57, 1103–1114
https://doi.org/10.1007/s11427-014-4757-4
pmid: 25326072
|
| 43 |
T. Zeng, , S. Y. Sun, , Y. Wang, , H. Zhu, and L. Chen, (2013) Network biomarkers reveal dysfunctional gene regulations during disease progression. FEBS J., 280, 5682–5695
https://doi.org/10.1111/febs.12536
pmid: 24107168
|
| 44 |
X. Liu, , R. Liu, , X. M. Zhao, and L. Chen, ( 2013) Detecting early-warning signals of type 1 diabetes and its leading biomolecular networks by dynamical network biomarkers. BMC Med Genomics, 6, S8
pmid: 23819540
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|