Please wait a minute...
Soil Ecology Letters

ISSN 2662-2289

ISSN 2662-2297(Online)

Soil Ecology Letters    2024, Vol. 6 Issue (1) : 230184    https://doi.org/10.1007/s42832-023-0184-4
RESEARCH ARTICLE
Low-density polyethylene microplastics partially alleviate the ecotoxicological effects induced by cadmium exposure on the earthworm Eisenia fetida
Song Zhang1,2,3,4, Yating Du1,2,3,4, Guangshen Shang1,2,4, Kejiao Hu1,2,4, Xing Wang1,2,4()
1. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
2. Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
3. Organic Cycle Research Institute (Suzhou), China Agricultural University, Suzhou 215100, China
4. Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China
 Download: PDF(5336 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● LDPE had no effect on the mortality, growth, and reproduction of earthworms.

● LDPE did not alter the mortality, growth, and reproduction of earthworm caused by Cd.

● LDPE alleviated histopathological damage to earthworms caused by Cd.

● LDPE alleviated DNA damage in earthworm coelomocytes caused by Cd.

● LDPE did not affect the accumulation of Cd in earthworms.

Cadmium (Cd) can accumulate in the food chain, with serious impacts on human health and safety. Microplastics (MPs) such as low-density polyethylene (LDPE) should be considered not only as a single pollutant but also as a carrier of other pollutants. In this study, we investigated the joint effects of 30% LDPE and 313 mg kg−1 Cd on mortality, growth, reproduction, microstructure, DNA damage, oxidative stress, and mRNA levels in the earthworm Eisenia fetida. We found that 313 mg kg−1 Cd inhibited growth and reproduction and damaged the microstructures of the skin and intestine. Meanwhile, LDPE had no effect on the mortality, growth, or cocoon production of earthworms. Moreover, it did not increase the mortality, growth, or inhibition of cocoon production caused by Cd and instead alleviated the DNA damage in coelomocytes caused by Cd treatment. Finally, it did not alter the accumulation of Cd in the worms. These indicators can be used for toxicity safety assessment and soil ecological risk assessment of LDPE and Cd cooccurrence in soil.

Keywords microplastics      Eisenia fetida      DNA damage      histopathological damage      heavy metals     
Corresponding Author(s): Xing Wang   
Issue Date: 10 December 2023
 Cite this article:   
Song Zhang,Yating Du,Guangshen Shang, et al. Low-density polyethylene microplastics partially alleviate the ecotoxicological effects induced by cadmium exposure on the earthworm Eisenia fetida[J]. Soil Ecology Letters, 2024, 6(1): 230184.
 URL:  
https://academic.hep.com.cn/sel/EN/10.1007/s42832-023-0184-4
https://academic.hep.com.cn/sel/EN/Y2024/V6/I1/230184
GeneGenBank accession no.Forward primer (5′–3′)Reverse primer (5′–3′)
β-actinY09623.1gttcgaaaccttcaactccctggtggtgaagctgtagcct
MTAJ236886.1gcaagagagggatcaacttgcaccacagcaccccttcttg
ANNAB164320.1tttgtcaacctgtcgctttctcgagggcacagaccttgct
TCTPGU177860tcgaatatgccctcagcaaatggactcgccacagaagagc
HSP70HQ693698.2ctgcgtatcatcaacgagccaatgtccttcttgtgcttgcgct
Tab.1  Sequences of primers used for real-time qPCR.
Fig.1  LDPE has no effect on inhibition of earthworm growth caused by Cd. (A) The mortality of earthworms increased with increasing Cd concentration. (B) The growth rate of earthworms decreased in response to 60% LDPE. (C) Mortality of earthworms showed no significant difference among treatments on days 7, 14, 21, and 28. (D) LDPE (30%) had no effect on the inhibition of earthworm growth caused by 313 mg kg?1 Cd. Different letters (a?c) in the graphs indicate significant differences between treatments (p < 0.05).
Fig.2  LDPE (30%) has no effect on the inhibition of earthworm cocoon production cause by 313 mg kg?1 Cd. (A) Earthworm cocoons from the control group. (B) The number of earthworm cocoons in the 30% LDPE group was nearly equal to that in the control group. (C) Fewer earthworm cocoons were obtained from the 313 mg kg?1 Cd group than the control group. (D) LDPE (30%) did not alleviate the inhibition of earthworm cocoon production caused by 313 mg kg?1 Cd. (E) Statistical analysis of A, B, C and D. The data are expressed as mean ± standard deviation (n = 5). *p < 0.05.
Fig.3  LDPE alleviates the damage to the microstructure of E. fetida caused by Cd. (A–D) The body wall tissues of earthworms exposed to 313 mg/kg Cd were severely damaged (scale bars, 500 μm). (A'–D') The epidermis of earthworms exposed to 313 mg kg?1 Cd was damaged and the circular muscle layer was thinned. E, CM and LM represent the epidermis, circular muscle and longitudinal muscle layers, respectively (scale bars, 100 μm). (A"–D") The chlorogenic tissue of earthworms exposed to 313 mg kg?1 Cd was damaged. Ch and Ep represent the chlorogenic tissue and epithelial tissue of the intestinal tract, respectively (scale bars, 100 μm).
Fig.4  LDPE can alleviate the DNA damage caused by Cd in earthworm coelomocytes. (A–A?) On the day 7, Cd treatment and LDPE + Cd treatment was seen to have caused DNA damage to coelomic cells. (B–B?) On day 14, Cd treatment and LDPE + Cd treatment was observed to have caused DNA damage to coelomic cells. (C–C?) On day 21, Cd treatment and LDPE + Cd treatment was seen to have caused DNA damage to coelomic cells. (D–D?) On day 28, LDPE alleviated the DNA damage caused by Cd treatment in coelomic cells (E). Control, 30% LDPE, 313 mg kg?1 Cd, and LDPE + Cd treated soils on days 7, 14, 21 and 28 (E). OTM values of the control, 30% LDPE, 313 mg kg?1 Cd and LDPE + Cd treated soils on days 7, 14, 21 and 28 (F). All data are expressed as mean ± standard deviation (n = 50), p < 0.05.
Fig.5  LDPE may aggravate the inhibition of the antioxidant system caused by Cd. (A) On days 7 and 21, LDPE aggravated the decrease in CAT activity caused by Cd. (B) POD activity was lower in the Cd treatment than the control on the days 14 and 21. (C) To alleviate the strong toxicity of Cd, earthworms were stimulated to produce more GSH. (D) MDA activity in the Cd treatment was higher than in the control on day 14. (E) The presence of LDPE strengthened the inhibition of SOD activity caused by Cd by day 28. (n = 5), p < 0.05.
Fig.6  The mRNA level of MT increases with coexposure of earthworms to LDPE and Cd. (A) The LDPE + Cd treatment increased MT expression in earthworms. (B) This result suggests that Cd and LDPE can reduce the expression of ANN. (C) TCTP expression was higher in the LDPE + Cd treatment than the Cd treatment on the days 7 and 28. (D) The HSP70 mRNA level was higher in the LDPE + Cd treatment than the Cd treatment on days 7 and 21. Data are presented as mean ± standard deviation (n = 5), p < 0.05.
Fig.7  LDPE does not affect the accumulation of Cd in E. fetida. The graph shows the following. Total: the total Cd content of soil (which was lower than the initial amount added to the Cd and LDPE + Cd treatments); acid-extractable fraction, that is, the level of Cd in the acid-extractable fraction; reducible fraction: the level of Cd in the reducible fraction; oxidizable fraction, that is, the level of Cd in the oxidizable fraction; residual fraction, that is, the level of Cd in the residual fraction; (E) the level of Cd in the Eisenia fetida. Data are presented as mean ± standard deviation (n = 5), p < 0.05.
1 C.G., Alimba, C., Faggio, 2019. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environmental Toxicology and Pharmacology68, 61–74.
https://doi.org/10.1016/j.etap.2019.03.001
2 M.M., Bradford, 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry72, 248–254.
https://doi.org/10.1016/0003-2697(76)90527-3
3 J., Cao, Q., Wang, Y., Lei, X., Jiang, M., Li, 2022. Accumulation of microplastics and Tcep pollutants in agricultural soil: Exploring the links between metabolites and gut microbiota in earthworm homeostasis. Environment International170, 107590.
https://doi.org/10.1016/j.envint.2022.107590
4 R.W., Chia, J.Y., Lee, H., Kim, J., Jang, 2021. Microplastic pollution in soil and groundwater: a review. Environmental Chemistry Letters19, 4211–4224.
https://doi.org/10.1007/s10311-021-01297-6
5 G.A., Dedeke, F.O., Owagboriaye, A.O., Adebambo, K.O., Ademolu, 2016. Earthworm metallothionein production as biomarker of heavy metal pollution in abattoir soil. Applied Soil Ecology104, 42–47.
https://doi.org/10.1016/j.apsoil.2016.02.013
6 N.J., Diepens, A.A., Koelmans, 2018. Accumulation of plastic debris and associated contaminants in aquatic food webs. Environmental Science & Technology52, 8510–8520.
https://doi.org/10.1021/acs.est.8b02515
7 Y., Du, G., Shang, J., Zhai, X., Wang, 2023. Effects of soybean oil exposure on the survival, reproduction, biochemical responses, and gut microbiome of the earthworm Eisenia fetida. Journal of Environmental Sciences (China)133, 23–36.
https://doi.org/10.1016/j.jes.2022.07.022
8 P., Farrell, K., Nelson, 2013. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environmental Pollution177, 1–3.
https://doi.org/10.1016/j.envpol.2013.01.046
9 J.B., Fleury, V.A., Baulin, 2021. Microplastics destabilize lipid membranes by mechanical stretching. Proceedings of the National Academy of Sciences of the United States of America118, 118.
https://doi.org/10.1073/pnas.2104610118
10 G., Gajski, B., Žegura, C., Ladeira, B., Pourrut, C., Del Bo’, M., Novak, M., Sramkova, M., Milić, K.B., Gutzkow, S., Costa, M., Dusinska, G., Brunborg, A., Collins, 2019. The comet assay in animal models: From bugs to whales - (Part 1 Invertebrates). Mutation Research/Reviews in Mutation Research779, 82–113.
https://doi.org/10.1016/j.mrrev.2019.02.003
11 L., Goswami, S., Pratihar, S., Dasgupta, P., Bhattacharyya, P., Mudoi, J., Bora, S.S., Bhattacharya, K.H., Kim, 2016. Exploring metal detoxification and accumulation potential during vermicomposting of Tea factory coal ash: sequential extraction and fluorescence probe analysis. Scientific Reports6, 30402.
https://doi.org/10.1038/srep30402
12 X., Gu, Z., Liu, X., Wang, J., Luo, H., Zhang, W., Davison, L.Q., Ma, Y., Xue, 2017. Coupling biological assays with diffusive gradients in thin-films technique to study the biological responses of Eisenia fetida to cadmium in soil. Journal of Hazardous Materials339, 340–346.
https://doi.org/10.1016/j.jhazmat.2017.06.049
13 M.E., Hodson, C.A., Duffus-Hodson, A., Clark, M.T., Prendergast-Miller, K.L., Thorpe, 2017. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environmental Science & Technology51, 4714–4721.
https://doi.org/10.1021/acs.est.7b00635
14 L.A., Holmes, A., Turner, R.C., Thompson, 2014. Interactions between trace metals and plastic production pellets under estuarine conditions. Marine Chemistry167, 25–32.
https://doi.org/10.1016/j.marchem.2014.06.001
15 C., Huang, Y., Ge, S., Yue, L., Zhao, Y., Qiao, 2021. Microplastics aggravate the joint toxicity to earthworm Eisenia fetida with cadmium by altering its availability. Science of the Total Environment753, 142042.
https://doi.org/10.1016/j.scitotenv.2020.142042
16 E., Huerta Lwanga, H., Gertsen, H., Gooren, P., Peters, T., Salánki, M., van der Ploeg, E., Besseling, A.A., Koelmans, V., Geissen, 2016. Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science & Technology50, 2685–2691.
https://doi.org/10.1021/acs.est.5b05478
17 E., Huerta Lwanga, B., Thapa, X., Yang, H., Gertsen, T., Salánki, V., Geissen, P., Garbeva, 2018. Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration. Science of the Total Environment624, 753–757.
https://doi.org/10.1016/j.scitotenv.2017.12.144
18 J.A., Ivar do Sul, M.F., Costa, 2014. The present and future of microplastic pollution in the marine environment. Environmental Pollution185, 352–364.
https://doi.org/10.1016/j.envpol.2013.10.036
19 X., Jiang, Y., Chang, T., Zhang, Y., Qiao, G., Klobučar, M., Li, 2020. Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida). Environmental Pollution259, 113896.
https://doi.org/10.1016/j.envpol.2019.113896
20 X., Jiang, Y., Yang, Q., Wang, N., Liu, M., Li, 2022. Seasonal variations and feedback from microplastics and cadmium on soil organisms in agricultural fields. Environment International161, 107096.
https://doi.org/10.1016/j.envint.2022.107096
21 M.B., Kirkham, 2006. Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma137, 19–32.
https://doi.org/10.1016/j.geoderma.2006.08.024
22 A.A., Koelmans, E., Besseling, A., Wegner, E.M., Foekema, 2013. Plastic as a carrier of POPs to aquatic organisms: A model analysis. Environmental Science & Technology47, 8992–8993.
23 X., Li, M., Wang, R., Jiang, L., Zheng, W., Chen, 2020a. Evaluation of joint toxicity of heavy metals and herbicide mixtures in soils to earthworms (Eisenia fetida). Journal of Environmental Sciences (China)94, 137–146.
https://doi.org/10.1016/j.jes.2020.03.055
24 Y., Li, X., Wang, Z., Sun, 2020b. Ecotoxicological effects of petroleum-contaminated soil on the earthworm Eisenia fetida. Journal of Hazardous Materials393, 122384.
https://doi.org/10.1016/j.jhazmat.2020.122384
25 X., Liang, D., Zhou, J., Wang, Y., Li, Y., Liu, Y., Ning, 2022. Evaluation of the toxicity effects of microplastics and cadmium on earthworms. Science of the Total Environment836, 155747.
https://doi.org/10.1016/j.scitotenv.2022.155747
26 J., Liu, J., Qin, L., Zhu, K., Zhu, Z., Liu, H., Jia, E., Lichtfouse, 2022. The protective layer formed by soil particles on plastics decreases the toxicity of polystyrene microplastics to earthworms (Eisenia fetida). Environment International162, 107158.
https://doi.org/10.1016/j.envint.2022.107158
27 P., Liu, K., Lu, J., Li, X., Wu, L., Qian, M., Wang, S., Gao, 2020. Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates. Journal of Hazardous Materials384, 121193.
https://doi.org/10.1016/j.jhazmat.2019.121193
28 J., Lourenco, A., Silva, F., Carvalho, J., Oliveira, M., Malta, S., Mendo, F., Gonçalves, R., Pereira, 2011. Histopathological changes in the earthworm Eisenia andrei associated with the exposure to metals and radionuclides. Chemosphere85, 1630–1634.
https://doi.org/10.1016/j.chemosphere.2011.08.027
29 A.A., Meharg, G., Norton, C., Deacon, P., Williams, E.E., Adomako, A., Price, Y., Zhu, G., Li, F.J., Zhao, S., McGrath, A., Villada, A., Sommella, P.M.C.S., De Silva, H., Brammer, T., Dasgupta, M.R., Islam, 2013. Variation in rice cadmium related to human exposure. Environmental Science & Technology47, 5613–5618.
https://doi.org/10.1021/es400521h
30 OECD, 2004. Guideline for Testing of Chemicals No. 222, Earthworm Reproduction Test (Eisenia fetida/Eisenia andrei). OECD, Paris, France
31 H.R.P., Phillips, C.A., Guerra, M.L.C., Bartz, M.J.I., Briones, G., Brown, T.W., Crowther, O., Ferlian, K.B., Gongalsky, J., van den Hoogen, J., Krebs, A., Orgiazzi, D., Routh, B., Schwarz, E.M., Bach, J.M., Bennett, U., Brose, T., Decaëns, B., König-Ries, M., Loreau, J., Mathieu, C., Mulder, W.H., van der Putten, K.S., Ramirez, M.C., Rillig, D., Russell, M., Rutgers, M.P., Thakur, F.T., de Vries, D.H., Wall, D.A., Wardle, M., Arai, F.O., Ayuke, G.H., Baker, R., Beauséjour, J.C., Bedano, K., Birkhofer, E., Blanchart, B., Blossey, T., Bolger, R.L., Bradley, M.A., Callaham, Y., Capowiez, M.E., Caulfield, A., Choi, F.V., Crotty, J.M., Crumsey, A., Dávalos, D.J., Diaz Cosin, A., Dominguez, A.E., Duhour, N., van Eekeren, C., Emmerling, L.B., Falco, R., Fernández, S.J., Fonte, C., Fragoso, A.L.C., Franco, M., Fugère, A.T., Fusilero, S., Gholami, M.J., Gundale, M.G., López, D.K., Hackenberger, L.M., Hernández, T., Hishi, A.R., Holdsworth, M., Holmstrup, K.N., Hopfensperger, E.H., Lwanga, V., Huhta, T.T., Hurisso, B.V. III, Iordache, M., Iannone, M., Joschko, N., Kaneko, R., Kanianska, A.M., Keith, C.A., Kelly, M.L., Kernecker, J., Klaminder, A.W., Koné, Y., Kooch, S.T., Kukkonen, H., Lalthanzara, D.R., Lammel, I.M., Lebedev, Y., Li, J.B., Jesus Lidon, N.K., Lincoln, S.R., Loss, R., Marichal, R., Matula, J.H., Moos, G., Moreno, A., Morón-Ríos, B., Muys, J., Neirynck, L., Norgrove, M., Novo, V., Nuutinen, V., Nuzzo, J., Pansu, S., Paudel, G., Pérès, L., Pérez-Camacho, R., Piñeiro, J.F., Ponge, M.I., Rashid, S., Rebollo, J., Rodeiro-Iglesias, M.Á., Rodríguez, A.M., Roth, G.X., Rousseau, A., Rozen, E., Sayad, L., van Schaik, B.C., Scharenbroch, M., Schirrmann, O., Schmidt, B., Schröder, J., Seeber, M.P., Shashkov, J., Singh, S.M., Smith, M., Steinwandter, J.A., Talavera, D., Trigo, J., Tsukamoto, A.W., de Valença, S.J., Vanek, I., Virto, A.A., Wackett, M.W., Warren, N.H., Wehr, J.K., Whalen, M.B., Wironen, V., Wolters, I.V., Zenkova, W., Zhang, E.K., Cameron, N., Eisenhauer, 2019. Global distribution of earthworm diversity. Science366, 480–485.
https://doi.org/10.1126/science.aax4851
32 L., Piola, J., Fuchs, M.L., Oneto, S., Basack, E., Kesten, N., Casabé, 2013. Comparative toxicity of two glyphosate-based formulations to Eisenia andrei under laboratory conditions. Chemosphere91, 545–551.
https://doi.org/10.1016/j.chemosphere.2012.12.036
33 J., Rinklebe, V., Antoniadis, S.M., Shaheen, O., Rosche, M., Altermann, 2019. Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International126, 76–88.
https://doi.org/10.1016/j.envint.2019.02.011
34 A., Rodriguez-Seijo, J., Lourenço, T.A.P., Rocha-Santos, J., da Costa, A.C., Duarte, H., Vala, R., Pereira, 2017. Histopathological and molecular effects of microplastics in Eisenia andrei Bouche. Environmental Pollution220, 495–503.
https://doi.org/10.1016/j.envpol.2016.09.092
35 M., Santadino, C., Coviella, F., Momo, 2014. Glyphosate sublethal effects on the population dynamics of the earthworm Eisenia fetida (Savigny, 1826). Water, Air, and Soil Pollution225, 2207.
https://doi.org/10.1007/s11270-014-2207-3
36 S., Satarug, S.H., Garrett, M.A., Sens, D.A., Sens, 2010. Cadmium, environmental exposure, and health outcomes. Environmental Health Perspectives118, 182–190.
https://doi.org/10.1289/ehp.0901234
37 Y.F., Sheng, Y., Liu, K., Wang, J.V., Cizdziel, Y., Wu, Y., Zhou, 2021. Ecotoxicological effects of micronized car tire wear particles and their heavy metals on the earthworm (Eisenia fetida) in soil. Science of the Total Environment793, 793.
https://doi.org/10.1016/j.scitotenv.2021.148613
38 Z., Shi, F., Zhang, C., Wang, 2018. Adsorption of phenanthrene by earthworms — A pathway for understanding the fate of hydrophobic organic contaminants in soil-earthworm systems. Journal of Environmental Management212, 115–120.
https://doi.org/10.1016/j.jenvman.2018.01.079
39 X., Song, M., Liu, D., Wu, L., Qi, C., Ye, J., Jiao, F., Hu, 2014. Heavy metal and nutrient changes during vermicomposting animal manure spiked with mushroom residues. Waste Management (New York, N.Y.)34, 1977–1983.
https://doi.org/10.1016/j.wasman.2014.07.013
40 Y., Song, L.S., Zhu, J., Wang, J.H., Wang, W., Liu, H., Xie, 2009. DNA damage and effects on antioxidative enzymes in earthworm (Eisenia foetida) induced by atrazine. Soil Biology & Biochemistry41, 905–909.
https://doi.org/10.1016/j.soilbio.2008.09.009
41 S.R., Stuerzenbaum, M., Höckner, A., Panneerselvam, J., Levitt, J-S., Bouillard, S., Taniguchi, L-A., Dailey, R., Ahmad Khanbeigi, E.V., Rosca, M., Thanou, K., Suhling, A.V., Zayats, M., Green, 2013. Biosynthesis of luminescent quantum dots in an earthworm. Nature Nanotechnology8, 57–60.
https://doi.org/10.1038/nnano.2012.232
42 Y., Sun, H., Li, G., Guo, K.T., Semple, K.C., Jones, 2019. Soil contamination in China: Current priorities, defining background levels and standards for heavy metals. Journal of Environmental Management251, 109512.
https://doi.org/10.1016/j.jenvman.2019.109512
43 L., Tian, C., Jinjin, R., Ji, Y., Ma, X., Yu, 2022. Microplastics in agricultural soils: sources, effects, and their fate. Current Opinion in Environmental Science & Health25, 100311.
https://doi.org/10.1016/j.coesh.2021.100311
44 C., Wang, H., Rong, H., Liu, X., Wang, Y., Gao, R., Deng, R., Liu, Y., Liu, D., Zhang, 2018a. Detoxification mechanisms, defense responses, and toxicity threshold in the earthworm Eisenia foetida exposed to ciprofloxacin-polluted soils. Science of the Total Environment612, 442–449.
https://doi.org/10.1016/j.scitotenv.2017.08.120
45 G., Wang, X., Xia, J., Yang, M., Tariq, J., Zhao, M., Zhang, K., Huang, K., Lin, W., Zhang, 2020. Exploring the bioavailability of nickel in a soil system: Physiological and histopathological toxicity study to the earthworms (Eisenia fetida). Journal of Hazardous Materials383, 121169.
https://doi.org/10.1016/j.jhazmat.2019.121169
46 J., Wang, S., Coffin, C., Sun, D., Schlenk, J., Gan, 2019a. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environmental Pollution249, 776–784.
https://doi.org/10.1016/j.envpol.2019.03.102
47 J., Wang, J., Wang, G., Wang, L., Zhu, J., Wang, 2016. DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida. Chemosphere144, 510–517.
https://doi.org/10.1016/j.chemosphere.2015.09.004
48 K., Wang, Y., Qiao, H., Zhang, S., Yue, H., Li, X., Ji, L., Liu, 2018b. Bioaccumulation of heavy metals in earthworms from field contaminated soil in a subtropical area of China. Ecotoxicology and Environmental Safety148, 876–883.
https://doi.org/10.1016/j.ecoenv.2017.11.058
49 X., Wang, L., Chang, Z., Sun, Y., Zhang, L., Yao, 2010. Analysis of earthworm Eisenia fetida proteomes during cadmium exposure: An ecotoxicoproteomics approach. Proteomics10, 4476–4490.
https://doi.org/10.1002/pmic.201000209
50 X., Wang, X., Zhu, Q., Peng, Y., Wang, J., Ge, G., Yang, X., Wang, L., Cai, W., Shen, 2019b. Multi-level ecotoxicological effects of imidacloprid on earthworm (Eisenia fetida). Chemosphere219, 923–932.
https://doi.org/10.1016/j.chemosphere.2018.12.001
51 Y., Wang, Y., Li, H., Geng, Q., Zuo, M., Thunders, J., Qiu, 2022. Effect of arsenite on the proteome of earthworms Eisenia fetida. Soil Ecology Letters5, 181–194.
https://doi.org/10.1007/s42832-021-0126-y
52 Z.D., Wang, L., Zhang, X., Wang, 2023. Molecular toxicity and defense mechanisms induced by silver nanoparticles in Drosophila melanogaster. Journal of Environmental Sciences (China)125, 616–629.
https://doi.org/10.1016/j.jes.2021.12.027
53 B., Wu, Z., Liu, Y., Xu, D., Li, M., Li, 2012. Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta). Ecotoxicology and Environmental Safety81, 122–126.
https://doi.org/10.1016/j.ecoenv.2012.05.003
54 X., Yan, J., Wang, L., Zhu, J., Wang, S., Li, Y.M., Kim, 2021. Oxidative stress, growth inhibition, and DNA damage in earthworms induced by the combined pollution of typical neonicotinoid insecticides and heavy metals. Science of the Total Environment754, 141873.
https://doi.org/10.1016/j.scitotenv.2020.141873
55 X., Yang, Y., Li, X., Wang, 2020. Effects of ciprofloxacin exposure on the earthworm Eisenia fetida. Environmental Pollution262, 114287.
https://doi.org/10.1016/j.envpol.2020.114287
56 X., Yang, G., Shang, X., Wang, 2022. Biochemical, transcriptomic, gut microbiome responses and defense mechanisms of the earthworm Eisenia fetida to salt stress. Ecotoxicology and Environmental Safety239, 113684.
https://doi.org/10.1016/j.ecoenv.2022.113684
57 H., Zhang, X., Yuan, T., Xiong, H., Wang, L., Jiang, 2020. Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chemical Engineering Journal398, 125657.
https://doi.org/10.1016/j.cej.2020.125657
58 S., Zhao, L., He, Y., Lu, L., Duo, 2017. The impact of modified nano-carbon black on the earthworm Eisenia fetida under turfgrass growing conditions: Assessment of survival, biomass, and antioxidant enzymatic activities. Journal of Hazardous Materials338, 218–223.
https://doi.org/10.1016/j.jhazmat.2017.05.035
59 Y., Zhou, X., Liu, J., Wang, 2020. Ecotoxicological effects of microplastics and cadmium on the earthworm Eisenia foetida. Journal of Hazardous Materials392, 122273.
https://doi.org/10.1016/j.jhazmat.2020.122273
60 M.L.J.F.Y.S.B., Zhu, 2023. Microplastics effects on soil biota are dependent on their properties: A meta-analysis. Soil Biology & Biochemistry178, 108940.
[1] Mohammed F.S.A. Ghanem, Shahid Afzal, Humira Nesar, Zarrin Imran, Wasim Ahmad. Impact of metal polluted sewage water on soil nematode assemblages in agricultural settings of Aligarh, India[J]. Soil Ecology Letters, 2024, 6(1): 230193-.
[2] Sana Khalid, Muhammad Shahid, Zeid A. ALOthman, Abdullah A. Al-Kahtani, Behzad Murtaza, Camille Dumat. Predicting chemical speciation of metals in soil using Visual Minteq[J]. Soil Ecology Letters, 2023, 5(3): 220162-.
[3] Zhengxin Xu, Can Hu, Xufeng Wang, Long Wang, Jianfei Xing, Xiaowei He, Zaibin Wang, Pengfei Zhao. Distribution characteristics of plastic film residue in long-term mulched farmland soil[J]. Soil Ecology Letters, 2023, 5(3): 220144-.
[4] Xiao Liu, Xia Xu, Tian Ma, Shiwei Zhou, Xiaoli Bi, Hongbo He, Xudong Zhang, Weihuan Li. Linking microbial carbon pump capacity and efficacy to soil organic carbon storage and stability under heavy metal pollution[J]. Soil Ecology Letters, 2023, 5(2): 220140-.
[5] Anandkumar Jayapal, Tanushree Chaterjee, Biju Prava Sahariah. Bioremediation techniques for the treatment of mine tailings: A review[J]. Soil Ecology Letters, 2023, 5(2): 220149-.
[6] Fang Wang, Yu Wang, Leilei Xiang, Marc Redmile-Gordon, Chenggang Gu, Xinglun Yang, Xin Jiang, Damià Barceló. Perspectives on ecological risks of microplastics and phthalate acid esters in crop production systems[J]. Soil Ecology Letters, 2022, 4(2): 97-108.
[7] Yongxing Cui, Xia Wang, Xiangxiang Wang, Xingchang Zhang, Linchuan Fang. Evaluation methods of heavy metal pollution in soils based on enzyme activities: A review[J]. Soil Ecology Letters, 2021, 3(3): 169-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed