Please wait a minute...
Soil Ecology Letters

ISSN 2662-2289

ISSN 2662-2297(Online)

Soil Ecology Letters    2024, Vol. 6 Issue (1) : 230193    https://doi.org/10.1007/s42832-023-0193-3
RESEARCH ARTICLE
Impact of metal polluted sewage water on soil nematode assemblages in agricultural settings of Aligarh, India
Mohammed F.S.A. Ghanem, Shahid Afzal, Humira Nesar, Zarrin Imran, Wasim Ahmad()
Nematode Biodiversity Research Lab, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
 Download: PDF(5084 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Sewage water in agriculture threatens human health and soil ecosystems through metal pollution.

● Nematodes show promise as bioindicators of soil health due to their abundance and position in soil food webs.

● Metal-polluted water decreased abundance of certain nematode groups and Sigma Maturity Index.

● Metal pollution positively affected nematode groups with r-selected life cycles.

Sewage water has been inappropriately used in agriculture, posing possible threats to human health and the soil ecosystems by its constituent pollutants, especially heavy metals. Correct evaluation of its influences on soil biomes needs to consider the response of soil fauna. Among soil organisms, nematodes are seen as the best promising candidates for bioindicators of soil health. Here in, we collected soil samples from fresh water irrigated field from three sites (S1, S2 and S3) and sewage water irrigated distance gradient (5 m−40 m), to assess the influence of metal (Cu, Zn, Cd, Mn, Pb) polluted water on various characteristics of nematode communities. The results indicated that the heavy metals decreased the abundance of C-p3 nematodes, herbivores, and predatory nematodes as well as sigma maturity index, whereas, C-p1, C-p2, bacterivore and fungivore nematodes abundance and diversity positively responded to the metal pollution. Generally, nematode genera with r-selected life cycle were positively affected and those with K-selected life cycle were negatively affected by metal pollution. Overall nematode community has potential to be used as indicator of pollution stress in agricultural soils to check soil health and sustainability.

Keywords heavy metals      sewage irrigation      agriculture      nematodes      bioindicators     
Corresponding Author(s): Wasim Ahmad   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Issue Date: 10 December 2023
 Cite this article:   
Mohammed F.S.A. Ghanem,Shahid Afzal,Humira Nesar, et al. Impact of metal polluted sewage water on soil nematode assemblages in agricultural settings of Aligarh, India[J]. Soil Ecology Letters, 2024, 6(1): 230193.
 URL:  
https://academic.hep.com.cn/sel/EN/10.1007/s42832-023-0193-3
https://academic.hep.com.cn/sel/EN/Y2024/V6/I1/230193
Soil propertiesS1S2S35 m10 m15 m20 m25 m30 m35 m40 mF-valueP-value
pH7.63±0.1b7.86±0.1b7.7±0.05b8.76±0.00a8.7±0.0a8.76±0.1a8.7±0.0a8.7±0.0a8.76±0.1a8.7±0.0a8.7±0.0a17.80.0001
SM (%)57.33±1a54.33±5.5a57.66±2a55±0.00a55±0.0a55.66±1.41a57±0.0a55±0.0a55±0.0a57.66±3a55±0.0a0.7000.715
EC (μs cm?1)0.92±0.07a0.76±0.02a0.94±0.15a0.30±0.00b0.42±0.0b0.32±0.01b0.41±0.0b0.30±0.0b0.39±0.0b0.31±0.00b0.30±0.0b2.3000.050
Soil nutrients (mg kg?1)
TN316.62±1.23b422.43±14.99a298.93±1.75b255.88±1.93c235.64±2.56c258.86±2.2c191.76±9.9c238.92±0.75c317.19±1.17b223.41±1.05c218±1.21c61.6000.0001
SOC0.62±0.14a0.45±0.00ab0.61±0.03a0.43±0.01a0.36±0.04b0.42±0.09ab0.38±0.02b0.48±0.03ab0.40±0.04b0.36±0.00b0.4±0.01b5.4110.0005
P28.15±7.23a28.77±4.95a30.36±1.31a24.43±0.52a18.50±0.55a29.61±0.53a10.53±0.49a18.16±5.54a15.99±5.36a22.41±0.14a23.60±1.14a6.6360.768
K249.1±27.32cde221.60±6.77e228.53±4.90de240.10±0.41cde244.74±0.99cde367.15±2.54a266.25±0.91c318.64±0.95b261.24±3.51cd259±85±1.51cd262.63±0.92cd32.300.0001
S6.01±0.46ab6.53±0.29ab6.45±0.11ab6.57±0.11ab6.65±0.03ab7.33±0.3a6.10±0.03ab5.50±0.25b6.08±0.06ab7.19±0.19a6.15±0.04ab4.3200.002
Metals (mg kg?1)
Mn2.10±0.06b2.23±0.28b2.7±0.07b3.48±0.09a3.38±0.12a3.66±0.29a2.48±0.06b2.51±0.11b2.63±0.18b2.71±0.07b2.53±0.02b13.500.0001
Cu0.03±0.00b0.00±0.00b0.00±0.00b1.11±0.09a1.22±0.02a1.45±0.51a1.53±0.06b1.93±0.3b01.61±0.088b1.49±0.13b1.31±0.11b17.800.0001
Pb0.41±0.03a0.05±0.03a0.166±0.21a0.33±0.15a0.15±0.01a1.13±0.02a0.4±0.45a0.34±0.39a0.04±0.03a0.04±0.02a0.02±0.01a0.8730.548
Zn0.04±0.03d0.00±0.00d0.00±0.00d14.21±3.98a9.23±1.29b9.23±2.88c7.55±0.53cd8.05±1.15cd6.01±0.23d5.57±0.54d0.15±0.15d47.300.0001
Cd0.00±0.00f0.00±0.00f0.00±0.00f19.75±0.49a17.63±0.93b16.10±0.93c11.10±0.99de9.29±1.05cdef9.93±0.05f8.38±1.41f4.96±0.10ef99.20.0001
Tab.1  Various soil parameters and total heavy metal content at fresh water irrigated locations and sewage water irrigated field along a distance gradient. Data is mean±SE (n=5).
Fig.1  Total abundances of nematodes (A), C-p1 abundance (B), C-p2 abundance (C), C-p3 abundance (D), C-p4 abundance (E), and C-p5 abundance (F). Different letters indicate significant pairwise differences between means indicated by ANOVA followed by post hoc Tukey HSD test (P < 0.05).
S1S2S35 m10 m15 m20 m25 m30 m35 m40 mF-valueP-value
Functional indices
MI2.65±0.05a2.85±0.09a2.92±0.04a2.62±0.04a2.59±0.05a2.66±0.05a2.69±0.03a2.67±0.05a2.90±0.12a2.66±0.04a2.59±0.03a2.900.60
MI2-52.72±0.03a2.92±0.06a3±0.13a3.02±0.45a2.93±0.03a3.08±0.155a3.10±0.01a3.06±0.01a2.99±0.09a2.76±0.04a2.75±0.17a2.380.043
PPI2.95±0.01a2.97±0.02a3.02±0.00a2.94±0.01a2.91±0.02a2.88±0.01a2.9±0.00a2.92±0.05a3.2±0.05a3.01±0.12a3.11±0.33a1.230.323
CI60.86±5.62ab62.25±21.32ab64.81±27.78ab18.18±5.14b22.08±5.80b18.32±5.07b16.46±0.56b20.13±3.00b55.69±16.14ab65.83±30.19ab84.31±23.53a2.700.025
EI38.92±3.17bcde34.69±4.33e35.98±18.81de65.52±5.26abc63.07±5.48abcd68.27±7.75a66.67±2.41ab66.95±1.77ab35.96±4.28de40.35±12.09abcde37.62±4.06cde7.300.0001
SI68.93±1.02a76.06±2.58a78.30±3.58a77.62±0.9a74.89±1.31a79.61±3.43a79.76±0.05a79.53±0.41a75.86±3a68.86±0.82a68.14±8.17a2.590.070
Total nematode biomass
TBN0.37±0.01a0.46±0.02a0.40±0.04a0.31±0.08b0.30±0.00b0.45±0.155a0.39±0.08a0.39±0.4a0.11±0.01bc0.13±0.01bc0.08±0.00c10.2800.0001
Diversity indices
1-D0.78±0.00b0.74±0.10b0.81±0.08ab0.88±0.01a0.88±0.01a0.89±0.00a0.86±0.00a0.88±0.00a0.84±0.01a0.87±0.01a0.88±0.02a4.8800.001
H2.02±0.02b1.87±0.07b2.14±0.02b2.45±0.17a2.45±0.12a2.53±0.00a2.40±0.04a2.56±0.01a2.23±0.07a2.44±0.04a2.46±0.28a9.400.0001
J0.35±0.01de0.32±0.0030.46±0.01cd0.60±0.02b0.68±0.03ab0.62±0.01ab0.58±0.03bc0.58±0.01b0.59±0.02b0.67±0.00ab0.73±0.02a31.470.0001
GR21.5±1.75a20±1.5a18.66±0.00a24.41±9.25a17±1.5a20.33±0.5a19.33±2a22±0.00a15.66±0.5a17.33±0.5a16.66±5.5a1.2470.317
Trophic abundances
Ba45.24±1.39a48.08±7.03a47.29±21.75a82.13±14.2a94.29±1.01a117.71±18.43a110.89±15.61a109.83±6.71a72.96±17.09a72.32±4.08a55.3±9.61a1.2320.325
Fu43.87±4.78b34.14±5.18b38.19±3.00b60.43±4.65a77.47±9.73a103.47±15.15a91.72±12.95a99.89±16.36a65.8±6.78a73.49±7.90a56.88±16.48a7.780.0001
He328.61±15.92b380.14±33.4a312.86±29.54b42.63±21.45d50.33±9.73d69.36±1.93d84.52±12.33c83.43±8.11c7.17±7.17f15.3±3.81ef11.99±2.92ef16.3100.0001
Om15.00±0.0911.94±6.16a27.80±2.33a10.23±2.35a11.86±4.25a20.35±5.31a15.91±2.95a20.18±6.40a5.22±1.83a6.19±3.82a5.51±3.02a2.4850.036
Pr15.25±2.06b28.14±0.69a26.07±4.28a0.33±0.5c0.92±0.16c1.23±0.24c2.33±1.10c1.32±0.93c2.45±1c3.76±3.82c1.87±0.83c34.0080.0001
Tab.2  Various parameters of soil nematode community under fresh water irrigated locations and sewage water irrigated field along a distance gradient. Data is mean±SE. (n=5).
S1S2S35 m10 m15 m20 m25 m30 m35 m40 m
S1??0.185?0.2590.9250.92511110.9630.888
S2?0.185??0.3700.9250.8881110.96311
S3?0.259?0.370?0.5180.6290.8880.8510.8880.7030.8140.518
5 m0.9250.9250.518?0.2590.7030.3700.7400.8880.6290.592
10 m0.9250.8880.6290.259?0.111?0.2220.4810.7030.2960.740
15 m110.8880.7030.111??0.3700.25910.7401
20 m110.8510.370?0.2220.370??0.1110.7400.6661
25 m110.8880.7400.4810.259?0.111?111
30 m10.9630.7030.8880.70310.7401??0.2960
35 m0.96310.8140.6290.2960.7400.6661?0.296??0.296
40 m0.88810.5180.5920.7401110?0.296?
Tab.3  Pairwise comparisons of nematode community composition (ANOISM) between reference sites and distance gradient under sewage water irrigation.
Fig.2  Non-metric multidimensional scaling ordination (NMDS) of the nematode genera composition (based on Bray-Curtis similarities of square-root transformed relative abundances of nematode genera) in fresh water irrigated sites soils (S1, S2 and S3) and Sewage water irrigated distance gradient (5 m?40 m) in agricultural soil. S1: Filled square; S2: Blank square; S3: Filled circle; 5 m: Cross; 10 m: Blank diamond; 15 m: Star; 20 m: Blank triangle; 25 m: Filled triangle; 30 m: Filled diamond; 35 m: Blank inverted triangle; 40 m: Filled inverted triangle.
Fig.3  Sigma maturity index of the nematode community. Different letters indicate significant pairwise differences between means indicated by ANOVA followed by post hoc Tukey HSD test (P < 0.05).
Fig.4  Principal Component analysis of the abiotic variables and nematodes variables from fresh water irrigation sites (S1?S3) and sewage water irrigated distance gradient soils (5 m?40 m). For the abbreviations of abiotic variables and nematodes variable, see Table 1. The first and second axis showed a variability of 40.03% and 15.96% respectively.
Fig.5  Correlation matrix between the abiotic variables and nematode variables (TNA: Total nematode abundance; C-p1?C-p5: nematode abundances). For the abbreviations of abiotic variables, see Table 1.
Fig.6  Principal component analysis of the abiotic variables and nematodes genera abundances from fresh water irrigation sites (S1?S3) and sewage water irrigated distance gradient soils (5 m?40 m). For the abbreviations of abiotic variables, see Table 1, and nematodes genera, see Table S2. The first and second axis showed a variability of 26.6% and 9.5% respectively.
1 S., Afzal, H., Nesar, Z., Imran, W., Ahmad, 2021. Altitudinal gradient affect abundance, diversity and metabolic footprint of soil nematodes in Banihal-Pass of Pir-Panjal mountain range. Scientific Reports11, 1–13.
https://doi.org/10.1038/s41598-021-95651-x
2 S., Afzal, H., Nesar, Z., Imran, W., Ahmad, 2022. Change in land-use from natural forest impacts functional composition and metabolic footprint of soil nematode community in Western Himalayas. Acta Ecologica Sinica doi:10.1016/j.chnaes.2022.12.004
3 M.A., Agoro, A.O., Adeniji, M.A., Adefisoye, O.O., Okoh, 2020. Heavy metals in wastewater and sewage sludge from selected municipal treatment plants in Eastern Cape Province, South Africa. Water (Basel)12, 2746.
https://doi.org/10.3390/w12102746
4 W., Ahmad, M.S., Jairajpuri, 2010. Mononchida: The Predaceous Nematodes. Nematology Monographs and Perspectives 7. E. J. Brill, Leiden, The Netherlands. pp. 299
5 M.A., Alghobar, S., Suresha, 2017. Evaluation of metal accumulation in soil and tomatoes irrigated with sewage water from Mysore city, Karnataka, India. Journal of the Saudi Society of Agricultural Sciences16, 49–59.
https://doi.org/10.1016/j.jssas.2015.02.002
6 A., Amin, A.R., Naik, M., Azhar, H., Nayak, 2013. Bioremediation of different waste waters−a review. Continental Journal of Fisheries and Aquatic Science7, 7–17.
7 I., Andrássy, 1956. The determination of volume and weight of nematodes. Acta Zoologica Academiae Scientiarum Hungaricae2, 1–15.
8 I., Andrássy, 2005. Free-living nematodes of Hungary: Nematoda Errantia (Vol. 1). Budapest, Hungary: Hungarian Natural History Museum
9 S.K., Awasthi, 2000. Prevention of food adulteration act no 37 of 1954: Central and State rules as amended for 1999. Ashoka, New Delhi
10 G., Bakonyi, P., Nagy, I., Kádár, 2003. Long-term effects of heavy metals and microelements on nematode assemblage. Toxicology Letters140, 391–401.
https://doi.org/10.1016/S0378-4274(03)00035-3
11 K.S., Balkhair, M.A., Ashraf, 2016. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi Journal of Biological Sciences23, S32–S44.
https://doi.org/10.1016/j.sjbs.2015.09.023
12 R.D., Bardgett, T.W., Speir, D.J., Ross, G.W., Yeates, H.A., Kettles, 1994. Impact of pasture contamination by copper, chromium, and arsenic timber preservative on soil microbial properties and nematodes. Biology and Fertility of Soils18, 71–79.
https://doi.org/10.1007/BF00336448
13 R., Bharose, S.B., Lal, S.K., Singh, P.K., Srivastava, 2013. Heavy metals pollution in soil-water-vegetation continuum irrigated with ground water and untreated sewage. Bulletin of Environmental and Scientific Research2, 1–8.
14 T., Bongers, 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia83, 14–19.
https://doi.org/10.1007/BF00324627
15 T., Bongers, 1999. The Maturity Index, the evolution of nematode life history traits, adaptive radiation and cp-scaling. Plant and Soil212, 13–22.
https://doi.org/10.1023/A:1004571900425
16 T., Bongers, M., Bongers, 1998. Functional diversity of nematodes. Applied Soil Ecology10, 239–251.
https://doi.org/10.1016/S0929-1393(98)00123-1
17 T., Bongers, H., Ferris, 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution14, 224–228.
https://doi.org/10.1016/S0169-5347(98)01583-3
18 T., Bongers, H., van der Meulen, G., Korthals, 1997. Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Applied Soil Ecology6, 195–199.
https://doi.org/10.1016/S0929-1393(96)00136-9
19 P., Borrelli, D.A., Robinson, L.R., Fleischer, E., Lugato, C., Ballabio, C., Alewell, P., Panagos, 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications8, 1–13.
https://doi.org/10.1038/s41467-017-02142-7
20 E.K., Bünemann, G., Bongiorno, Z., Bai, R.E., Creamer, G., De Deyn, R., de Goede, L., Brussaard, 2018. Soil quality–A critical review. Soil Biology & Biochemistry120, 105–125.
https://doi.org/10.1016/j.soilbio.2018.01.030
21 E.S., Cassidy, P.C., West, J.S., Gerber, J.A., Foley, 2013. Redefining agricultural yields: from tonnes to people nourished per hectare. Environmental Research Letters8, 034015.
https://doi.org/10.1088/1748-9326/8/3/034015
22 C., Chauvin, M., Trambolho, M., Hedde, D., Makowski, H., Cérémonie, A., Jimenez, C., Villenave, 2020. Soil nematodes as indicators of heavy metal pollution: A meta-analysis. Open Journal of Soil Science10, 579–601.
https://doi.org/10.4236/ojss.2020.1012028
23 G., Chen, J., Qin, D., Shi, Y., Zhang, W., Ji, 2009. Diversity of soil nematodes in areas polluted with heavy metals and polycyclic aromatic hydrocarbons (PAHs) in Lanzhou, China. Environmental Management44, 163–172.
https://doi.org/10.1007/s00267-008-9268-2
24 K., Ekschmitt, G.W., Korthals, 2006. Nematodes as sentinels of heavy metals and organic toxicants in the soil. Journal of Nematology38, 13.
25 Union, European 2002. Heavy Metals in Wastes. European Commission on Environment
26 FAO, 2020. State of Knowledge of Soil Biodiversity-Status, Challenges and Potentialities. Rome: FAO
27 H., Ferris, 2010. Form and function: metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology46, 97–104.
https://doi.org/10.1016/j.ejsobi.2010.01.003
28 H., Ferris, T., Bongers, R.G., de Goede, 2001. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology18, 13–29.
https://doi.org/10.1016/S0929-1393(01)00152-4
29 H., Ferris, B.S., Griffiths, D.L., Porazinska, T.O., Powers, K.H., Wang, M., Tenuta, 2012. Reflections on plant and soil nematode ecology: past, present and future. Journal of Nematology44, 115.
30 D.A., Fiscus, D.A., Neher, 2002. Distinguishing sensitivity of free‐living soil nematode genera to physical and chemical disturbances. Ecological Applications12, 565–575.
https://doi.org/10.1890/1051-0761(2002)012[0565:DSOFLS]2.0.CO;2
31 J.A., Foley, N., Ramankutty, K.A., Brauman, E.S., Cassidy, J.S., Gerber, M., Johnston, D.P., Zaks, 2011. Solutions for a cultivated planet. Nature478, 337–342.
https://doi.org/10.1038/nature10452
32 D.W., Freckman, 1988. Bacterivorous nematodes and organic-matter decomposition. Agriculture, Ecosystems & Environment24, 195–217.
https://doi.org/10.1016/0167-8809(88)90066-7
33 S.S., Georgieva, S.P., McGrath, D.J., Hooper, B.S., Chambers, 2002. Nematode communities under stress: the long-term effects of heavy metals in soil treated with sewage sludge. Applied Soil Ecology20, 27–42.
https://doi.org/10.1016/S0929-1393(02)00005-7
34 T., Goodey, 1963. Soil and Freshwater Nematodes. London, Methuen and Cooperation Limited
35 C., Gutiérrez, C., Fernández, M., Escuer, R., Campos-Herrera, M.E.B., Rodríguez, G., Carbonell, J.A.R., Martín, 2016. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity. Environmental Pollution213, 184–194.
https://doi.org/10.1016/j.envpol.2016.02.012
36 P., Heininger, S., Höss, E., Claus, J., Pelzer, W., Traunspurger, 2007. Nematode communities in contaminated river sediments. Environmental Pollution146, 64–76.
https://doi.org/10.1016/j.envpol.2006.06.023
37 S., Höss, N., Reiff, J., Asekunowo, J., Helder, 2022. Nematode community of a natural grassland responds sensitively to the broad-spectrum fungicide mancozeb in soil microcosms. Environmental Toxicology and Chemistry41, 2420–2430.
https://doi.org/10.1002/etc.5427
38 S., Hou, X., Li, H., Wang, M., Wang, Y., Zhang, Y., Chi, Z., Zhao, 2017. Synthesis of core–shell structured magnetic mesoporous silica microspheres with accessible carboxyl functionalized surfaces and radially oriented large mesopores as adsorbents for the removal of heavy metal ions. RSC Advances7, 51993–52000.
https://doi.org/10.1039/C7RA08937F
39 E. G., Huertos, A.R., Baena, 2008. Contaminación de suelos por metales pesados. MACLA, revista de la Sociedad Española de Mineralogía10, 48–60.
40 M.S., Jairajpuri, W., Ahmad, 1992. Dorylaimida: Free living, Predaceous and Plant Parasitic Nematodes. The Netherlands and Oxford & IBH, New Delhi, pp. 458
41 J.K., Jansson, K.S., Hofmockel, 2020. Soil microbiomes and climate change. Nature Reviews. Microbiology18, 35–46.
https://doi.org/10.1038/s41579-019-0265-7
42 M.F., Jaramillo, I., Restrepo, 2017. Wastewater reuse in agriculture: A review about its limitations and benefits. Sustainability (Basel)9, 1734.
https://doi.org/10.3390/su9101734
43 B., Jiménez, T., Asano, 2008. Water Reuse: An International Survey of Current Practice, Issues and Needs. IWA Publishing, London.
44 J.E., Kammenga, C.A.M., Van Gestel, J., Bakker, 1994. Patterns of sensitivity to cadmium and pentachlorophenol among nematode species from different taxonomic and ecological groups. Archives of Environmental Contamination and Toxicology27, 88–94.
https://doi.org/10.1007/BF00203892
45 N.N., Karanja, G.K., Mutua, F., Ayuke, M., Njenga, G., Prain, J., Kimenju, 2010. Dynamics of soil nematodes and earthworms in urban vegetable irrigated with wastewater in the Nairobi river basin, Kenya. Tropical and Subtropical Agroecosystems12, 521–530.
46 B.L., Kawatra, P., Bakhetia, 2008. Consumption of heavy metal and minerals by adult women through food in sewage and tube-well irrigated area around Ludhiana city (Punjab, India). Journal of Human Ecology (Delhi, India)23, 351–354.
https://doi.org/10.1080/09709274.2008.11906089
47 P.M., Kopittke, N.W., Menzies, P., Wang, B.A., McKenna, E., Lombi, 2019. Soil and the intensification of agriculture for global food security. Environment International132, 105078.
https://doi.org/10.1016/j.envint.2019.105078
48 G.W., Korthals, A., van de Ende, H., van Megen, T.M., Lexmond, J.E., Kammenga, T., Bongers, 1996. Short-term effects of cadmium, copper, nickel and zinc on soil nematodes from different feeding and life-history strategy groups. Applied Soil Ecology4, 107–117.
https://doi.org/10.1016/0929-1393(96)00113-8
49 X., Li, Q., Yang, L., Wang, C., Song, L., Chen, J., Zhang, Y., Liang, 2022. Using Caenorhabditis elegans to assess the ecological health risks of heavy metals in soil and sediments around Dabaoshan Mine, China. Environmental Science and Pollution Research International29, 16332–16345.
https://doi.org/10.1007/s11356-021-16807-w
50 M., Marković, S., Cupać, R., Đurović, J., Milinović, P., Kljajić, 2010. Assessment of heavy metal and pesticide levels in soil and plant products from agricultural area of Belgrade, Serbia. Archives of Environmental Contamination and Toxicology58, 341–351.
https://doi.org/10.1007/s00244-009-9359-y
51 J.G., Martinez, M.A., Torres, G., dos Santos, T., Moens, 2018. Influence of heavy metals on nematode community structure in deteriorated soil by gold mining activities in Sibutad, southern Philippines. Ecological Indicators91, 712–721.
https://doi.org/10.1016/j.ecolind.2018.04.021
52 P.S., Minhas, J.K., Saha, M.L., Dotaniya, A., Sarkar, M., Saha, 2022. Wastewater irrigation in India: Current status, impacts and response options. Science of the Total Environment808, 152001.
https://doi.org/10.1016/j.scitotenv.2021.152001
53 L.C., Monteiro, J., Van Butsel, N., De Meester, W., Traunspurger, S., Derycke, T., Moens, 2018. Differential heavy-metal sensitivity in two cryptic species of the marine nematode Litoditis marina as revealed by developmental and behavioural assays. Journal of Experimental Marine Biology and Ecology502, 203–210.
https://doi.org/10.1016/j.jembe.2017.05.016
54 D.R., Montgomery, 2007. Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the United States of America104, 13268–13272.
https://doi.org/10.1073/pnas.0611508104
55 P., Nagy, G., Bakonyi, T., Bongers, I., Kadar, M., Fabian, I., Kiss, 2004. Effects of microelements on soil nematode assemblages seven years after contaminating an agricultural field. Science of the Total Environment320, 131–143.
https://doi.org/10.1016/j.scitotenv.2003.08.006
56 D.A., Neher, 2001. Role of nematodes in soil health and their use as indicators. Journal of Nematology33, 161.
57 H., Nesar, S., Afzal, Z., Imran, W., Ahmad, 2021. Substratum-dependent moss microhabitat types alter soil nematode community structure in the mixed coniferous forest of Dachigam National Park, Jammu and Kashmir. Global Ecology and Conservation32, e01924.
https://doi.org/10.1016/j.gecco.2021.e01924
58 J., O’Connor, S.A., Hoang, L., Bradney, S., Dutta, X., Xiong, D.C., Tsang, N.S., Bolan, 2021. A review on the valorisation of food waste as a nutrient source and soil amendment. Environmental Pollution272, 115985.
https://doi.org/10.1016/j.envpol.2020.115985
59 S., Pen-Mouratov, N., Shukurov, Y., Steinberger, 2008. Influence of industrial heavy metal pollution on soil free-living nematode population. Environmental Pollution152, 172–183.
https://doi.org/10.1016/j.envpol.2007.05.007
60 A.P., Pérez, N.R., Eugenio, 2018. Status of Local Soil Contamination in Europe. Publications Office of the European Union, Luxembourg
61 C., Quéré, R.M., Andrew, P., Friedlingstein, S., Sitch, J., Hauck, J., Pongratz, B., Zheng, 2018. Global carbon budget 2018. Earth System Science Data10, 2141–2194.
https://doi.org/10.5194/essd-10-2141-2018
62 P., Šalamún, M., Renčo, E., Kucanová, T., Brázová, I., Papajová, D., Miklisová, V., Hanzelová, 2012. Nematodes as bioindicators of soil degradation due to heavy metals. Ecotoxicology (London, England)21, 2319–2330.
https://doi.org/10.1007/s10646-012-0988-y
63 S., Sánchez-Moreno, H., Ferris, A., Young-Mathews, S.W., Culman, L.E., Jackson, 2011. Abundance, diversity and connectance of soil food web channels along environmental gradients in an agricultural landscape. Soil Biology & Biochemistry43, 2374–2383.
https://doi.org/10.1016/j.soilbio.2011.07.016
64 Y., Shao, W., Zhang, J., Shen, L., Zhou, H., Xia, W., Shu, H., Ferris, S., Fu, 2008. Nematodes as indicators of soil recovery in tailings of a lead/zinc mine. Soil Biology & Biochemistry40, 2040–2046.
https://doi.org/10.1016/j.soilbio.2008.04.014
65 B., Sieriebriennikov, H., Ferris, R.G., de Goede, 2014. NINJA: an automated calculation system for nematode-based biological monitoring. European Journal of Soil Biology61, 90–93.
https://doi.org/10.1016/j.ejsobi.2014.02.004
66 A., Singh, R.K., Sharma, M., Agrawal, F.M., Marshall, 2010. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food and Chemical Toxicology48, 611–619.
https://doi.org/10.1016/j.fct.2009.11.041
67 K.P., Singh, D., Mohan, S., Sinha, R., Dalwani, 2004. Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area. Chemosphere55, 227–255.
https://doi.org/10.1016/j.chemosphere.2003.10.050
68 R.K., Sinha, G., Bharambe, U., Chaudhari, 2008. Sewage treatment by vermifiltration with synchronous treatment of sludge by earthworms: a low-cost sustainable technology over conventional systems with potential for decentralization. Environmentalist28, 409–420.
https://doi.org/10.1007/s10669-008-9162-8
69 P., Skubała, T., Zaleski, 2012. Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida): Gradient study in meadow ecosystems. Science of the Total Environment414, 364–372.
https://doi.org/10.1016/j.scitotenv.2011.11.006
70 T.L., Teh, N.N.N.A., Rahman, M., Shahadat, Y.S., Wong, M.I., Syakir, A.K., Omar, 2016. A comparative study of metal contamination in soil using the borehole method. Environmental Monitoring and Assessment188, 1–16.
https://doi.org/10.1007/s10661-016-5394-0
71 D., Tilman, C., Balzer, J., Hillc, B.L., Befort, 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America108, 20260–20264.
https://doi.org/10.1073/pnas.1116437108
72 R.K., Trivedi, P.K., Goel, 1986. Chemical and Biological Methods for Water Pollution Studies. Enviromedia Publications, Karad. pp. 209
73 M.K., Türkdoğan, F., Kilicel, K., Kara, I., Tuncer, I., Uygan, 2003. Heavy metals in soil, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey. Environmental Toxicology and Pharmacology13, 175–179.
https://doi.org/10.1016/S1382-6689(02)00156-4
74 J., Van Bezooijen, 2006. Methods and Techniques for Nematology. Wageningen, The Netherlands: Wageningen University. p. 20
75 C., Wagg, S.F., Bender, F., Widmer, M.G., Van Der Heijden, 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America111, 5266–5270.
https://doi.org/10.1073/pnas.1320054111
76 A., Walkley, T.A., Black, 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science37, 29–38.
https://doi.org/10.1097/00010694-193401000-00003
77 C., Wang, X., Hu, M.L., Chen, Y.H., Wu, 2005. Total concentrations and fractions of Cd, Cr, Pb, Cu, Ni and Zn in sewage sludge from municipal and industrial wastewater treatment plants. Journal of Hazardous Materials119, 245–249.
https://doi.org/10.1016/j.jhazmat.2004.11.023
78 S.Z., Weider, L.R., Nittler, R.D., Starr, E.J., Crapster-Pregont, P.N., Peplowski, B.W., Denevi, S.C., Solomon, 2015. Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth and Planetary Science Letters416, 109–120.
https://doi.org/10.1016/j.epsl.2015.01.023
79 M.J., Wilson, T., Kakouli-Duarte, eds., 2009. Nematodes as Environmental Indicators. CABI
80 J., Winpenny, I., Heinz, S., Koo-Oshima, M., Salgot, J., Collado, F., Hernández, 2013. Reutilización del agua en la agricultura: Beneficios para todos? Informes sobre temas hídricos. Rome, Italy: Food and Agriculture Organization
81 L., Yang, F., Zhang, Y., Luo, 2021. A soil nematode community response to reclamation of salinized abandoned farmland. Zoological Studies (Taipei, Taiwan)60, e72.
https://doi.org/10.6620%2FZS.2021.60-72
82 G.W., Yeates, 2003. Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of Soils37, 199–210.
https://doi.org/10.1007/s00374-003-0586-5
83 G.W., Yeates, V.A., Orchard, T.W., Speir, J.L., Hunt, M.C.C., Hermans, 1994. Impact of pasture contamination by copper, chromium, arsenic timber preservative on soil biological activity. Biology and Fertility of Soils18, 200–208.
https://doi.org/10.1007/BF00647667
84 X., Zhang, Q., Li, A., Zhu, W., Liang, J., Zhang, Y., Steinberger, 2012. Effects of tillage and residue management on soil nematode communities in North China. Ecological Indicators13, 75–81.
https://doi.org/10.1016/j.ecolind.2011.05.009
85 Z., Zhang, A., Hibberd, J.L., Zhou, 2008. Analysis of emerging contaminants in sewage effluent and river water: comparison between spot and passive sampling. Analytica Chimica Acta607, 37–44.
https://doi.org/10.1016/j.aca.2007.11.024
86 S., Zhou, Y., Huang, B., Yu, G., Wang, 2015. Effects of human activities on the eco-environment in the middle Heihe River Basin based on an extended environmental Kuznets curve model. Ecological Engineering76, 14–26.
https://doi.org/10.1016/j.ecoleng.2014.04.020.tABLE
[1] Yincai Ren, Dorota L. Porazinska, Quanhui Ma, Shuhan Liu, Hongmei Li, Xue Qing. A single degenerated primer significantly improves COX1 barcoding performance in soil nematode community profiling[J]. Soil Ecology Letters, 2024, 6(2): 230204-.
[2] Huiying Zhang, Mengyang Tian, Meiguang Jiang, Jingyuan Yang, Qi Xu, Ying Zhang, Minglu Ji, Yuteng Yao, Cancan Zhao, Yuan Miao. Effects of nitrogen and phosphorus additions on soil nematode community of soybean farmland[J]. Soil Ecology Letters, 2024, 6(2): 230200-.
[3] Song Zhang, Yating Du, Guangshen Shang, Kejiao Hu, Xing Wang. Low-density polyethylene microplastics partially alleviate the ecotoxicological effects induced by cadmium exposure on the earthworm Eisenia fetida[J]. Soil Ecology Letters, 2024, 6(1): 230184-.
[4] Humira Nesar, Shahid Afzal, Zarrin Imran, Wasim Ahmad. Impact of marshy area reclamation by various vegetations on soil-nematode community structure in Dachigam National Park[J]. Soil Ecology Letters, 2023, 5(3): 220166-.
[5] Sana Khalid, Muhammad Shahid, Zeid A. ALOthman, Abdullah A. Al-Kahtani, Behzad Murtaza, Camille Dumat. Predicting chemical speciation of metals in soil using Visual Minteq[J]. Soil Ecology Letters, 2023, 5(3): 220162-.
[6] Xiao Liu, Xia Xu, Tian Ma, Shiwei Zhou, Xiaoli Bi, Hongbo He, Xudong Zhang, Weihuan Li. Linking microbial carbon pump capacity and efficacy to soil organic carbon storage and stability under heavy metal pollution[J]. Soil Ecology Letters, 2023, 5(2): 220140-.
[7] Anandkumar Jayapal, Tanushree Chaterjee, Biju Prava Sahariah. Bioremediation techniques for the treatment of mine tailings: A review[J]. Soil Ecology Letters, 2023, 5(2): 220149-.
[8] Xinli Niu, Yongfan Cheng, Xiaopei Feng, Feng Sun, Yanfang Gu. Effects of fertilizer and weed species richness on soil nematode community in a microcosm field experiment[J]. Soil Ecology Letters, 2023, 5(1): 151-168.
[9] Yixin Sun, Xiaofang Du, Yingbin Li, Xu Han, Shuai Fang, Stefan Geisen, Qi Li. Database and primer selections affect nematode community composition under different vegetations of Changbai Mountain[J]. Soil Ecology Letters, 2023, 5(1): 142-150.
[10] Stavros D. Veresoglou, Junjiang Chen, Xuheng Du, Qi Fu, QingLiu Geng, Chenyan Huang, Xilin Huang, Nan Hu, Yiming Hun, Guolin C. Li, Zhiman Lin, Zhiyu Ma, Yuyi Ou, Shuo Qi, Haitian Qin, Yingbo Qiu, Xibin Sun, Ye Tao, YiLing Tian, Jie Wang, Lingxiao Wu, Ziwei Wu, Siqi Xie, Ao Yang, Dan Yang, Chen Zeng, Ying Zeng, RuJie Zhang. No tillage outperforms conventional tillage under arid conditions and following fertilization[J]. Soil Ecology Letters, 2023, 5(1): 137-141.
[11] Minghui Li, Junli Hu, Xiangui Lin. The roles and performance of arbuscular mycorrhizal fungi in intercropping systems[J]. Soil Ecology Letters, 2022, 4(4): 319-327.
[12] Jie Zhao, Kelin Wang. Methods for cleaning turbid nematode suspensions collected from different land-use types and soil types[J]. Soil Ecology Letters, 2022, 4(4): 429-434.
[13] Rishikesh Singh, Tanu Kumari, Pramit Verma, Bhupinder Pal Singh, Akhilesh Singh Raghubanshi. Compatible package-based agriculture systems: an urgent need for agro-ecological balance and climate change adaptation[J]. Soil Ecology Letters, 2022, 4(3): 187-212.
[14] Yongxing Cui, Xia Wang, Xiangxiang Wang, Xingchang Zhang, Linchuan Fang. Evaluation methods of heavy metal pollution in soils based on enzyme activities: A review[J]. Soil Ecology Letters, 2021, 3(3): 169-177.
[15] Lina Zhao, Binbin Yu, Mengmeng Wang, Jie Zhang, Zhifeng Shen, Yang Cui, Junyong Li, Ji Ye, Weizhong Zu, Xiaojing Liu, Zongji Fan, Shenglei Fu, Yuanhu Shao. The effects of plant resource inputs on the energy flux of soil nematodes are affected by climate and plant resource type[J]. Soil Ecology Letters, 2021, 3(2): 134-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed