Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (1) : 72-89    https://doi.org/10.1007/s11705-020-1977-y
RESEARCH ARTICLE
Optimal design of extractive dividing-wall column using an efficient equation-oriented approach
Yingjie Ma1, Nan Zhang1, Jie Li1(), Cuiwen Cao2
1. Centre for Process Integration, Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Manchester M13 9PL, UK
2. Key Laboratory of Advanced Control and Optimization for Chemical Processes (Ministry of Education), East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(2130 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The extractive dividing-wall column (EDWC) is one of the most efficient technologies for separation of azeotropic or close boiling-point mixtures, but its design is fairly challenging. In this paper we extend the hybrid feasible path optimisation algorithm (Ma Y, McLaughlan M, Zhang N, Li J. Computers & Chemical Engineering, 2020, 143: 107058) for such optimal design. The tolerances-relaxation integration method is refined to allow for long enough integration time that can ensure the solution of the pseudo-transient continuation simulation close to the steady state before the required tolerance is used. To ensure the gradient and Jacobian information available for optimisation, we allow a relaxed tolerance for the simulation in the sensitivity analysis mode when the simulation diverges under small tolerance. In addition, valid lower bounds on purity of the recycled entrainer and the vapour flow rate in column sections are imposed to improve computational efficiency. The computational results demonstrate that the extended hybrid algorithm can achieve better design of the EDWC compared to those in literature. The energy consumption can be reduced by more than 20% compared with existing literature report. In addition, the optimal design of the heat pump assisted EDWC is achieved using the improved hybrid algorithm for the first time.

Keywords design      extractive dividing-wall column      equation-oriented optimisation      pseudo-transient continuation model      hybrid algorithm     
Corresponding Author(s): Jie Li   
Just Accepted Date: 27 September 2020   Online First Date: 16 December 2020    Issue Date: 12 January 2021
 Cite this article:   
Yingjie Ma,Nan Zhang,Jie Li, et al. Optimal design of extractive dividing-wall column using an efficient equation-oriented approach[J]. Front. Chem. Sci. Eng., 2021, 15(1): 72-89.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1977-y
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I1/72
Fig.1  A typical conventional ED process for separation of a binary azeotropic mixture A and B.
Fig.2  A typical EDWC for separation of an azeotropic or close boiling-point mixture A and B.
Fig.3  Extended column section model of the EDWC.
Fig.4  The hybrid steady-state and time-relaxation feasible path optimisation algorithm.
Fig.5  The improved tolerances-relaxed integration method.
Fig.6  The improved derivative information evaluation allowing a larger tolerance.
Decision variable Initial value Lower bound Upper bound
FE/(kmol?h–1) 0.01 0.0001 10
RRM/(kmol?kmol–1) 1.0 0.1 10
RRS/(kmol?kmol–1) 1.0 0.01 10
SF/(kmol?kmol–1) 0.5 0.1 0.99
FB/(kmol?h–1) 100 10 500
N1 0 10
N2 0 20
N3 0 30
N4 0 15
N5 0 10
Tab.1  Initial values and lower and upper bounds of the decision variables for case study 1
εj 0.1 0.3 0.5 0.7 0.9 1.0
Convergence Yes Yes Yes Yes Yes Yes
Iteration step 239 302 409 509 380 262
Simulation time/s 1259 7722 2263 3698 1650 1714
TAC/(105 $?year–1) 6.081 6.116 6.106 6.124 6.137 6.097
Tab.2  Computational performance of the extended hybrid algorithm for case study 1 from six different initial points
εj 0.1 0.3 0.5 0.7 0.9 1.0
FE/(kmol?h–1) 0.0008 0.0003 0.0007 0.0016 0.0006 0.0009
RRM/(kmol?kmol–1) 0.70 0.74 0.74 0.51 0.81 0.68
RRS/(kmol?kmol–1) 0.12 0.11 0.11 0.12 0.11 0.11
SF/(kmol?kmol–1) 0.31 0.31 0.31 0.31 0.30 0.31
FB/(kmol?h–1) 115.37 110.69 110.33 136.69 106.89 114.11
N1 2.0 2.5 2.0 2.1 2.0 2.0
N2 10.0 10.0 10.0 11.0 9.1 11.0
N3 22.0 23.9 24.0 17.0 25.0 23.0
N4 5.9 11.0 7.8 5.4 8.5 8.4
N5 4.0 4.0 4.0 5.0 4.0 4.0
TAC/(105 $?year–1) 6.081 6.116 6.106 6.124 6.137 6.097
Tab.3  Optimal design of the EDWC for case study 1 from six different initial points
Fig.7  Optimal design of the EDWC for case study 1.
Item Conventional ED (Luyben [28]) Conventional ED (optimal) EDWC
Annualised capital cost/(105 $?year–1) 2.226 2.326 2.320
Energy cost/(105 $?year–1) 5.025 3.951 3.754
Entrainer cost/(105 $?year–1) 0.039 0.012 0.008
TAC/(105 $?year–1) 7.290 6.289 6.082
Tab.4  Economic comparison between EDWC and conventional ED for case study 1
Fig.8  Optimal design of the conventional ED for case study 1.
Fig.9  Optimal design of the EDWC for case study 2 with consideration of the entrainer cost (The mass purity is shown in the bracket. This is similar in the latter figures).
Decision variable Initial value Lower bound Upper bound
FE/(kmol?h–1) 0.01 0.0001 10
RRM/(kmol?kmol–1) 1.0 0.1 100
VF/(kmol?kmol–1) 0.5 0.1 0.5
SF/(kmol?kmol–1) 0.5 0.1 0.99
FB/(kmol?h–1) 300 10 3000
N1 0 10
N2 0 60
N3 0 20
N4 0 20
N5 0 10
Tab.5  Initial values and lower and upper bounds of the decision variables for case study 2
εj 0.1 0.3 0.5 0.7 0.9 1.0
Converged Yes Yes Yes Yes No Yes
Iteration 760 908 591 577 398 601
Simulation time/s 2121 3742 2309 2204 1501 3327
TAC/(M$?year–1) 5.382 5.383 5.388 5.405 5.388 5.382
Tab.6  Computational performance of the extended hybrid algorithm for case study 2 from six different initial points
εj 0.1 0.3 0.5 0.7 0.9 1.0
FE/(kmol?h–1) 1.90 1.87 1.93 1.97 1.85 1.87
RRM/(kmol?kmol–1) 1.89 1.87 1.90 1.93 1.87 1.88
VF/(kmol?kmol–1) 0.16 0.16 0.16 0.16 0.16 0.16
SF/(kmol?kmol–1) 0.25 0.24 0.26 0.27 0.24 0.25
FB/(kmol?h–1) 112.95 110.65 115.89 119.67 109.16 111.07
N1 2.0 2.0 2.0 2.0 2.0 2.0
N2 54.0 59.0 49.0 44.0 63.0 58.0
N3 12.0 12.0 12.0 12.2 12.0 12.0
N4 12.0 12.0 12.0 12.2 12.0 12,0
N5 6.0 6.0 6.0 6.0 6.0 6.0
TAC/(M$?year–1) 5.382 5.383 5.388 5.405 5.388 5.382
Tab.7  Optimal solutions for case study 2 from six different initial points
Fig.10  Optimal design of EDWC for case study 2 without consideration of the entrainer cost.
Decision variable Initial Lower Upper
FE/(kmol?h–1) 0.01 0.0001 10
RRM/(kmol?kmol–1) 1.0 0.1 100
VF/(kmol?kmol–1) 0.5 0.1 0.5
SF/(kmol?kmol–1) 0.5 0.1 0.99
FB/(kmol?h–1) 300 10 3000
N1 0 10
N2 0 60
N3 0 20
N4 0 20
N5 0 10
P/(1.013 × 105 Pa) 3 1.001 10
A1/m2 100 0 1 × 106
A2/m2 10 0 1 × 106
Tab.8  Initial values and lower and upper bounds of decision variables for case study 3
εj 0.1 0.3 0.5 0.7 0.9 1.0
Converged Yes Yes Yes No Yes Yes
Iteration step 1519 2175 2234 332 2392 1235
Simulation time/s 6566 6146 7238 1146 7624 3916
TAC/(M$?year–1) 4.879 4.829 4.851 5.715 4.834 4.847
Tab.9  Computational performance of the improved hybrid algorithm for case study 3 starting from six initial points
εj 0.1 0.3 0.5 0.7 0.9 1.0
FE/(kmol?h–1) 1.94 1.71 1.83 1.99 1.79 1.87
RRM/(kmol?kmol–1) 2.02 2.18 2.16 3.56 2.23 2.02
VF/(kmol?kmol–1) 0.15 0.15 0.15 0.15 0.15 0.15
SF/(kmol?kmol–1) 0.27 0.32 0.31 0.64 0.33 0.27
FB/(kmol?h–1) 118.65 113.50 120.35 294.78 120.87 114.61
N1 2.0 2.0 2.0 6.4 2.0 2.0
N2 46.0 56.0 45.0 25.6 45.0 52.0
N3 12.0 12.1 12.0 10.3 12.0 12.0
N4 12.0 12.1 12.0 9.9 12.0 12.0
N5 6.0 6.0 6.0 6.7 6.0 6.0
P/(1.013 × 105 Pa) 3.26 3.08 3.08 2.20 3.08 3.15
A1/m2 854.10 1003.50 986.63 3904.22 1018.83 914.72
A2/m2 37.04 35.48 37.68 5.04 37.84 35.75
TAC/(M$?year–1) 4.879 4.829 4.851 5.715 4.834 4.847
Tab.10  Optimal solutions for case study 3 from six initial points
Fig.11  Optimal design of the heat pump-assisted EDWC for case study 3.
Cost Normal EDWC Heat pump-assisted EDWC
Capital cost/M$
?Column cost 1.707 1.746
?Heat exchanger cost 0.818 1.185
?Compressor cost 0 1.134
Operation cost/(M$?year–1)
?Utility cost 3.316 1.757
?Electricity cost 0 0.614
?Entrainer cost 1.225 1.102
Total cost
?Total capital cost/M$ 2.524 4.064
?Total operation cost/(M$?year–1) 4.541 3.473
?TAC/(M$?year–1) 5.382 4.828
Tab.11  Cost breakdown in the optimal design of the normal EDWC in case study 2 and the optimal design of the heat pump assisted EDWC in case study 3
Item Luo et al. [23] Our design
MP/kW 0 3999
HP/kW 10043 6738
Electricity/kW 1808 1041
Equivalent energy
requirement/(kW?kg–1)
1.24 1.06
Tab.12  Energy consumption in our optimal design and the design of Luo et al. [23]
Cost/M$ Luo et al. [23] Our design
Column 0.912 0.686
Condenser 0.071 0.069
Reboilers 0.356 0.479
Heat exchangers 1.503 0.797
Compressor 1.632 1.038
Total capital cost 4.477 3.069
Tab.13  The capital cost breakdown of the design of Luo et al. [23] and our design
Fig.12  Optimal design of the heat pump assisted EDWC for case study 3 without consideration of the entrainer cost.
1 V Gerbaud, I Rodriguez Donis, L Hegely, P Lang, F Denes, X You. Review of extractive distillation. Process design, operation, optimization and control. Chemical Engineering Research & Design, 2019, 141: 229–271
https://doi.org/10.1016/j.cherd.2018.09.020
2 M A Schultz, D G Stewart, J M Harris, S P Rosenblum, M S Shakur, D E O’Brien. Reduce costs with dividing-wall columns. Chemical Engineering Progress, 2002, 98: 64–71
3 S Hernández. Analysis of energy-efficient complex distillation options to purify bioethanol. Chemical Engineering & Technology, 2008, 31(4): 597–603
https://doi.org/10.1002/ceat.200700467
4 Y Tavan, S H Riazi, M Nozohouri. Energy optimization and comparative study of pre- and post-fractionator extractive dividing wall column for the CO2 ethane azeotropic process. Energy Conversion and Management, 2014, 79: 590–598
https://doi.org/10.1016/j.enconman.2013.12.029
5 D Staak, T Grützner. Process integration by application of an extractive dividing-wall column: an industrial case study. Chemical Engineering Research & Design, 2017, 123: 120–129
https://doi.org/10.1016/j.cherd.2017.04.003
6 G M Cordeiro, M F de Figueirêdo, W B Ramos, F A Sales, K D Brito, R P Brito. Systematic strategy for obtaining a dividing-wall column applied to an extractive distillation process. Industrial & Engineering Chemistry Research, 2017, 56(14): 4083–4094
https://doi.org/10.1021/acs.iecr.6b05047
7 A A Kiss, D J P C Suszwalak. Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Separation and Purification Technology, 2012, 86: 70–78
https://doi.org/10.1016/j.seppur.2011.10.022
8 C Bravo Bravo, J G Segovia Hernández, C Gutiérrez Antonio, A L Durán, A Bonilla Petriciolet, A Briones Ramírez. Extractive dividing wall column: design and optimization. Industrial & Engineering Chemistry Research, 2010, 49(8): 3672–3688
https://doi.org/10.1021/ie9006936
9 R Gutiérrez Guerra, J G Segovia Hernández, S Hernández. Reducing energy consumption and CO2 emissions in extractive distillation. Chemical Engineering Research & Design, 2009, 87(2): 145–152
https://doi.org/10.1016/j.cherd.2008.07.004
10 L T Biegler. New nonlinear programming paradigms for the future of process optimization. AIChE Journal. American Institute of Chemical Engineers, 2017, 63(4): 1178–1193
https://doi.org/10.1002/aic.15674
11 M J D Powell. A fast algorithm for nonlinearly constrained optimization calculations. In: Watson G A, ed. Proceedings of the Numerical Analysis. Berlin: Springer, 1978, 144–157
12 Aspen Technology Inc. Aspen Plus User’s Guide Version V8.8. 2015
13 Y Y Loy, X L Lee, G P Rangaiah. Bioethanol recovery and purification using extractive dividing-wall column and pressure swing adsorption: an economic comparison after heat integration and optimization. Separation and Purification Technology, 2015, 149: 413–427
https://doi.org/10.1016/j.seppur.2015.06.007
14 A Yang, R Wei, S Sun, S Wei, W Shen, I L Chien. Energy-saving optimal design and effective control of heat integration-extractive dividing wall column for separating heterogeneous mixture methanol/toluene/water with multiazeotropes. Industrial & Engineering Chemistry Research, 2018, 57(23): 8036–8056
https://doi.org/10.1021/acs.iecr.8b00668
15 M Vikse, H A J Watson, D Kim, P I Barton, T Gundersen. Optimization of a dual mixed refrigerant process using a nonsmooth approach. Energy, 2020, 196: 116999
https://doi.org/10.1016/j.energy.2020.116999
16 A W Dowling, L T Biegler. A framework for efficient large scale equation-oriented flowsheet optimization. Computers & Chemical Engineering, 2015, 72: 3–20
https://doi.org/10.1016/j.compchemeng.2014.05.013
17 Y Ma, Y Luo, X Yuan. Simultaneous optimization of complex distillation systems with a new pseudo-transient continuation model. Industrial & Engineering Chemistry Research, 2017, 56(21): 6266–6274
https://doi.org/10.1021/acs.iecr.7b00380
18 Y Ma, Y Luo, X Ma, T Yang, D Chen, X Yuan. Fast algorithms for flowsheet simulation and optimization using psdueo-transient models. Industrial & Engineering Chemistry Research, 2018, 57(42): 14124–14142
https://doi.org/10.1021/acs.iecr.8b01461
19 T Waltermann, T Grueters, D Muenchrath, M Skiborowski. Efficient optimization-based design of energy-integrated azeotropic distillation processes. Computers & Chemical Engineering, 2020, 133: 106676
https://doi.org/10.1016/j.compchemeng.2019.106676
20 Y Ma, M McLaughlan, N Zhang, J Li. Novel feasible path optimization algorithms using steady-state and dynamic models. Computers & Chemical Engineering, 2020, 143: 107058
https://doi.org/10.1016/j.compchemeng.2020.107058
21 W L Luyben. Control of the maximum-boiling acetone/chloroform azeotropic distillation System. Industrial & Engineering Chemistry Research, 2008, 47(16): 6140–6149
https://doi.org/10.1021/ie800463h
22 A A Kiss, R M Ignat. Innovative single step bioethanol dehydration in an extractive dividing-wall column. Separation and Purification Technology, 2012, 98: 290–297
https://doi.org/10.1016/j.seppur.2012.06.029
23 H Luo, C S Bildea, A A Kiss. Novel heat-pump-assisted extractive distillation for bioethanol purification. Industrial & Engineering Chemistry Research, 2015, 54(7): 2208–2213
https://doi.org/10.1021/ie504459c
24 R C Pattison, M Baldea. Equation-oriented flowsheet simulation and optimization using pseudo-transient models. AIChE Journal. American Institute of Chemical Engineers, 2014, 60(12): 4104–4123
https://doi.org/10.1002/aic.14567
25 R C Pattison, A M Gupta, M Baldea. Equation-oriented optimization of process flowsheets with dividing-wall columns. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(3): 704–716
https://doi.org/10.1002/aic.15060
26 A W Dowling, L T Biegler. Rigorous optimization-based synthesis of distillation cascades without integer variables. Computer-Aided Chemical Engineering, 2014, 33: 55–60
https://doi.org/10.1016/B978-0-444-63456-6.50010-7
27 L T Biegler. Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. Philadelphia: Society for Industrial and Applied Mathematics, 2010, 160–161
28 L T Biegler, R R Hughes. Feasible path optimization with sequential modular simulators. Computers & Chemical Engineering, 1985, 9(4): 379–394
https://doi.org/10.1016/0098-1354(85)85016-X
29 N J Higham. Accuracy and Stability of Numerical Algorithms. 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics, 2002, 3–4
30 Aspen Technology Inc. Aspen Custom Modeler User’s Guide Version V8.8. 2015
31 Python Software Foundation. Python language reference version 3.6. 2016
32 D. Kraft A software package for sequential quadratic programming. Braunschweig, Köln: DFVLR, 1988
33 M Aurangzeb, A K Jana. A novel heat integrated extractive dividing wall column for ethanol dehydration. Industrial & Engineering Chemistry Research, 2019, 58(21): 9109–9117
https://doi.org/10.1021/acs.iecr.9b00988
34 D J P C Suszwalak, A A Kiss. Enhanced bioethanol dehydration in extractive dividing-wall columns. Computer-Aided Chemical Engineering, 2012, 30: 667–671
https://doi.org/10.1016/B978-0-444-59519-5.50134-9
35 M Aurangzeb, A K Jana. Double-partitioned dividing wall column for a multicomponent azeotropic system. Separation and Purification Technology, 2019, 219: 33–46
https://doi.org/10.1016/j.seppur.2019.03.007
36 W L Luyben. Distillation Design and Control Using Aspen Simulation. Hoboken: John Wiley & Sons, 2006, 87–89
[1] Supplementary Material 1 Download
[1] Faheem Mushtaq, Xiang Zhang, Ka Y. Fung, Ka M. Ng. Computational design of structured chemical products[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1033-1049.
[2] Baowei Wang, Xiaoxi Wang, Bo Zhang. Dielectric barrier micro-plasma reactor with segmented outer electrode for decomposition of pure CO2[J]. Front. Chem. Sci. Eng., 2021, 15(3): 687-697.
[3] Huaiwei Shi, Teng Zhou. Computational design of heterogeneous catalysts and gas separation materials for advanced chemical processing[J]. Front. Chem. Sci. Eng., 2021, 15(1): 49-59.
[4] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[5] Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz. Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study[J]. Front. Chem. Sci. Eng., 2020, 14(4): 579-594.
[6] Andreja Nemet, Jiří J. Klemeš, Zdravko Kravanja. Process synthesis with simultaneous consideration of inherent safety-inherent risk footprint[J]. Front. Chem. Sci. Eng., 2018, 12(4): 745-762.
[7] Kylie Standage-Beier,Xiao Wang. Genome reprogramming for synthetic biology[J]. Front. Chem. Sci. Eng., 2017, 11(1): 37-45.
[8] Pravin WAKTE,Ajit PATIL,Bhusari SACHIN,Munnaza QUAZI,Shraddha JABDE,Devanand SHINDE. Optimization of microwave-assisted extraction for picroside I and picroside II from Picrorrhiza kurroa using Box-Behnken experimental design[J]. Front. Chem. Sci. Eng., 2014, 8(4): 445-453.
[9] Xiaohang ZHANG,Shengnan HAN,Yan LI,Jianlan JIANG. Development of a multi-component drug from turmeric using central composite design[J]. Front. Chem. Sci. Eng., 2014, 8(3): 362-368.
[10] J. Ulrich, P. Frohberg. Problems, potentials and future of industrial crystallization[J]. Front Chem Sci Eng, 2013, 7(1): 1-8.
[11] Saravanan P, Muthuvelayudham R, Rajesh Kannan R, Viruthagiri T. Optimization of cellulase production using Trichoderma reesei by RSM and comparison with genetic algorithm[J]. Front Chem Sci Eng, 2012, 6(4): 443-452.
[12] K. Manikandan, T. Viruthagiri. Simultaneous saccharification and fermentation of wheat bran flour into ethanol using coculture of amylotic Aspergillus niger and thermotolerant Kluyveromyces marxianus[J]. Front Chem Eng Chin, 2009, 3(3): 240-249.
[13] R. RAJESHKANNAN, N. RAJAMOHAN, M. RAJASIMMAN. Removal of malachite green from aqueous solution by sorption on hydrilla verticillata biomass using response surface methodology[J]. Front Chem Eng Chin, 2009, 3(2): 146-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed