Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (2) : 252-265    https://doi.org/10.1007/s11705-017-1630-6
RESEARCH ARTICLE
Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2capture enhancement
Elaheh Mehrvarz, Ali A. Ghoreyshi(), Mohsen Jahanshahi
Chemical Engineering Department, Babol University of Technology, Shariati Av., Babol, Mazandaran 47148-71167, Iran
 Download: PDF(484 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A new type of activated carbon (AC) was synthesized using broom sorghum stalk as a low cost carbon source through chemical activation with H3PO4 and KOH. The AC obtained by KOH had the largest BET surface area of 1619 m2·g−1 and the highest micropore volume of 0.671 cm3·g−1. CO2 adsorption was enhanced by functionalizing the AC with two different amines: triethylenetetramine (TETA) and urea. The structure of the prepared ACs was characterized by Brunauer-Emmett-Teller method, scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and acid-base Boehm titration analyses. The adsorption behavior of CO2 onto raw and amine-functionalized ACs was investigated in the temperature range of 288–308 K and pressures up to 25 bar. The amount of CO2 uptake at 298 K and 1 bar achieved by AC-TETA and AC-urea was 3.22 and 2.33 mmol·g−1which shows a 92% and 40% improvement compared to pristine AC (1.66 mmol·g−1), respectively. Among different model isotherms used to describe the adsorption equilibria, Sips isotherm presented a perfect fit in all cases. Gas adsorption kinetic study revealed a fast kinetics of CO2adsorption onto the ACs. The evaluation of the isosteric heat of adsorption demonstrated the exothermic nature of the CO2 adsorption onto unmodified and modified samples.

Keywords activated carbon      broom sorghum      functionalization      CO2 capture     
Corresponding Author(s): Ali A. Ghoreyshi   
Just Accepted Date: 15 February 2017   Online First Date: 29 March 2017    Issue Date: 12 May 2017
 Cite this article:   
Elaheh Mehrvarz,Ali A. Ghoreyshi,Mohsen Jahanshahi. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2capture enhancement[J]. Front. Chem. Sci. Eng., 2017, 11(2): 252-265.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1630-6
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I2/252
Fig.1  Schematic diagram of the volumetric adsorption system. (1) pressure cell; (2) adsorption cell; (3,4) temperature probe; (5, 6) pressure transducer; (7,8) temperature digital indicator; (9,10) pressure digital indicator; (11) vacuum pump
Ultimate analysisProximate analysis
CarbonHydrogenNitrogenSulfurOxygena)MoistureVolatile matterAsh
1.09
Fixed carbona)
46.475.691.0946.756.6381.8110.47
Tab.1  Ultimate and proximate analysis of broom sorghum stalk
Fig.2  Adsorption/desorption isotherms of N2 at 77 K for AC prepared with H3PO4 and KOH
SamplesActivating agentBET surface area /(m2?g–1)Micropore volume /(cm3?g–1)Mesopore volume /(cm3?g–1)Total pore volume /(cm3?g–1)Mean pore diameter /nm
AC1KOH16190.6710.2390.9102.24
AC2H3PO45500.2330.0270.2601.89
Tab.2  Textural parameters of the prepared ACs
Fig.3  N2 adsorption-desorption isotherms of unmodified and modified broom stalks based activated carbon samples
SamplesBET surface area
/(m2?g?1)
Micropore volume
/(cm3?g?1)
Mesopore volume
/(cm3?g?1)
Total pore volume
/(cm3?g?1)
Mean pore diameter
/nm
Raw AC16190.6710.2390.9102.24
AC-TETA10980.5250.1170.6422.33
AC-urea6140.2740.1090.3832.49
Tab.3  Textural parameters of the unmodified and modified ACs
Fig.4  SEM of (a) raw AC, (b) oxidized AC, (c) AC-TETA and (d) AC-urea
Fig.5  FT-IR spectra of (a) raw AC, (b) oxidized AC, (c) AC-TETA and (d) AC-urea
Fig.6  TGA curves of AC before and after amine modification
AC sampleCarboxyl/(meq•g–1)Lactone/(meq•g–1)Phenol/(meq•g–1)Total acidity/(meq•g–1)Total basic/(meq•g–1)
AC0.2250.1750.781.180.81
Oxidized-AC1.0850.9251.413.420.75
AC-TETA0.420.6321.032.0821.12
AC-urea0.150.391.111.651.32
Tab.4  Surface groups obtained from Boehm titrations.
Fig.7  Experimental adsorption data of raw AC at different temperatures along with Sips model isotherm
Fig.8  Experimental adsorption isotherm of AC-TETA and the predicted values by the Sips model at different temperatures
Fig.9  Comparison between experimental adsorption data of AC-urea and the Sips model isotherm in different temperatures
T /KLangmuirFreundlichSip
qmKLR2KFnR2qmKSnR2
28813.570.1540.99062.922.370.998328.790.01891.720.9996
29812.010.1270.99182.252.220.998425.930.01561.670.9996
30810.810.1090.99341.762.070.998424.140.01071.610.9993
Tab.5  Langmuir, Freundlich and Sips isotherm constants for the adsorption of CO2 on raw AC
T /KLangmuirFreundlichSip
qmKLR2KFnR2qmKSnR2
28821.460.1710.98844.902.430.998850.640.01411.840.9999
29818.600.1310.98893.502.340.998447.720.0091.750.9992
30817.040.1230.99023.012.140.990244.110.0071.720.9998
Tab.6  Langmuir, Freundlich and Sips isotherms constants for the adsorption of CO2 on AC-TETA
T /KLangmuirFreundlichSip
qmKLR2KFnR2qmKSnR2
28818.570.1280.99013.402.170.998347.570.0121.720.9994
29818.070.1050.99232.822.030.998843.590.0111.620.9997
30816.770.0930.99422.301.920.998836.420.0101.510.9999
Tab.7  Langmuir, Freundlich and Sips isotherm constants for the adsorption of CO2 on AC-urea
Fig.10  Comparison of CO2 adsorption capacities of raw and amine modified ACs at 298 K
Fig.11  Kinetics of CO2 adsorption at 298 K and 10 bar by the pristine and amine-modified ACs
Sampleqe(exp)First-orderSecond-ordernth-order
qeK1R2qeK2R2qeKnnR2
AC6.516.480.0780.99817.400.1040.98956.530.0651.120.9987
AC-TETA9711.720.1290.992112.850.2010.994112.070.0581.400.9976
AC-urea10.2710.0230.1280.988411.000.1980.994910.440.0481.520.9969
Tab.8  Constants of pseudo-first, second-order and nth-order kinetic models for the adsorption of CO2 on AC before and after amine functionalization
Fig.12  Isosteric heat of pristine and modified AC samples
SupportPressure/barTemperature/KAmineAdsorption capacity/(mmol•g–1)Ref.
Palm shell based AC1298AMP1.5[]
Palm shell based AC1298AMPD1.2[]
Palm shell based AC1298MMEA1[]
Fly ash based AC1303MEA1.55[]
Fly ash based AC1303DEA0.47[]
Fly ash based AC1303MDEA0.38[]
Fly ash based AC1303MDEA+MEA0.74[]
MCM411303EDA1.19[]
MCM411303DEAT1.43[]
MCM411303TEPA1.96[]
MCM411303PEHA2.34[]
Broom sorghum based AC1298-1.66This study
Broom sorghum based AC1298TETA3.20This study
Broom sorghum based AC1298Urea2.33This study
Tab.9  Comparison of CO2adsorption capacity of various amine functionalized adsorbents
1 Xu X, Zhao X, Sun L, Liu X. Adsorption separation of carbon dioxide, methane and nitrogen on monoethanol amine modified  b-zeolite. Journal of Natural Gas Chemistry, 2009, 18(2): 167–172
https://doi.org/10.1016/S1003-9953(08)60098-5
2 Wang X, Guo Q, Zhao J, Chen L. Mixed amine-modified MCM-41 sorbents for CO2 capture. International Journal of Greenhouse Gas Control, 2015, 37: 90–98
https://doi.org/10.1016/j.ijggc.2015.03.018
3 Plaza M, Pevida C, Arenillas A, Rubiera F, Pis J. CO2 capture by adsorption with nitrogen enriched carbons. Fuel, 2007, 86(14): 2204–2212
https://doi.org/10.1016/j.fuel.2007.06.001
4 Hosseini S, Marahel E, Bayesti I, Abbasi A, Abdullah L C, Choong T S. CO2 adsorption on modified carbon coated monolith: Effect of surface modification by using alkaline solutions. Applied Surface Science, 2015, 324: 569–575
https://doi.org/10.1016/j.apsusc.2014.10.054
5 Shafeeyan M S, Daud W M A W, Houshmand A, Shamiri A. A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 2010, 89(2): 143–151
https://doi.org/10.1016/j.jaap.2010.07.006
6 Wang W, Li J, Wei X, Ding J, Feng H, Yan J, Yang J. Carbon dioxide adsorption thermodynamics and mechanisms on MCM-41 supported polyethylenimine prepared by wet impregnation method. Applied Energy, 2015, 142: 221–228
https://doi.org/10.1016/j.apenergy.2014.12.072
7 Wang X, Guo Q, Kong T. Tetraethylenepentamine-modified MCM-41/silica gel with hierarchical mesoporous structure for CO2 capture. Chemical Engineering Journal, 2015, 273: 472–480
https://doi.org/10.1016/j.cej.2015.03.098
8 Shafeeyan M S, Daud W M A W, Houshmand A, Arami-Niya A. Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation. Applied Surface Science, 2011, 257(9): 3936–3942
https://doi.org/10.1016/j.apsusc.2010.11.127
9 Lee C, Ong Y, Aroua M, Daud W W. Impregnation of palm shell-based activated carbon with sterically hindered amines for CO2 adsorption. Chemical Engineering Journal, 2013, 219: 558–564
https://doi.org/10.1016/j.cej.2012.10.064
10 Yin G, Liu Z, Liu Q, Wu W. The role of different properties of activated carbon in CO2 adsorption. Chemical Engineering Journal, 2013, 230: 133–140
https://doi.org/10.1016/j.cej.2013.06.085
11 Phalakornkule C, Foungchuen J, Pitakchon T. Impregnation of chitosan onto activated carbon for high adsorption selectivity towards CO2: CO2 capture from biohydrogen, biogas and flue gas. Journal of Sustainable Energy & Environment, 2012, 3: 153–157
12 Heidari A, Younesi H, Rashidi A, Ghoreyshi A A. Adsorptive removal of CO2 on highly microporous activated carbons prepared from Eucalyptus camaldulensis wood: Effect of chemical activation. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(2): 579–588
https://doi.org/10.1016/j.jtice.2013.06.007
13 Muniandy L, Adam F, Mohamed A R, Ng E P. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous and Mesoporous Materials, 2014, 197: 316–323
https://doi.org/10.1016/j.micromeso.2014.06.020
14 Alaya M, Youssef A, Karman M, El-Aal H A. Textural properties of activated carbons from wild cherry stones as determined by nitrogen and carbon dioxide adsorption. Carbon letters, 2006, 7: 9–18
15 Bagheri N, Abedi J. Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide. Chemical Engineering Research & Design, 2009, 87(8): 1059–1064
https://doi.org/10.1016/j.cherd.2009.02.001
16 El-Hendawy A N A, Alexander A J, Andrews R J, Forrest G. Effects of activation schemes on porous, surface and thermal properties of activated carbons prepared from cotton stalks. Journal of Analytical and Applied Pyrolysis, 2008, 82(2): 272–278
https://doi.org/10.1016/j.jaap.2008.04.006
17 Nahil M A, Williams P T. Pore characteristics of activated carbons from the phosphoric acid chemical activation of cotton stalks. Biomass and Bioenergy, 2012, 37: 142–149
https://doi.org/10.1016/j.biombioe.2011.12.019
18 Kishor R, Ghoshal A K. APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption. Chemical Engineering Journal, 2015, 262: 882–890
https://doi.org/10.1016/j.cej.2014.10.039
19 Wei J, Liao L, Xiao Y, Zhang P, Shi Y. Capture of carbon dioxide by amine-impregnated as-synthesized MCM-41. Journal of Environmental Sciences (China), 2010, 22(10): 1558–1563
https://doi.org/10.1016/S1001-0742(09)60289-8
20 Caglayan B S, Aksoylu A E. CO2 adsorption on chemically modified activated carbon. Journal of Hazardous Materials, 2013, 252-253: 19–28
https://doi.org/10.1016/j.jhazmat.2013.02.028
21 Zhang X, Zhang S, Yang H, Feng Y, Chen Y, Wang X, Chen H. Nitrogen enriched biochar modified by high temperature CO2-ammonia treatment: Characterization and adsorption of CO2. Chemical Engineering Journal, 2014, 257: 20–27
https://doi.org/10.1016/j.cej.2014.07.024
22 Zelenak V, Halamova D, Gaberova L, Bloch E, Llewellyn P. Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties. Microporous and Mesoporous Materials, 2008, 116(1-3): 358–364
https://doi.org/10.1016/j.micromeso.2008.04.023
23 Houshmand A, Daud W M A W, Shafeeyan M S. Exploring potential methods for anchoring amine groups on the surface of activated carbon for CO2 adsorption. Separation Science and Technology, 2011, 46(7): 1098–1112
https://doi.org/10.1080/01496395.2010.546383
24 Liu Z, Teng Y, Zhang K, Chen H, Yang Y. CO2 adsorption performance of different amine-based siliceous MCM-41 materials. Journal of Energy Chemistry, 2015, 24(3): 322–330
https://doi.org/10.1016/S2095-4956(15)60318-7
25 Banisheykholeslami F, Ghoreyshi A A, Mohammadi M, Pirzadeh K. Synthesis of a carbon molecular sieve from broom corn stalk via carbon deposition of methane for the selective separation of a CO2/CH4 mixture. Clean Soil Air Water, 2015, 43(7): 1084–1092
https://doi.org/10.1002/clen.201400112
26 Keramati M, Ghoreyshi A A. Improving CO2 adsorption onto activated carbon through functionalization by chitosan and triethylenetetramine. Physica E, Low-Dimensional Systems and Nanostructures, 2014, 57: 161–168
https://doi.org/10.1016/j.physe.2013.10.024
27 Khalili S, Ghoreyshi A A, Jahanshahi M, Pirzadeh K. Enhancement of carbon dioxide capture by amine-functionalized multi-walled carbon nanotube. Clean Soil Air Water, 2013, 41(10): 939–948
28 Feng X, Dementev N, Feng W, Vidic R, Borguet E. Detection of low concentration oxygen containing functional groups on activated carbon fiber surfaces through fluorescent labeling. Carbon, 2006, 44(7): 1203–1209
https://doi.org/10.1016/j.carbon.2005.10.057
29 Delavar M, Ghoreyshi A A, Jahanshahi M, Khalili S, Nabian N. Equilibria and kinetics of natural gas adsorption on multi-walled carbon nanotube material. RSC Advances, 2012, 2(10): 4490–4497
https://doi.org/10.1039/c2ra01095j
30 Khoshhal S, Ghoreyshi A A, Jahanshahi M, Mohammadi M. Study of the temperature and solvent content effects on the structure of Cu-BTC metal organic framework for hydrogen storage. RSC Advances, 2015, 5(31): 24758–24768
https://doi.org/10.1039/C5RA01890K
31 He J, Hong S, Zhang L, Gan F, Ho Y S. Equilibrium and thermodynamic parameters of adsorption of methylene blue onto rectorite. Fresenius Environmental Bulletin, 2010, 19: 2651–2656
32 Ghaemi A, Torab-Mostaedi M, Ghannadi-Maragheh M. Characterizations of strontium (II) and barium (II) adsorption from aqueous solutions using dolomite powder. Journal of Hazardous Materials, 2011, 190(1-3): 916–921
https://doi.org/10.1016/j.jhazmat.2011.04.006
33 Qiu H, Lv L, Pan B C, Zhang Q J, Zhang W M, Zhang Q X. Critical review in adsorption kinetic models. Journal of Zhejiang University Science A, 2009, 10(5): 716–724
https://doi.org/10.1631/jzus.A0820524
34 Fauth D, Gray M, Pennline H, Krutka H, Sjostrom S, Ault A. Investigation of porous silica supported mixed-amine sorbents for post-combustion CO2 capture. Energy & Fuels, 2012, 26(4): 2483–2496
https://doi.org/10.1021/ef201578a
35 Figueiredo J, Pereira M, Freitas M, Orfao J. Modification of the surface chemistry of activated carbons. Carbon, 1999, 37(9): 1379–1389
https://doi.org/10.1016/S0008-6223(98)00333-9
36 Vukovic G D, Marinkovic A D, Colic M, Ristic M D, Aleksic R, Peric-Grujic A A, Uskokovic P S. Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chemical Engineering Journal, 2010, 157(1): 238–248
https://doi.org/10.1016/j.cej.2009.11.026
37 Vukovic G D, Marinkovic A D, Skapin S D, Ristic M D, Aleksic R, Peric-Grujic A A, Uskokovic P S. Removal of lead from water by amino modified multi-walled carbon nanotubes. Chemical Engineering Journal, 2011, 173(3): 855–865
https://doi.org/10.1016/j.cej.2011.08.036
38 Szymanski G S, Karpinski Z, Biniak S, Świa̧tkowski A. swiatkowski A. The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon. Carbon, 2002, 40(14): 2627–2639
https://doi.org/10.1016/S0008-6223(02)00188-4
39 Maroto-Valer M M, Lu Z, Zhang Y, Tang Z. Sorbents for CO2 capture from high carbon fly ashes. Waste Management (New York, N.Y.), 2008, 28(11): 2320–2328
https://doi.org/10.1016/j.wasman.2007.10.012
[1] Yujie Ban, Meng Zhao, Weishen Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 188-215.
[2] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
[3] Giorgia De Guido, Matteo Compagnoni, Laura A. Pellegrini, Ilenia Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion[J]. Front. Chem. Sci. Eng., 2018, 12(2): 315-325.
[4] Stefania Moioli, Laura A. Pellegrini, Paolo Vergani, Fabio Brignoli. Study of the robustness of a low-temperature dual-pressure process for removal of CO2 from natural gas[J]. Front. Chem. Sci. Eng., 2018, 12(2): 209-225.
[5] Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song. Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures[J]. Front. Chem. Sci. Eng., 2018, 12(1): 83-93.
[6] Andrew Michelmore, Jason D. Whittle, James W. Bradley, Robert D. Short. Where physics meets chemistry: Thin film deposition from reactive plasmas[J]. Front. Chem. Sci. Eng., 2016, 10(4): 441-458.
[7] Rovshan MAHMUDOV, Chinglung CHEN, Chin-Pao HUANG. Functionalized activated carbon for the adsorptive removal of perchlorate from water solutions[J]. Front. Chem. Sci. Eng., 2015, 9(2): 194-208.
[8] N. Rambabu,Sandeep Badoga,Kapil K. Soni,A.K. Dalai,J. Adjaye. Hydrotreating of light gas oil using a NiMo catalyst supported on activated carbon produced from fluid petroleum coke[J]. Front. Chem. Sci. Eng., 2014, 8(2): 161-170.
[9] Liyan LIU, Yu ZHANG, Wei TAN. Synthesis and characterization of phosphotungstic acid/activated carbon as a novel ultrasound oxidative desulfurization catalyst[J]. Front Chem Sci Eng, 2013, 7(4): 422-427.
[10] A. A. Olajire. CO2 capture by aqueous ammonia process in the clean development mechanism for Nigerian oil industry[J]. Front Chem Sci Eng, 2013, 7(3): 366-380.
[11] Qiang XIAO, Xiaodan TANG, Yefeng LIU, Yijun ZHONG, Weidong ZHU. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures[J]. Front Chem Sci Eng, 2013, 7(3): 297-302.
[12] D. N. SAULOV, C. R. CHODANKA, M. J. CLEARY, A. Y. KLIMENKO. Coupling the porous conditional moment closure with the random pore model: applications to gasification and CO2 capture[J]. Front Chem Sci Eng, 2012, 6(1): 84-93.
[13] Bingnan REN. Kinetics and thermodynamics of the phosphine adsorption on the modified activated carbon[J]. Front Chem Sci Eng, 2011, 5(2): 203-208.
[14] WANG Yuxin, LIU Congmin, ZHOU Yaping. Preparation and adsorption performances of mesopore-enriched bamboo activated carbon [J]. Front. Chem. Sci. Eng., 2008, 2(4): 473-477.
[15] YU Moxin, LI Zhong, XI Hongxia, XIA Qibin, WANG Shuwen. Effect of textural property of coconut shell-based activated carbon on desorption activation energy of benzothiophene[J]. Front. Chem. Sci. Eng., 2008, 2(3): 269-275.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed