Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2009, Vol. 3 Issue (2) : 138-145    https://doi.org/10.1007/s11705-009-0050-7
RESEARCH ARTICLE
CFD based combustion model for sewage sludge gasification in a fluidized bed
Yiqun WANG, Lifeng YAN()
Hefei National Laboratory for Physcial Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(382 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Gasification is one potential way to use sewage sludge as renewable energy and solve the environmental problems caused by the huge amount of sewage sludge. In this paper, a three-dimensional Computational Fluid Dynamics (CFD) model has been developed to simulate the sewage sludge gasification process in a fluidized bed. The model describes the complex physical and chemical phenomena in the gasifier including turbulent flow, heat and mass transfer, and chemical reactions. The model is based on the Eulerian-Lagrangian concept using the non-premixed combustion modeling approach. In terms of the CFD software FLUENT, which represents a powerful tool for gasifier analysis, the simulations provide detailed information on the gas products and temperature distribution in the gasifier. The model sensitivity is analyzed by performing the model in a laboratory-scale fluidized bed in the literature, and the model validation is carried out by comparing with experimental data from the literature. Results show that reasonably good agreement was achieved. Effects of temperature and Equivalence Ratio (ER) on the quality of product syngas (H2 + CO) are also studied.

Keywords CFD      model      sewage sludge      gasification      syngas     
Corresponding Author(s): YAN Lifeng,Email:lfyan@ustc.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Yiqun WANG,Lifeng YAN. CFD based combustion model for sewage sludge gasification in a fluidized bed[J]. Front Chem Eng Chin, 2009, 3(2): 138-145.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0050-7
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I2/138
Fig.1  Gasifier geometry and meshes
proximate analysis/(wt-% ad)ultimate analysis
moisture8.92C/(wt-% daf)55.33
volatiles42.30H/(wt-% daf)6.70
fixed carbon6.66O/(wt-% daf)28.07
ash42.12lower heating value/(kJ?kg-1)10260
Tab.1  Proximate and ultimate analyses of dried sewage sludge
Fig.2  Temperature distribution in the gasifier. (a) Temperature contours; (b) axial temperature profiles. “P1” means P1 radiation model, “Radiation off” means without consideration of radiation heat transfer
Fig.3  Axial profiles of product mole fraction at ER= 0.25 and = 1073 K
Fig.4  Axial profiles of product mole fraction under different temperature conditions at ER= 0.25. (a) CO; (b) CO
Fig.5  Axial profiles of product mole fraction for different values of ER at = 1073 K. (a) CO; (b) CO
Fig.6  Effect of ER on volume fraction of H + CO for = 1023 K, 1073 K, and 1123 K. (M) Model results; (E) experiment data
Fig.7  Effect of temperature on volume fraction of H + CO for ER= 0.25, 0.30, and 0.35. (M) Model results; (E) experiment data
Fig.8  Effect of ER on ratio of H/CO for = 1023 K, 1073 K, and 1123 K. (M) Model results; (E) experiment data
Fig.9  Effect of temperature on the ratio of H/CO for ER= 0.25, 0.30, and 0.35. (M) Model results; (E) Experiment data
1 Cui H, Ninomiya Y, Masui M, Mizukoshi H, Sakano T, Kanaoka C. Fundamental Behaviors in Combustion of Raw Sewage Sludge. Energy & Fuels , 2006, 20: 77-83
doi: 10.1021/ef050188d
2 Hartman M, Svoboda K, Pohorely M, Trnka O. Combustion of dried sewage sludge in a fluidized-bed reactor. Ind Eng Chem Res , 2005, 44: 3432-3441
doi: 10.1021/ie040248n
3 Midillia A, Dogrub M, Howarthb C R. Lingc M J, Ayhan T. Combustible gas production from sewage sludge with a downdraft gasifier. Energy Conversion & Management , 2001, 42: 157-172
doi: 10.1016/S0196-8904(00)00053-4
4 Dom?′nguez A, Menéndez J A, Pis J J. Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature. J Anal Appl Pyrolysis , 2006, 77: 127-132
doi: 10.1016/j.jaap.2006.02.003
5 Ferrasse J H, Seyssiecq I, Roche N. Thermal Gasification: A Feasible Solution for Sewage Sludge Valorisation?Chemical Engineering & Technology , 2003, 26: 941-945
doi: 10.1002/ceat.200301813
6 J Manya J, Sanchez J L, Gonzalo A, Arauzo J. Air gasification of dried sewage sludge in a fluidized bed: effect of the operating conditions and in-bed use of alumina. Energy & Fuels , 2005, 19, 629-636
doi: 10.1021/ef0497614
7 Corella J, Toledo J M. Incineration of doped sludges in fluidized bed. Fate and partitioning of six targeted heavy metals. I. Pilot plant used and results. Journal of Hazardous Materials , 2000, B80: 81-105
doi: 10.1016/S0304-3894(00)00280-6
8 Shi S P, Zitney S E, Shahnam M, Syamlal M, Rogers W A. Journal of the Energy Institute, 2006, 79(4): 217-221
doi: 10.1179/174602206X148865
9 Wang S J, Lu J D, Li W J, Hu Z J. Modeling of pulverized coal combustion in cement rotary Kiln.Energy & Fuels , 2006, 20(6): 2350-2356
doi: 10.1021/ef060027p
10 Chen C X, Horio M, Kojima T. Use of numerical modeling in the design and scale-up of entrained flow coal gasifiers. Fuel , 2001, 80(10): 1513-1523
doi: 10.1016/S0016-2361(01)00013-8
11 Vicente W, Ochoa S, Aguillon J, Barrios E. An Eulerian model for the simulation of an entrained flow coal gasifier. Applied Thermal Engineering , 2003, 23(15): 1993-2008
doi: 10.1016/S1359-4311(03)00149-2
12 Fletcher D F, Haynes B S, Christo F C, Joseph S D. A CFD based combustion model of an entrained flow biomass gasifier. Applied Mathematical Modelling , 2000, 24: 165-182
doi: 10.1016/S0307-904X(99)00025-6
13 Grammelis P, Kakaras E. Biomass Combustion Modeling in Fluidized Beds. Energy & Fuels , 2005, 19: 292-297
doi: 10.1021/ef049838o
14 Rostami A A, Hajaligol M R, Wrenn S E. A biomass pyrolysis sub-model for CFD applications. Fuel , 2004, 83: 1519-155
doi: 10.1016/j.fuel.2003.09.024
15 Petersen I, Werther J. Experimental investigation and modeling of gasification of sewage sludge in the circulating fluidized bed. Chemical Engineering Science , 2005, 60(16): 4469-4484
doi: 10.1016/j.ces.2005.02.058
16 Khiari B, Marias F, Zagrouba F, Vaxelaire J. Use of a transient model to simulate fluidized bed incineration of sewage sludge. Journal of Hazardous Materials , 2006, 135(1-3): 200-209
doi: 10.1016/j.jhazmat.2005.11.068
17 Petersen I, Werther J. Experimental investigation and modeling of gasification of sewage sludge in the circulating fluidized bed. Chemical Engineering and Processing , 2005, 44(7): 717-736
doi: 10.1016/j.cep.2004.09.001
18 Zarnescu V, Pisupati S V. An Integrative Approach for Combustor Design Using CFD Methods. Energy & Fuels , 2002, 16: 622-633
doi: 10.1021/ef010189f
19 Dixon T F, Mann A P, Plaza F, Gilfillan W N. Development of advanced technology for biomass combustion—CFD as an essential tool. Fuel , 2005, 84: 1303-1311
doi: 10.1016/j.fuel.2004.09.024
20 Fluent Inc, FLUENT 6.1 User's Guide. 2003
21 Sadakaa S S, Ghalyb A E, Sabbahc M A. Two phase bio-mass air-steam gasification model for fluidized bed reactors:Part I-model development. Biomass and Bioenergy , 2002, 22: 439-462
doi: 10.1016/S0961-9534(02)00023-5
22 Kee R J, Rupley F M, Miller J A. Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Technical Report SAND 89-8009 , Sandia National Labs, 1989
23 Filippis P D, Borgianni C, Paolucci M, Pochetti F. Prediction of syngas quality for two-stage gasification of selected waste feedstocks. Waste Management , 2004, 24: 633-639
doi: 10.1016/j.wasman.2004.02.014
24 Corella J, Sanz A. Modeling circulating fluidized bed biomass gasifiers:a pseudo-rigorous model for stationary state. Fuel Processing Technology , 2005, 86(9): 1021-1053
doi: 10.1016/j.fuproc.2004.11.013
[1] Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan. Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2[J]. Front. Chem. Sci. Eng., 2021, 15(1): 208-219.
[2] Yingjie Ma, Nan Zhang, Jie Li, Cuiwen Cao. Optimal design of extractive dividing-wall column using an efficient equation-oriented approach[J]. Front. Chem. Sci. Eng., 2021, 15(1): 72-89.
[3] Ehsan Rahmani, Mohammad Rahmani. Catalytic process modeling and sensitivity analysis of alkylation of benzene with ethanol over MIL-101(Fe) and MIL-88(Fe)[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1100-1111.
[4] Eniko Haaz, Botond Szilagyi, Daniel Fozer, Andras Jozsef Toth. Combining extractive heterogeneous-azeotropic distillation and hydrophilic pervaporation for enhanced separation of non-ideal ternary mixtures[J]. Front. Chem. Sci. Eng., 2020, 14(5): 913-927.
[5] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[6] Yifei Wang, Kai Wang, Zhao Zhou, Wenli Du. Modeling of oil near-infrared spectroscopy based on similarity and transfer learning algorithm[J]. Front. Chem. Sci. Eng., 2019, 13(3): 599-607.
[7] Annemie Bogaerts, Maksudbek Yusupov, Jamoliddin Razzokov, Jonas Van der Paal. Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling[J]. Front. Chem. Sci. Eng., 2019, 13(2): 253-263.
[8] Michael Bonitz, Alexey Filinov, Jan-Willem Abraham, Karsten Balzer, Hanno Kählert, Eckhard Pehlke, Franz X. Bronold, Matthias Pamperin, Markus Becker, Dettlef Loffhagen, Holger Fehske. Towards an integrated modeling of the plasma-solid interface[J]. Front. Chem. Sci. Eng., 2019, 13(2): 201-237.
[9] Xuantao Wu, Jie Wang. Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles under pressurized and fluidized conditions[J]. Front. Chem. Sci. Eng., 2019, 13(2): 415-426.
[10] Vojtěch Turek, Bohuslav Kilkovský, Zdeněk Jegla, Petr Stehlík. Proposed EU legislation to force changes in sewage sludge disposal: A case study[J]. Front. Chem. Sci. Eng., 2018, 12(4): 660-669.
[11] Ismael Matino, Valentina Colla, Teresa A. Branca. Extension of pilot tests of cyanide elimination by ozone from blast furnace gas washing water through Aspen Plus® based model[J]. Front. Chem. Sci. Eng., 2018, 12(4): 718-730.
[12] Attila Egedy, Lívia Gyurik, Tamás Varga, Jun Zou, Norbert Miskolczi, Haiping Yang. Kinetic-compartmental modelling of potassium-containing cellulose feedstock gasification[J]. Front. Chem. Sci. Eng., 2018, 12(4): 708-717.
[13] M Helal Uddin, Nesrin Ozalp, Jens Heylen, Cedric Ophoff. A new approach for fuel injection into a solar receiver/reactor: Numerical and experimental investigation[J]. Front. Chem. Sci. Eng., 2018, 12(4): 683-696.
[14] Petro Kapustenko, Jiří J. Klemeš, Olga Arsenyeva, Olexandr Matsegora, Oleksandr Vasilenko. Accounting for local features of fouling formation on PHE heat transfer surface[J]. Front. Chem. Sci. Eng., 2018, 12(4): 619-629.
[15] Bo Chen, Yan Dai, Xuehua Ruan, Yuan Xi, Gaohong He. Integration of molecular dynamic simulation and free volume theory for modeling membrane VOC/gas separation[J]. Front. Chem. Sci. Eng., 2018, 12(2): 296-305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed