Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (2) : 210-215    https://doi.org/10.1007/s11705-012-1282-5
RESEARCH ARTICLE
Optimization of pretreatment of Jatropha oil with high free fatty acids for biodiesel production
Supriyono SUWITO1,2, Giuliano DRAGONE1(), Hary SULISTYO2, Bardi MURACHMAN2, Suryo PURWONO2, José TEIXEIRA1
1. Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal; 2. Chemical Engineering Department, Gadjah Mada University, Yogyakarta 55281, Indonesia
 Download: PDF(152 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A central composite rotatable design and response surface methodology were used in order to investigate the individual and combined effects of the ethanol-to-oil ratio, H2SO4 concentration, temperature and time of reaction on the reduction of free fatty acid (FFA) in jatropha oil. A quadratic polynomial model relating the reaction variables with FFA reduction was developed, presenting a good coefficient of determination (R2= 0.893). For reducing FFA to less than 1%, the optimal combination was found to be 0.62 v·v-1 ethanol-to-oil ratio (14.9 v·v-1 ethanol-to-FFA ratio), 1.7% v·v-1 H2SO4 concentration, and 79 min reaction time at a reaction temperature of 54°C. These results are of great relevance to maximize methyl esters formation by transesterification using an alkaline catalyst.

Keywords biodiesel      biofuel      esterification      free fatty acids      jatropha curcas oil     
Corresponding Author(s): DRAGONE Giuliano,Email:gdragone@deb.uminho.pt   
Issue Date: 05 June 2012
 Cite this article:   
Supriyono SUWITO,Giuliano DRAGONE,Hary SULISTYO, et al. Optimization of pretreatment of Jatropha oil with high free fatty acids for biodiesel production[J]. Front Chem Sci Eng, 2012, 6(2): 210-215.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-1282-5
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I2/210
Fatty Acid /%CaprylicCapricLauricMyristicPalmitoleicPalmiticMargaricOleicStearicLinoleicLinolenicEicosenoicEicosanoicEicosenoicEicosapentaenoicBehenicDocosatrienoicDecahexanoicTeracosanoicKinematic viscosity /(40°C, mm2/s)Water content /(vol-%)Specific gravity at 60/60°CFlash point PMcc /°FConradson carbon residue /(wt-%)Saponification value /(mg·g–1)Peroxide value0.040.060.020.090.8214.090.2375.827.930.090.040.150.330.090.080.030.010.04<0.00142.7650.20.91843741.0521820.61
Tab.1  Fatty acid composition and physical properties of jatropha oil used in this study
Independent variableSymbolLevels and range
-101
Ethanol-to-oil ratio /(v·v–1)EtO0.30.50.7
H2SO4 concentration /(vol-%)Ac123
Time /minTi507090
Temperature /°CTe455565
Tab.2  Levels and range of the independent variables used in the esterification process according to CCRD
RunH2SO4 /(vol- %)Ethanol: Oil /(v·v-1)Time /minTemperature /°CFFA reduction
ExperimentalPredicted
1710.570553.803.14
110.350452.562.29
210.350653.092.67
310.390452.932.58
410.390652.982.16
510.750453.353.13
610.750653.593.45
710.790453.553.05
810.790653.372.57
1920.370553.032.71
2120.550553.663.26
2320.570453.543.08
29 (C)20.570553.623.17
25 (C)20.570553.603.17
26 (C)20.570553.643.17
28 (C)20.570553.663.17
27 (C)20.570553.643.17
2420.570653.312.87
2220.590553.583.08
2020.770553.853.23
930.350452.602.49
1030.350652.892.55
1130.390453.693.01
1230.390652.932.27
1830.570553.433.18
1330.750453.383.11
1430.750653.423.11
1530.790453.483.27
1630.790653.252.47
Tab.3  Observed and predicted values of the reduction of FFA content in jatropha oil according to the full-factorial CCRD
Variables and interactions a)Estimated effectsStandard errorst-valuep-value
Ac (L)-0.0190.075-0.2480.808
Ac (Q)-0.0240.192-0.1240.903
EtO (L)0.5040.0766.6760.000
EtO (Q)-0.3980.198-2.0050.065
Ti (L)0.1360.0761.8060.092
Ti (Q)-0.0420.198-0.2100.836
Te (L)-0.0270.076-0.3560.727
Te (Q)-0.4210.198-2.1210.052
Ac EtO-0.1090.080-1.3570.196
Ac Ti0.1020.0801.2700.225
Ac Te-0.1610.080-2.0050.065
EtO Ti-0.1860.080-2.3270.035
EtO Te-0.0290.080-0.3590.725
Ti Te-0.2790.080-3.4820.004
Tab.4  Effect estimates, standard errors, -test and -values for the reduction of FFA content in jatropha oil according to the full-factorial CCRD
Fig.1  Contour plots of FFA reduction (%) as a function of: (a) ethanol-to-oil ratio and acid catalyst concentration, (b) ethanol-to-oil ratio and time, and (c) acid catalyst concentration and temperature, predicted from the quadratic model.
1 Veljkovic V B, Lakicevic S H, Stamenkovic O S, Todorovic Z B, Lazic M L. Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high content of free fatty acids. Fuel , 2006, 85(17–18): 2671–2675
doi: 10.1016/j.fuel.2006.04.015
2 Deng X, Fang Z, Liu Y. Liu Y H. Ultrasonic transesterification of Jatropha curcas L. oil to biodiesel by a two-step process. Energy Conversion and Management , 2010, 51(12): 2802–2807
doi: 10.1016/j.enconman.2010.06.017
3 Vicente G, Coteron A, Martinez M, Aracil J. Application of the factorial design of experiments and response surface methodology to optimize biodiesel production. Industrial Crops and Products , 1998, 8(1): 29–35
doi: 10.1016/S0926-6690(97)10003-6
4 ?etinkaya M, Karaosmanoglu F. Optimization of base-catalyzed transesterification reaction of used cooking oil. Energy & Fuels , 2004, 18(6): 1888–1895
doi: 10.1021/ef049891c
5 Berchmans H J, Hirata S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology , 2008, 99(6): 1716–1721
doi: 10.1016/j.biortech.2007.03.051
6 Syam A, Yunus R, Ghazi T, Yaw T. Methanolysis of jatropha oil in the presence of potassium hydroxide catalyst. Journal of Applied Sciences , 2009, 9(17): 3161–3165
doi: 10.3923/jas.2009.3161.3165
7 Kumar Tiwari A, Kumar A, Raheman H. Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass and Bioenergy , 2007, 31(8): 569–575
doi: 10.1016/j.biombioe.2007.03.003
8 Ghadge S V, Raheman H. Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass and Bioenergy , 2005, 28(6): 601–605
doi: 10.1016/j.biombioe.2004.11.009
9 Jena P C, Raheman H, Prasanna Kumar G V, Machavaram R. Biodiesel production from mixture of mahua and simarouba oils with high free fatty acids. Biomass and Bioenergy , 2010, 34(8): 1108–1116
doi: 10.1016/j.biombioe.2010.02.019
10 Dorado M, Ballesteros E, de Almeida J, Schellert C, Lohrlein H, Krause R. An alkali-catalyzed transesterification process for high free fatty acid waste oils. Transactions-American Society Of Agricultural Engineers , 2002, 45(3): 525–530
11 Lu H, Liu Y, Zhou H, Yang Y, Chen M, Liang B. Production of biodiesel from Jatropha curcas L. oil. Computers & Chemical Engineering , 2009, 33(5): 1091–1096
doi: 10.1016/j.compchemeng.2008.09.012
12 ASTM. American Standards for Testing of Materials. D 189–01 D, D 4052–96, D 445–03, D 482–74, D 5555–95, D 6751–02, D 93–02, D 95–990, D 97–02. 2003
13 Canakci M, Gerpen J V. Biodiesel production from oils and fats with high free fatty acids. Transactions of the ASAE. American Society of Agricultural Engineers , 2001, 44(6): 1429–1436
14 Azhari M, Faiz M, Yunus R, Ghazi T, Yaw T. Reduction of free fatty acids in crude Jatropha curcas oil via an esterification process. International Journal of Engineering and Technology , 2008, 5(2): 92–98
15 Marchetti J M, Errazu A F. Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides. Biomass and Bioenergy , 2008, 32(9): 892–895
doi: 10.1016/j.biombioe.2008.01.001
16 Zhang J, Jiang L. Acid-catalyzed esterification of Zanthoxylum bungeanum seed oil with high free fatty acids for biodiesel production. Bioresource Technology , 2008, 99(18): 8995–8998
doi: 10.1016/j.biortech.2008.05.004
17 Yuan X, Liu J, Zeng G, Shi J, Tong J, Huang G. Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renewable Energy , 2008, 33(7): 1678–1684
doi: 10.1016/j.renene.2007.09.007
[1] Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan. Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2[J]. Front. Chem. Sci. Eng., 2021, 15(1): 208-219.
[2] Jianfa Ou,Chao Ma,Ningning Xu,Yinming Du,Xiaoguang (Margaret) Liu. High butanol production by regulating carbon, redox and energy in Clostridia? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 317-323.
[3] Shengping WANG, Changqing MA, Yun SHI, Xinbin MA. Ti incorporation in MCM-41 mesoporous molecular sieves using hydrothermal synthesis[J]. Front Chem Sci Eng, 2014, 8(1): 95-103.
[4] Jorge MEDINA-VALTIERRA, Jorge RAMIREZ-ORTIZ. Biodiesel production from waste frying oil in sub- and supercritical methanol on a zeolite Y solid acid catalyst[J]. Front Chem Sci Eng, 2013, 7(4): 401-407.
[5] Jorge RAMIREZ-ORTIZ, Merced MARTINEZ, Horacio FLORES. Metakaolinite as a catalyst for biodiesel production from waste cooking oil[J]. Front Chem Sci Eng, 2012, 6(4): 403-409.
[6] Guang WEN, Zifeng YAN. Transesterification of soybean oil to biodiesel over kalsilite catalyst[J]. Front Chem Sci Eng, 2011, 5(3): 325-329.
[7] Huijuan CHU, Hongliang WEI, Jing ZHU, Shouyin HU. Preparation of starch esters with crosslinking structures derived from dianhydride[J]. Front Chem Sci Eng, 2011, 5(1): 51-54.
[8] Beilei ZHOU, Yanxiong FANG, Hao GU, Saidan ZHANG, Baohua HUANG, Kun ZHANG. Ionic liquid mediated esterification of alcohol with acetic acid[J]. Front Chem Eng Chin, 2009, 3(2): 211-214.
[9] WANG Rui, YANG Song, YIN Shitao, SONG Baoan, BHADURY Pinaki S., XUE Wei, TAO Shuwei, JIA Zhaohui, LIU Da, GAO Liang. Development of solid base catalyst X/Y/MgO/-AlO for optimization of preparation of biodiesel from L.seed oil [J]. Front. Chem. Sci. Eng., 2008, 2(4): 468-472.
[10] GAO Shihao, SUN Chenghui, ZHAO Xinqi, GAO Changquan. Improvement in the synthesis of 2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(Z)-methoxyiminoacetic acid 2-benzothiazolyl thioester[J]. Front. Chem. Sci. Eng., 2008, 2(1): 80-84.
[11] CHEN He, PENG Baoxiang, WANG Dezheng, WANG Jinfu. Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts[J]. Front. Chem. Sci. Eng., 2007, 1(1): 11-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed