Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2016, Vol. 4 Issue (4) : 310-319    https://doi.org/10.1007/s40484-016-0084-z
REVIEW
A survey on biomarker identification based on molecular networks
Guanghui Zhu, Xing-Ming Zhao(), Jun Wu()
Department of Computer Science and Technology, Tongji University, Shanghai 201804, China
 Download: PDF(424 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: Identifying biomarkers for accurate diagnosis and prognosis of diseases is important for the prevention of disease development. The molecular networks that describe the functional relationships among molecules provide a global view of the complex biological systems. With the molecular networks, the molecular mechanisms underlying diseases can be unveiled, which helps identify biomarkers in a systematic way.

Results: In this survey, we report the recent progress on identifying biomarkers based on the topology of molecular networks, and we categorize those biomarkers into three groups, including node biomarkers, edge biomarkers and network biomarkers. These distinct types of biomarkers can be detected under different conditions depending on the data available.

Conclusions: The biomarkers identified based on molecular networks can provide more accurate diagnosis and prognosis. The pros and cons of different types of biomarkers as well as future directions to improve the methods for identifying biomarkers are also discussed.

Author Summary  The biomarkers identified based on molecular networks can be of help for accurate diagnosis and prognosis in a more systematic way. In this survey, three types of network based biomarkers are introduced, including node biomarkers, edge biomarkers and network biomarkers. The computational approaches for detecting the network based biomarkers are also introduced.
Keywords biomarker      molecular network      module      pathway     
Corresponding Author(s): Xing-Ming Zhao,Jun Wu   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 28 September 2016   Online First Date: 09 November 2016    Issue Date: 01 December 2016
 Cite this article:   
Guanghui Zhu,Xing-Ming Zhao,Jun Wu. A survey on biomarker identification based on molecular networks[J]. Quant. Biol., 2016, 4(4): 310-319.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-016-0084-z
https://academic.hep.com.cn/qb/EN/Y2016/V4/I4/310
Fig.1  Illustration of three types of network based biomarkers.
Database Description Interaction type Interaction quality
HumanNet A probabilistic functional gene network of Homo sapiens Interaction Computational confidence is provided
PathwayCommons Collection of biological pathway information collected from public pathway databases Pathway The pathways are either experimentally determined or computationally predicted
BIND A biomolecular interaction network database Interaction and pathway The interactions are based on experiments and literature
MicroCosm A database contains computationally predicted targets for microRNAs across various species MiRNA-target gene interaction Computational confidence is provided
InnateDB A database contains experimentally-verified interactions and signaling pathways involved in the innate immune response of humans, mice and bovines to microbial infection. Interaction and signaling pathway The interactions are experimentally verified
BioGRID Collections of physical and genetic interactions for major model organisms Interaction The interactions are curated from high-throughput datasets and individual focused studies
DIP The database contains experimentally determined interactions between proteins Interaction The interactions are experimentally determined
HPRD A database about human proteins and their interactions Interaction The interactions are manually curated from literature
MINT Collection of molecular interactions extracted from literature Interaction The interactions are experimentally verified
STRING A database about functional interactions for various organisms Interaction The interactions are either experimental determined or computationally predicted
KEGG A resource about high-level functional information for distinct organisms Pathway The interactions are manually drawn and predicted
Tab.1  Popular resources about different types of molecular networks.
Fig.2  The example of the smoothing process. The black and red values respectively represent the weights before and after smoothing.
Node biomarker Edge biomarker Network biomarker
Utilization of molecular network Network information is used to evaluate the impact of individual nodes. The network information is used to detect the rewired interactions. The network is used as the context to detect the dysfunctional modules in the network.
Advantages More simple and applicable The function interactions between pairs of nodes, i.e., edges, are considered The functional interactions among nodes are considered and have more predictive power.
Disadvantages The functional relationships among nodes is not considered. Edges are usually considered independently. Difficult to interpret and cannot be used directly in clinics
Tab.2  The characters, advantages and disadvantages of 3 kinds of network-based biomarkers.
Tool Biomarker type Description
NetworkAnalyst Node biomarker, network biomarker Analysis of degree and betweenness of nodes, detection of modules and shortest paths, and functional enrichment analysis
DGscore Node biomarker Detection of driver genes with a score for each sample
OncoIMPACT Node biomarker Quantify the impact of candidate driver mutations with genes connected to them
Network-based stratification (NBS) Node biomarker The mutation profiles are smoothed over the network and the subtypes are detected
stSVM Node biomarker Both mRNA and miRNA profiles were smoothed, which are further used for classification
DRAGEN Edge biomarker The identification of significant differentially regulated gene sets between different phenotypes
ProMISe Edge biomarker The detection of miRNA–mRNA interaction signatures for diagnosis
miR_Path Network biomarker The cancer-related miRNAs are detected
HyperModules Network biomarker The module biomarkers with frequently mutated genes are detected
FERAL Network biomarker Multiple operators are used to quantify the sets of connected genes as biomarker
Tab.3  Tools for the identification of the network-based biomarkers.
1 R. Akbani, , P. K. Ng, , H. M. Werner, , M. Shahmoradgoli, , F. Zhang, , Z. Ju, , W. Liu, , J. Y. Yang, , K. Yoshihara, , J. Li, , et al. (2014) A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat. Commun., 5, 3887
https://doi.org/10.1038/ncomms4887 pmid: 24871328
2 D. Bell, , A. Berchuck, , M. Birrer, , J. Chien, , D. W. Cramer, , F. Dao, , R. Dhir, , P. DiSaia, , H. Gabra, , P. Glenn, , et al. (2011) Integrated genomic analyses of ovarian carcinoma. Nature, 474, 609–615
https://doi.org/10.1038/nature10166 pmid: 21720365
3 R. G. Verhaak, , P. Tamayo, , J. Y. Yang, , D. Hubbard, , H. Zhang, , C. J. Creighton, , S. Fereday, , M. Lawrence, , S. L. Carter, , C. H. Mermel, , et al. (2013) Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J. Clin. Invest., 123, 517–525
pmid: 23257362
4 G. Wu, and L. Stein, (2012) A network module-based method for identifying cancer prognostic signatures. Genome Biol., 13, R112
https://doi.org/10.1186/gb-2012-13-12-r112 pmid: 23228031
5 W. Zhang, , J. Zang, , X. Jing, , Z. Sun, , W. Yan, , D. Yang, , B. Shen, and F. Guo, (2014) Identification of candidate miRNA biomarkers from miRNA regulatory network with application to prostate cancer. J. Transl. Med., 12, 66
https://doi.org/10.1186/1479-5876-12-66 pmid: 24618011
6 Y. Li, , W. Vongsangnak, , L. Chen, and B. Shen, (2014) Integrative analysis reveals disease-associated genes and biomarkers for prostate cancer progression. BMC Med. Genomics, 7, S3
https://doi.org/10.1186/1755-8794-7-S1-S3 pmid: 25080090
7 J. A. Santiago, and J. A. Potashkin, (2015) Network-based metaanalysis identifies HNF4A and PTBP1 as longitudinally dynamic biomarkers for Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 112, 2257–2262
https://doi.org/10.1073/pnas.1423573112 pmid: 25646437
8 Y. Li, , J. Xu, , H. Chen, , J. Bai, , S. Li, , Z. Zhao, , T. Shao, , T. Jiang, , H. Ren, , C. Kang,, et al. (2013) Comprehensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression. Nucleic Acids Res., 41, e203
https://doi.org/10.1093/nar/gkt1054 pmid: 24194606
9 A. Ozgür, , T. Vu, , G. Erkan, and D. R. Radev, (2008) Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics, 24, i277–i285
https://doi.org/10.1093/bioinformatics/btn182 pmid: 18586725
10 D. Bertrand, , K. R. Chng, , F. G. Sherbaf, , A. Kiesel, , B. K. H. Chia, , Y. Y. Sia, , S. K. Huang, , D. S. B. Hoon, , E. T. Liu, , A. Hillmer, , et al. (2015) Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles. Nucleic Acids Res., 43, e44
https://doi.org/10.1093/nar/gku1393 pmid: 25572314
11 C. Suo, , O. Hrydziuszko, , D. Lee, , S. Pramana, , D. Saputra, , H. Joshi, , S. Calza, and Y. Pawitan, (2015) Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. Bioinformatics, 31, 2607–2613
https://doi.org/10.1093/bioinformatics/btv164 pmid: 25810432
12 C. Gao, , X. Dang, , Y. Chen, and D. Wilkins, ( 2009) Graph ranking for exploratory gene data analysis. BMC Bioinformatics, 10, S19
https://doi.org/10.1186/1471-2105-10-S11-S19 pmid: 19811684
13 Y. Cun, and H. Fröhlich, (2013) Network and data integration for biomarker signature discovery via network smoothed T-statistics. PLoS One, 8, e73074
https://doi.org/10.1371/journal.pone.0073074 pmid: 24019896
14 M. Hofree, , J. P. Shen, , H. Carter, , A. Gross, and T. Ideker, (2013) Network-based stratification of tumor mutations. Nat. Methods, 10, 1108–1115
https://doi.org/10.1038/nmeth.2651 pmid: 24037242
15 Qin, G. M. Li, R. Y. and Zhao X. M. (2016) Identifying disease associated miRNAs based on protein domains. IEEE/ACM Trans. Comput. Biol. Bioinform
https://doi.org/10.1109/TCBB.2016.2515608
16 W. Zhang, , T. Zeng, and L. Chen, (2014) EdgeMarker: identifying differentially correlated molecule pairs as edge-biomarkers. J. Theor. Biol., 362, 35–43
https://doi.org/10.1016/j.jtbi.2014.05.041 pmid: 24931676
17 X. Liu, , Z. P. Liu, , X. M. Zhao, and L. Chen, (2012) Identifying disease genes and module biomarkers by differential interactions. J. Am. Med. Inform. Assoc., 19, 241–248
https://doi.org/10.1136/amiajnl-2011-000658 pmid: 22190040
18 R. Ben-Hamo, , M. Gidoni, and S. Efroni, (2014) PhenoNet: identification of key networks associated with disease phenotype. Bioinformatics, 30, 2399–2405
https://doi.org/10.1093/bioinformatics/btu199 pmid: 24812342
19 S. Ma, , T. Jiang, and R. Jiang, (2015) Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data. Bioinformatics, 31, 563–571
https://doi.org/10.1093/bioinformatics/btu672 pmid: 25322838
20 Y. Li, , C. Liang, , K. C. Wong, , K. Jin, and Z. Zhang, (2014) Inferring probabilistic miRNA-mRNA interaction signatures in cancers: a role-switch approach. Nucleic Acids Res., 42, e76
https://doi.org/10.1093/nar/gku182 pmid: 24609385
21 X. Yu, , G. Li, and L. Chen, (2014) Prediction and early diagnosis of complex diseases by edge-network. Bioinformatics, 30, 852–859
https://doi.org/10.1093/bioinformatics/btt620 pmid: 24177717
22 K. Q. Liu, , Z. P. Liu, , J. K. Hao, , L. Chen, and X. M. Zhao, (2012) Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinformatics, 13, 126
https://doi.org/10.1186/1471-2105-13-126 pmid: 22676414
23 Y. Wang, , J. Chen, , Q. Li, , H. Wang, , G. Liu, , Q. Jing, and B. Shen, (2011) Identifying novel prostate cancer associated pathways based on integrative microarray data analysis. Comput. Biol. Chem., 35, 151–158
https://doi.org/10.1016/j.compbiolchem.2011.04.003 pmid: 21704261
24 X. M. Zhao, , K. Q. Liu, , G. Zhu, , F. He, , B. Duval, , J. M. Richer, , D. S. Huang, , C. J. Jiang, , J. K. Hao, and L. Chen, (2015) Identifying cancer-related microRNAs based on gene expression data. Bioinformatics, 31, 1226–1234
https://doi.org/10.1093/bioinformatics/btu811 pmid: 25505085
25 G. D. Bader, and C. W. Hogue, (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4, 2
https://doi.org/10.1186/1471-2105-4-2 pmid: 12525261
26 T. Nepusz, , H. Yu, and A. Paccanaro, (2012) Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods, 9, 471–472
https://doi.org/10.1038/nmeth.1938 pmid: 22426491
27 X. Zhang, , L. Gao, , Z. P. Liu, and L. Chen, (2015) Identifying module biomarker in type 2 diabetes mellitus by discriminative area of functional activity. BMC Bioinformatics, 16, 92
https://doi.org/10.1186/s12859-015-0519-y pmid: 25888350
28 H. Y. Chuang, , E. Lee, , Y. T. Liu, , D. Lee, and T. Ideker, (2007) Network-based classification of breast cancer metastasis. Mol. Syst. Biol., 3, 140
https://doi.org/10.1038/msb4100180 pmid: 17940530
29 T. Zeng, , D. C. Wang, , X. Wang, , F. Xu, and L. Chen, (2014) Prediction of dynamical drug sensitivity and resistance by module network rewiring-analysis based on transcriptional profiling. Drug Resist. Updat., 17, 64–76
https://doi.org/10.1016/j.drup.2014.08.002 pmid: 25156319
30 T. Zeng, , W. Zhang, , X. Yu, , X. Liu, , M. Li, and L. Chen, (2015) Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals. Brief. Bioinform., 17, 576–592
pmid: 26411472
31 A. Leung, , G. D. Bader, and J. Reimand, (2014) HyperModules: identifying clinically and phenotypically significant network modules with disease mutations for biomarker discovery. Bioinformatics, 30, 2230–2232
https://doi.org/10.1093/bioinformatics/btu172 pmid: 24713437
32 Y. A. Kim, , D. Y. Cho, , P. Dao, and T. M. Przytycka, (2015) MEMCover: integrated analysis of mutual exclusivity and functional network reveals dysregulated pathways across multiple cancer types. Bioinformatics, 31, i284–i292
https://doi.org/10.1093/bioinformatics/btv247 pmid: 26072494
33 Y. A. Kim, , R. Salari, , S. Wuchty, and T. M. Przytycka, (2013) Module cover—a new approach to genotype-phenotype studies, In Proceedings of the Pacific Symposium, Biocomputing, 135–146, Singapore: World Scientific
pmid: PMID:23424119
34 L. Chen, , R. Liu, , Z. P. Liu, , M. Li, and K. Aihara, (2012) Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep., 2, 342
https://doi.org/10.1038/srep00342 pmid: 22461973
35 R. Liu, , M. Li, , Z. P. Liu, , J. Wu, , L. Chen, and K. Aihara, (2012) Identifying critical transitions and their leading biomolecular networks in complex diseases. Sci. Rep., 2, 813
https://doi.org/10.1038/srep00813 pmid: 23230504
36 Y. Li, , S. Jin, , L. Lei, , Z. Pan, and X. Zou, (2015) Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis. Sci. Rep., 5, 9283
https://doi.org/10.1038/srep09283 pmid: 25788156
37 T. Zeng, , C. C. Zhang, , W. Zhang, , R. Liu, , J. Liu, and L. Chen, (2014) Deciphering early development of complex diseases by progressive module network. Methods, 67, 334–343
https://doi.org/10.1016/j.ymeth.2014.01.021 pmid: 24561825
38 A. Allahyar, and J. de Ridder, (2015) FERAL: network-based classifier with application to breast cancer outcome prediction. Bioinformatics, 31, i311–i319
https://doi.org/10.1093/bioinformatics/btv255 pmid: 26072498
39 A. de Gramont, , S. Watson, , L. M. Ellis, , J. Rodón, , J. Tabernero, , A. de Gramont, and S. R. Hamilton, (2015) Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat. Rev. Clin. Oncol., 12, 197–212
https://doi.org/10.1038/nrclinonc.2014.202 pmid: 25421275
40 G. Qin, and X. M. Zhao, (2014) A survey on computational approaches to identifying disease biomarkers based on molecular networks. J. Theor. Biol., 362, 9–16
https://doi.org/10.1016/j.jtbi.2014.06.007 pmid: 24931674
41 R. Liu, , X. Wang, , K. Aihara, and L. Chen, (2014) Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers. Med. Res. Rev., 34, 455–478
https://doi.org/10.1002/med.21293 pmid: 23775602
42 T. Zeng, , W. Zhang, , X. Yu, , X. Liu, , M. Li, , R. Liu, and L. Chen, (2014) Edge biomarkers for classification and prediction of phenotypes. Sci. China Life Sci., 57, 1103–1114
https://doi.org/10.1007/s11427-014-4757-4 pmid: 25326072
43 T. Zeng, , S. Y. Sun, , Y. Wang, , H. Zhu, and L. Chen, (2013) Network biomarkers reveal dysfunctional gene regulations during disease progression. FEBS J., 280, 5682–5695
https://doi.org/10.1111/febs.12536 pmid: 24107168
44 X. Liu, , R. Liu, , X. M. Zhao, and L. Chen, ( 2013) Detecting early-warning signals of type 1 diabetes and its leading biomolecular networks by dynamical network biomarkers. BMC Med Genomics, 6, S8
pmid: 23819540
[1] Alvaro Filbert Liko, Edward Ciputra, Nathaniel Alvin Sanjaya, Priskila Cherisca Thenaka, David Agustriawan. DNA methylation profiling reveals new potential subtype-specific gene markers for early-stage renal cell carcinoma in Caucasian population[J]. Quant. Biol., 2022, 10(1): 79-93.
[2] Olha Kholod, Chi-Ren Shyu, Jonathan Mitchem, Jussuf Kaifi, Dmitriy Shin. Identifying patient-specific flow of signal transduction perturbed by multiple single-nucleotide alterations[J]. Quant. Biol., 2020, 8(4): 336-346.
[3] Henry Linder, Yuping Zhang. A pan-cancer integrative pathway analysis of multi-omics data[J]. Quant. Biol., 2020, 8(2): 130-142.
[4] Jing Zhao, Jian Yang, Saisai Tian, Weidong Zhang. A survey of web resources and tools for the study of TCM network pharmacology[J]. Quant. Biol., 2019, 7(1): 17-29.
[5] Bei Wang, Jinyu Chen, Shihua Zhang. BMTK: a toolkit for determining modules in biological bipartite networks[J]. Quant. Biol., 2018, 6(2): 186-192.
[6] Abraham A. Labena, Yi-Zhou Gao, Chuan Dong, Hong-li Hua, Feng-Biao Guo. Metabolic pathway databases and model repositories[J]. Quant. Biol., 2018, 6(1): 30-39.
[7] Varshini Vasudevaraja, Jamie Renbarger, Ridhhi Girish Shah, Garrett Kinnebrew, Murray Korc, Limei Wang, Yang Huo, Enze Liu, Lang Li, Lijun Cheng. PMTDS: a computational method based on genetic interaction networks for Precision Medicine Target-Drug Selection in cancer[J]. Quant. Biol., 2017, 5(4): 380-394.
[8] Minoru Kanehisa. Automated interpretation of metabolic capacity from genome and metagenome sequences[J]. Quant Biol, 2013, 1(3): 192-200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed