|
|
Improving prodeoxyviolacein production via multiplex SCRaMbLE iterative cycles |
Juan Wang1,2, Bin Jia1,2, Zexiong Xie1,2, Yunxiang Li1,2, Yingjin Yuan1,2( ) |
1. Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China 2. SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China |
|
|
Abstract The synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) system has been used to improve prodeoxyviolacein (PDV) production in haploid yeast containing chromosome synV. To rapidly and continuously generate genome diversification with the desired phenotype, the multiplex SCRaMbLE iterative cycle strategy has been developed for the screening of high PDV production strains. Whole-genome sequencing analysis reveals large duplications, deletions, and even the whole genome duplications. The deletion of YER151C is proved to be responsible for the increase. This study demonstrates that artificial DNA rearrangement can be used to accelerate microbial evolution and the production of biobased chemicals.
|
Keywords
synthetic biology
genome rearrangement
prodeoxyviolacein
SCRaMbLE
Saccharomyces cerevisiae
|
Corresponding Author(s):
Yingjin Yuan
|
Just Accepted Date: 25 May 2018
Issue Date: 03 January 2019
|
|
1 |
J SDymond, S M Richardson, C E Coombes, T Babatz, HMuller, NAnnaluru, W JBlake, J WSchwerzmann, J BDai, D LLindstrom, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 2011, 477(7365): 471–476
https://doi.org/10.1038/nature10403
|
2 |
J XYue, J Li, LAigrain, JHallin, KPersson, KOliver, ABergström, PCoupland, JWarringer, M CLagomarsino, et al. Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nature Genetics, 2017, 49(6): 913–924
https://doi.org/10.1038/ng.3847
|
3 |
Q JZhang, T Zhu, E HXia, CShi, Y L Liu, Y Zhang, YLiu, W KJiang, Y JZhao, S YMao, et al. Rapid diversification of five Oryza AA genomes associated with rice adaptation. Nucleic Acids Research, 2014, 111(46): e4954–e4962
|
4 |
PPevzner, G Tesler. Genome rearrangements in mammalian evolution: Lessons from human and mouse genomes. Genome Research, 2003, 13(1): 37–45
https://doi.org/10.1101/gr.757503
|
5 |
RRedon, S Ishikawa, K RFitch, LFeuk, H George, T DAndrews, HFiegler, M HShapero, A RCarson, W WChen, et al. Global variation in copy number in the human genome. Nature, 2006, 444(7118): 444–454
https://doi.org/10.1038/nature05329
|
6 |
Y XZhang, K Perry, V AVinci, KPowell, W P CStemmer, S BDel Cardayré. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 2002, 415(6872): 644–646
https://doi.org/10.1038/415644a
|
7 |
DBiot-Pelletier, V J J Martin. Evolutionary engineering by genome shuffling. Applied Microbiology and Biotechnology, 2014, 98(9): 3877–3887
https://doi.org/10.1007/s00253-014-5616-8
|
8 |
Z XXie, B Z Li, L A Mitchell, Y Wu, XQi, ZJin, B Jia, XWang, B XZeng, H MLiu, et al. “Perfect” designer chromosome V and behavior of a ring derivative. Science, 2017, 355(6329): 1046
|
9 |
YWu, B Z Li, M Zhao, L AMitchell, Z XXie, Q HLin, XWang, W H Xiao, Y Wang, XZhou, et al. Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 2017, 355(6329): 1048
|
10 |
NDurán, G Z Justo, M Durán, MBrocchi, LCordi, LTasic, G RCastro, GNakazato. Advances in chromobacterium violaceum and properties of violacein–its main secondary metabolite: A review. Biotechnology Advances, 2016, 34(5): 1030–1045
https://doi.org/10.1016/j.biotechadv.2016.06.003
|
11 |
P SMelo, S S Maria, B C Vidal, M Haun, NDurán. Violacein cytotoxicity and induction of apoptosis in V79 cells. In Vitro Cellular & Developmental Biology, 2000, 36(8): 539–543
https://doi.org/10.1290/1071-2690(2000)036<0539:VCAIOA>2.0.CO;2
|
12 |
MKonzen, D De Marco, C A SCordova, T OVieira, R VAntônio, T BCreczynski-Pasa. Antioxidant properties of violacein: Possible relation on its biological function. Bioorganic & Medicinal Chemistry, 2006, 14(24): 8307–8313
https://doi.org/10.1016/j.bmc.2006.09.013
|
13 |
NDurán, R V Antonio, M Haun, R APilli. Biosynthesis of a trypanocide by Chromobacterium violaceum. World Journal of Microbiology & Biotechnology, 1994, 10(6): 686–690
https://doi.org/10.1007/BF00327960
|
14 |
PAntonisamy, S Ignacimuthu. Immunomodulatory, analgesic and antipyretic effects of violacein isolated from Chromobacterium violaceum. Phytomedicine, 2010, 17(3–4): 300–304
https://doi.org/10.1016/j.phymed.2009.05.018
|
15 |
M ELee, A Aswani, A SHan, C JTomlin, J EDueber. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Research, 2013, 41(22): 10668–10678
https://doi.org/10.1093/nar/gkt809
|
16 |
QLin, B Jia, L AMitchell, J CLuo, KYang, K I Zeller, W Q Zhang, Z W Xu, G Stracquadanio, J SBader, J DBoeke, Y JYuan. RADOM, an Efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae. ACS Synthetic Biology, 2014, 4(3): 213–220
https://doi.org/10.1021/sb500241e
|
17 |
DLiu, H Liu, B ZLi, HQi, B Jia, XZhou, H XDu, WZhang, Y JYuan. Multigene pathway engineering with regulatory linkers (M-PERL). ACS Synthetic Biology, 2016, 5(12): 1535–1545
https://doi.org/10.1021/acssynbio.6b00123
|
18 |
A RKnaggs. The biosynthesis of shikimate metabolites. Natural Product Reports, 2003, 20(1): 119–136
https://doi.org/10.1039/b100399m
|
19 |
J GZalatan, M Lee, E RAlmeida, L AGilbert, E HWhitehead, MLa Russa, J CTsai, J SWeissman, J EDueber, L SQi, W ALim. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 2015, 160(1–2): 339–350
https://doi.org/10.1016/j.cell.2014.11.052
|
20 |
BJia, Y Wu, B ZLi, L AMitchell, HLiu, S Pan, JWang, H RZhang, H MLiu, Z XChen, et al. Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nature Communications, 2018, 9(1): 1933
https://doi.org/10.1038/s41467-018-03084-4
|
21 |
AQuerol, M T Fernández-Espinar, M Del Olmo, EBarrio. Adaptive evolution of wine yeast. International Journal of Food Microbiology, 2003, 86(1–2): 3–10
https://doi.org/10.1016/S0168-1605(03)00244-7
|
22 |
LGatti, K L Hoe, J Hayles, S CRighetti, N BCarenini, DLaura, D UKim, H OPark, PPerego. Ubiquitin-proteasome genes as targets for modulation of cisplatin sensitivity in fission yeast. BMC Genomics, 2011, 12(1): 44
https://doi.org/10.1186/1471-2164-12-44
|
23 |
S EDodgson, S Santaguida, SKim, JSheltzer, AAmon. The pleiotropic deubiquitinase UBP3 confers aneuploidy tolerance. Genes & Development, 2016, 30(20): 2259–2271
https://doi.org/10.1101/gad.287474.116
|
24 |
DLiu, B Z Li, H Liu, X JGuo, Y JYuan. Profiling influences of gene overexpression on heterologous resveratrol production in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 2017, 11(1): 117–125
https://doi.org/10.1007/s11705-016-1601-3
|
25 |
R ZWang, X L Gu, M D Yao, C H Pan, H Liu, W HXiao, YWang, Y J Yuan. Engineering of β-carotene hydroxylase and ketolase for astaxanthin overproduction in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 2017, 11(1): 89–99
https://doi.org/10.1007/s11705-017-1628-0
|
26 |
Y JYuan, J C Wu, X Wang. Collaborations of China with the world in Synbio. Frontiers of Chemical Science and Engineering, 2017, 11(1): 1–2
https://doi.org/10.1007/s11705-017-1638-y
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|