Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (1) : 37-45    https://doi.org/10.1007/s11705-017-1618-2
REVIEW ARTICLE
Genome reprogramming for synthetic biology
Kylie Standage-Beier1,Xiao Wang2()
1. School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
2. School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
 Download: PDF(241 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The ability to go from a digitized DNA sequence to a predictable biological function is central to synthetic biology. Genome engineering tools facilitate rewriting and implementation of engineered DNA sequences. Recent development of new programmable tools to reengineer genomes has spurred myriad advances in synthetic biology. Tools such as clustered regularly interspace short palindromic repeats enable RNA-guided rational redesign of organisms and implementation of synthetic gene systems. New directed evolution methods generate organisms with radically restructured genomes. These restructured organisms have useful new phenotypes for biotechnology, such as bacteriophage resistance and increased genetic stability. Advanced DNA synthesis and assembly methods have also enabled the construction of fully synthetic organisms, such as J. Craig Venter Institute (JCVI)-syn 3.0. Here we summarize the recent advances in programmable genome engineering tools.

Keywords CRISPR      genome engineering      synthetic biology      rational design     
Corresponding Author(s): Xiao Wang   
Just Accepted Date: 03 January 2017   Online First Date: 15 February 2017    Issue Date: 17 March 2017
 Cite this article:   
Kylie Standage-Beier,Xiao Wang. Genome reprogramming for synthetic biology[J]. Front. Chem. Sci. Eng., 2017, 11(1): 37-45.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1618-2
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I1/37
Fig.1  Programmable editing of genomes. (a) A schematic of CRISPR-directed targeting with wildtype S. pyogenes Cas9. Cas9 (blue) is targeted to a DNA sequence based on the presence of a protospacer adjacent motif (PAM, red) nucleotides matching those in a short guide RNA (sgRNA). The target DNA sequence is written beneath. The strand matching the 20 nucleotide guide of the sgRNA is orange and the complementary strand is black; (b) CRISPR-guided double stranded DNA breaks (DSBs) involving a recombination template have various modalities. DSBs either induce host homology directed repair (HDR) or DSBs kill cells that have not acquired the desired edit, wherein the full CRISPR target site is not present in the desired edit. HDR-mediated editing can be either a function of one or both of these modalities; (c) novel mutant versions of Cas9 that mediate single-stranded DNA cleavage have been developed to target recombination in a broad range of organisms
Fig.2  Large-scale reengineering of organisms. (a) Genome reduction methods, such as methods employing CRE recombinase, lambda Red recombineering, and CRISPR-nickases, have enabled large-scale reductions to the E. coli genome. Genome reduction methods look to investigate the emergent phenotypes by removal of large numbers of non-essential genes. These methods may identify novel organisms and phenotypes for synthetic biology; (b) multiplex automated genome engineering (MAGE) offers itself as a powerful tool for coupling DNA synthesis, targeted editing, and evolution. MAGE functions as an iterative process. Recoding oligo nucleotides are electroporated into E. coli, which are then screened for a desired phenotype. This process is repeated to maximize output from a biosynthetic pathway or to systematically replace DNA sequences (Adapted from [47]); (c) Synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) is a promising tool for investigated evolution and combinatorial genetics. loxP sites (blue squares) are placed around genes (various color rectangles), induction of Cre recombinases leads to recombination between loxP sites resulting in deletions, inversions, duplications, and translocations. Resulting clones from this method can be screened for desired phenotypes; (d) Forward genome construction methods such as yeast assembly enabled construction of large-subgenomic fragments. The efficiency of yeast homologous recombination enables connection of multiple fragments. Homolgoue fragments are connected via yeast HDR to a bacterial artificial chromosome (BAC, orange) and yeast artificial chromosome (YAC, blue) sequence. These circular fragments can measure up to 1 megabase and be propagated in S. cerevisiae. These assemblies can be transferred to recipient organisms via various methods
Method Host Description Product Ref
MAGE Escherichia coli Multiplex automated genome engineering: an automated recombineering work flow for directed evolution Lycopene [47]
CAGE Escherichia coli Conjugative assembly genome engineering for hierarchical assembly of genomic mutations UAG codon replacement a) [52]
RAGE Escherichia coli Recombinase assisted genome engineering for integration of heterologous pathways into the E. coli genome Ethanol from brown macroalgae [63]
CRISPR/lambda Red Escherichia coli Integration of large synthetic constructs into the E. coli genome Isobutanol [32]
CasEMBLR Saccharomyces cerevisiae Multiplex assembly of biosynthetic pathways on the yeast genome Carotenoids and tyrosine [44]
mCRISTAR Saccharomyces cerevisiae Combined CRISPR and TAR cloning for construction and refactoring of pathways for application in heterologous organisms Tetarimycin A [74]
Tab.1  Example applications of genome engineering to obtain certain products
1 Faucon P C, Pardee K, Kumar R M, Li H, Loh Y H, Wang X. Gene networks of fully connected triads with complete auto-activation enable multistability and stepwise stochastic transitions. PLoS One, 2014, 9(7): e102873
2 Wu F, Menn D J, Wang X. Quorum-sensing crosstalk-driven synthetic circuits: From unimodality to trimodality. Chemistry & Biology, 2014, 21(12): 1629–1638
3 Wang L Z, Wu F, Flores K, Lai Y C, Wang X. Build to understand: Synthetic approaches to biology. Integrative Biology, 2016, 8(4): 394–408
4 Brophy J A N, Voigt C A. Principles of genetic circuit design. Nature Methods, 2014, 11(5): 508–520
5 Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403(6767): 339–342
6 Litcofsky K D, Afeyan R B, Krom R J, Khalil A S, Collins J J. Iterative plug-and-play methodology for constructing and modifying synthetic gene networks. Nature Methods, 2012, 9(11): 1077–1080
7 Ellis T, Wang X, Collins J J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nature Biotechnology, 2009, 27(5): 465–471
8 Wu M, Su R Q, Li X, Ellis T, Lai Y C, Wang X. Engineering of regulated stochastic cell fate determination. Proceedings of the National Academy of Sciences, 2013, 201305423
9 Hutchison C A, Chuang R Y, Noskov V N, Assad-Garcia N, Deerinck T J, Ellisman M H, Gill J, Kannan K, Karas B J, Ma L, et al. Design and synthesis of a minimal bacterial genome. Science, 2016, 351(6280): aad6253
10 Mojica F J M, Diez-Villasenor C, Garcia-Martinez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 2009, 155(3): 733–740
11 Brouns S J J, Jore M M, Lundgren M, Westra E R, Slijkhuis R J H, Snijders A P L, Dickman M J, Makarova K S, Koonin E V, van der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008, 321(5891): 960–964
12 Marraffini L A. CRISPR-Cas immunity in prokaryotes. Nature, 2015, 526(7571): 55–61
13 Marraffini L A, Sontheimer E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008, 322(5909): 1843–1845
14 Makarova K S, Haft D H, Barrangou R, Brouns S J J, Charpentier E, Horvath P, Moineau S, Mojica F J M, Wolf Y I, Yakunin A F, et al. Evolution and classification of the CRISPR-Cas systems. Nature Reviews. Microbiology, 2011, 9(6): 467–477
15 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821
16 Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823
17 Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826
18 Fu Y, Foden J A, Khayter C, Maeder M L, Reyon D, Joung J K, Sander J D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 2013, 31(9): 822–826
19 Ran F A, Hsu P D, Lin C Y, Gootenberg J S, Konermann S, Trevino A E, Scott D A, Inoue A, Matoba S, Zhang Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 155(2): 479–480
20 Tsai S Q, Wyvekens N, Khayter C, Foden J A, Thapar V, Reyon D, Goodwin M J, Aryee M J, Joung J K. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnology, 2014, 32(6): 569–576
21 Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology, 2014, 32(6): 577–582
22 Fu Y, Sander J D, Reyon D, Cascio V M, Joung J K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 2014, 32(3): 279–284
23 Kiani S, Chavez A, Tuttle M, Hall R N, Chari R, Ter-Ovanesyan D, Qian J, Pruitt B W, Beal J, Vora S, et al. Cas9 gRNA engineering for genome editing, activation and repression. Nature Methods, 2015, 12(11): 1051–1054
24 Kiani S, Beal J, Ebrahimkhani M R, Huh J, Hall R N, Xie Z, Li Y, Weiss R. CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nature Methods, 2014, 11(7): 723–726
25 Slaymaker I M, Gao L, Zetsche B, Scott D A, Yan W X, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science, 2015, 351(6268): 84–88
26 Kleinstiver B P, Pattanayak V, Prew M S, Tsai S Q, Nguyen N T, Zheng Z, Joung J K. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529(7587): 490–495
27 Kleinstiver B P, Prew M S, Tsai S Q, Topkar V V, Nguyen N T, Zheng Z, Gonzales A P W, Li Z, Peterson R T, Yeh J R J, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015, 523(7561): 481–485
28 Kleinstiver B P, Prew M S, Tsai S Q, Nguyen N T, Topkar V V, Zheng Z, Joung J K. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nature Biotechnology, 2015, 33(12): 1293–1298
29 He X, Tan C, Wang F, Wang Y, Zhou R, Cui D, You W, Zhao H, Ren J, Feng B. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Research, 2016, 44(9): e85
30 Jiang W, Bikard D, Cox D, Zhang F, Marraffini L A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(3): 233–239
31 Kuhlman T E, Cox E C. Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Research, 2010, 38(6): e92
32 Bassalo M C, Garst A D, Halweg-Edwards A L, Grau W C, Domaille D W, Mutalik V K, Arkin A P, Gill R T. Rapid and efficient one-step metabolic pathway integration in E. coli. ACS Synthetic Biology, 2016, 5(7): 561–568
33 Standage-Beier K, Zhang Q, Wang X. Targeted large-scale deletion of bacterial genomes using CRISPR-nickases. ACS Synthetic Biology, 2015, 4(11): 1217–1225
34 Li Q, Chen J, Minton N P, Zhang Y, Wen Z, Liu J, Yang H, Zeng Z, Ren X, Yang J, et al. CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnology Journal, 2016, 11(7): 961–972
35 Wang Y, Zhang Z T, Seo S O, Choi K, Lu T, Jin Y S, Blaschek H P. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. Journal of Biotechnology, 2015, 200: 1–5
36 Liao C, Seo S O, Celik V, Liu H, Kong W, Wang Y, Blaschek H, Jin Y S, Lu T. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): 8505–8510
37 Mougiakos I, Bosma E F, de Vos W M, van Kranenburg R, van der Oost J. Next generation prokaryotic engineering: The CRISPR-Cas toolkit. Trends in Biotechnology, 2016, 34(7): 575–587
38 Choi K R, Lee S Y. CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnology Advances, 2016, 34(7): 1180–1209
39 Jiang W, Marraffini L A. CRISPR-Cas: New tools for genetic manipulations from bacterial immunity systems. Annual Review of Microbiology, 2015, 69(1): 209–228
40 Doyon Y, McCammon J M, Miller J C, Faraji F, Ngo C, Katibah G E, Amora R, Hocking T D, Zhang L, Rebar E J, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 2008, 26(6): 702–708
41 DiCarlo J E, Norville J E, Mali P, Rios X, Aach J, Church G M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research, 2013, 41(7): 4336–4343
42 Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synthetic Biology, 2015, 4(5): 585–594
43 Hao H, Wang X, Jia H, Yu M, Zhang X, Tang H, Zhang L. Large fragment deletion using a CRISPR/Cas9 system in Saccharomyces cerevisiae. Analytical Biochemistry, 2016, 509: 118–123
44 Jakočiūnas T, Rajkumar A S, Zhang J, Arsovska D, Rodriguez A, Jendresen C B, Skjødt M L, Nielsen A T, Borodina I, Jensen M K, et al. CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in saccharomyces cerevisiae. ACS Synthetic Biology, 2015, 4(11): 1226–1234
45 Tsarmpopoulos I, Gourgues G, Blanchard A, Vashee S, Jores J, Lartigue C, Sirand-Pugnet P. In-yeast engineering of a bacterial genome using CRISPR/Cas9. ACS Synthetic Biology, 2016, 5(1): 104–109
46 Kannan K, Tsvetanova B, Chuang R Y, Noskov V N, Assad-Garcia N, Ma L, Hutchison C A III, Smith H O, Glass J I, Merryman C, et al. One step engineering of the small-subunit ribosomal RNA using CRISPR/Cas9. Scientific Reports, 2016, 6: 30714
47 Wang H H, Isaacs F J, Carr P A, Sun Z Z, Xu G, Forest C R, Church G M. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894–898
48 Pál C, Papp B, Pósfai G. The dawn of evolutionary genome engineering. Nature Reviews. Genetics, 2014, 15(7): 504–512
49 Yokobayashi Y, Weiss R, Arnold F H. Directed evolution of a genetic circuit. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(26): 16587–16591
50 Mosberg J A, Lajoie M J, Church G M. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics, 2010, 186(3): 791–799
51 Lajoie M J, Gregg C J, Mosberg J A, Washington G C, Church G M. Manipulating replisome dynamics to enhance lambda red-mediated multiplex genome engineering. Nucleic Acids Research, 2012, 40(22): e170
52 Isaacs F J, Carr P A, Wang H H, Lajoie M J, Sterling B, Kraal L, Tolonen A C, Gianoulis T A, Goodman D B, Reppas N B, et al. Precise manipulation of chromosomes in vivo enables genome-wide Codon replacement. Science, 2011, 333(6040): 348–353
53 Lajoie M J, Rovner A J, Goodman D B, Aerni H R, Haimovich A D, Kuznetsov G, Mercer J A, Wang H H, Carr P A, Mosberg J A, et al. Genomically recoded organisms expand biological functions. Science, 2013, 342(6156): 357–360
54 Farzadfard F, Lu T K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science, 2014, 346(6211): 1256272
55 Perli S D, Cui C H, Lu T K. Continuous genetic recording with self-targeting CRISPR-Cas in human cells. Science, 2016, 353(6304): aag0511
56 Barrick J E, Yu D S, Yoon S H, Jeong H, Oh T K, Schneider D, Lenski R E, Kim J F. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature, 2009, 461(7268): 1243–1247
57 Cooper V S, Schneider D, Blot M, Lenski R E. Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B. Journal of Bacteriology, 2001, 183(9): 2834–2841
58 Elena S F, Lenski R E. Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. Nature Reviews. Genetics, 2003, 4(6): 457–469
59 Kolisnychenko V, Plunkett G, Herring C D, Feher T, Posfai J, Blattner F R, Posfai G. Engineering a reduced Escherichia coli genome. Genome Research, 2002, 12(4): 640–647
60 Pósfai G, Plunkett G, Fehér T, Frisch D, Keil G M, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma S S. Arruda M de, et al. Emergent properties of reduced-genome Escherichia coli. Science, 2006, 312(5776): 1044–1046
61 Csörgő B, Nyerges Á, Pósfai G, Fehér T. System-level genome editing in microbes. Current Opinion in Microbiology, 2016, 33: 113–122
62 St-Pierre F, Cui L, Priest D G, Endy D, Dodd I B, Shearwin K E. One-step cloning and chromosomal integration of DNA. ACS Synthetic Biology, 2013, 2(9): 537–541
63 Santos C N S, Regitsky D D, Yoshikuni Y. Implementation of stable and complex biological systems through recombinase-assisted genome engineering. Nature Communications, 2013, 4: 2503
64 Santos C N S, Yoshikuni Y. Engineering complex biological systems in bacteria through recombinase-assisted genome engineering. Nature Protocols, 2014, 9(6): 1320–1336
65 Enyeart P J, Chirieleison S M, Dao M N, Perutka J, Quandt E M, Yao J, Whitt J T, Keatinge-Clay A T, Lambowitz A M, Ellington A D. Generalized bacterial genome editing using mobile group II introns and Cre-lox. Molecular Systems Biology, 2013, 9(1): 685
66 Krishnakumar R, Grose C, Haft D H, Zaveri J, Alperovich N, Gibson D G, Merryman C, Glass J I. Simultaneous non-contiguous deletions using large synthetic DNA and site-specific recombinases. Nucleic Acids Research, 2014, 42(14): e111
67 Dymond J S, Richardson S M, Coombes C E, Babatz T, Muller H, Annaluru N, Blake W J, Schwerzmann J W, Dai J, Lindstrom D L, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 2011, 477(7365): 471–476
68 Karpinski J, Hauber I, Chemnitz J, Schäfer C, Paszkowski-Rogacz M, Chakraborty D, Beschorner N, Hofmann-Sieber H, Lange U C, Grundhoff A, et al. Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nature Biotechnology, 2016, 34(4): 401–409
69 Gibson D G, Young L, Chuang R Y, Venter J C, Hutchison C A, Smith H O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 2009, 6(5): 343–345
70 Lartigue C, Glass J I, Alperovich N, Pieper R, Parmar P P, Hutchison C A, Smith H O, Venter J C. Genome transplantation in bacteria: Changing one species to another. Science, 2007, 317(5838): 632–638
71 Lartigue C, Vashee S, Algire M A, Chuang R Y, Benders G A, Ma L, Noskov V N, Denisova E A, Gibson D G, Assad-Garcia N, et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science, 2009, 325(5948): 1693–1696
72 Karas B J, Jablanovic J, Irvine E, Sun L, Ma L, Weyman P D, Gibson D G, Glass J I, Venter J C, Hutchison III C A, et al. Transferring whole genomes from bacteria to yeast spheroplasts using entire bacterial cells to reduce DNA shearing. Nature Protocols, 2014, 9(4): 743–750
73 Gibson D G, Glass J I, Lartigue C, Noskov V N, Chuang R Y, Algire M A, Benders G A, Montague M G, Ma L, Moodie M M, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329(5987): 52–56
74 Kang H S, Charlop-Powers Z, Brady S F. Multiplexed CRISPR/Cas9- and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast. ACS Synthetic Biology, 2016, 5(9): 1002–1010
75 Temme K, Zhao D, Voigt C A. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(18): 7085–7090
76 Smanski M J, Bhatia S, Zhao D, Park Y, Woodruff L B A, Giannoukos G, Ciulla D, Busby M, Calderon J, Nicol R, et al. Functional optimization of gene clusters by combinatorial design and assembly. Nature Biotechnology, 2014, 32(12): 1241–1249
77 Sander J D, Joung J K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32(4): 347–355
[1] Juan Wang, Bin Jia, Zexiong Xie, Yunxiang Li, Yingjin Yuan. Improving prodeoxyviolacein production via multiplex SCRaMbLE iterative cycles[J]. Front. Chem. Sci. Eng., 2018, 12(4): 806-814.
[2] Seiichi Taguchi. Designer enzyme for green materials innovation: Lactate-polymerizing enzyme as a key catalyst[J]. Front. Chem. Sci. Eng., 2017, 11(1): 139-142.
[3] Ting Yuan, Yakun Guo, Junkai Dong, Tianyi Li, Tong Zhou, Kaiwen Sun, Mei Zhang, Qingyu Wu, Zhen Xie, Yizhi Cai, Limin Cao, Junbiao Dai. Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae[J]. Front. Chem. Sci. Eng., 2017, 11(1): 107-116.
[4] Ruizhao Wang, Xiaoli Gu, Mingdong Yao, Caihui Pan, Hong Liu, Wenhai Xiao, Ying Wang, Yingjin Yuan. Engineering of β-carotene hydroxylase and ketolase for astaxanthin overproduction in Saccharomyces cerevisiae[J]. Front. Chem. Sci. Eng., 2017, 11(1): 89-99.
[5] Michael D. Dressler,Corey J. Clark,Chelsea A. Thachettu,Yasmine Zakaria,Omar Tonsi Eldakar,Robert P. Smith. Synthetically engineered microbes reveal interesting principles of cooperation[J]. Front. Chem. Sci. Eng., 2017, 11(1): 3-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed