Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (4) : 545-553    https://doi.org/10.1007/s11705-017-1665-8
RESEARCH ARTICLE
Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method
Tianjie Liu, Hao Fan, Yanxia Xu, Xingfu Song(), Jianguo Yu
National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(749 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effects of Na+, Mg2+, Al3+ and Fe3+ ion concentrations on the crystal morphology of calcium sulfate hemihydrate whiskers formed via a hydrothermal method have been studied. In the presence of Al3+ concentrations higher than 1×103 mol/L the whiskers were significantly shorter and thicker and the presence of Mg2+ and Fe3+ resulted in shorter whiskers. The presence of Na+ did not affect the morphology of the whiskers. Through elemental analysis, it was determined that Mg2+ and Al3+ were selectively adsorbed on the surfaces of the crystals, whereas Fe3+ underwent a hydrolysis reaction to form a brown precipitate which decreased the ion concentration in the solution. These results indicate that in raw materials used for the industrial preparation of calcium sulfate whiskers, Al3+ and Fe3+ should be removed and the Mg2+ concentration should be less than 8 × 103 mol/L in order to obtain pure whiskers with high aspect ratios.

Keywords metal ions      morphology      calcium sulfate hemihydrate whiskers      hydrothermal method      selective adsorption     
Corresponding Author(s): Xingfu Song   
Just Accepted Date: 19 June 2017   Online First Date: 26 September 2017    Issue Date: 06 November 2017
 Cite this article:   
Tianjie Liu,Hao Fan,Yanxia Xu, et al. Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method[J]. Front. Chem. Sci. Eng., 2017, 11(4): 545-553.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1665-8
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I4/545
Impurity Concentration /(mmol?L ?1)
Na + 8, 16, 24, 32, 40
Mg 2+ 4, 8, 12, 16, 20
Al 3+ 0.5, 1, 2, 6, 10
Fe 3+ 2, 4, 6, 8, 10
Tab.1  Concentrations of metal ion impurities in the experimental solutions
Fig.1  Experimental procedure for the preparation of calcium sulfate whiskers by a hydrothermal method
Fig.2  The XRD patterns of the calcium sulfate prepared with different concentrations of metal ions ((a) Na+; (b) Mg2+; (c) Al3+; (d) Fe3+). The red vertical lines (Fig. 2(a)) denote the positions of diffraction peaks in the standard PDF 41-0224 for crystalline calcium sulfate HH
Fig.3  Theoretical crystal habit of calcium sulfate hemihydrate predicted by the attachment energy method
Fig.4  Effect of the Na+ concentration on the calcium sulfate morphology ((a) average length and average diameter; (b) average aspect ratio) and SEM photos (Na+: (c) 0 mmol/L; (d) 24 mmol/L; (e) 40 mmol/L)
Fig.5  Effect of the Mg2+concentration on the calcium sulfate morphology ((a) average length and average diameter; (b) average aspect ratio) and SEM photos (Mg2+: (c) 4 mmol/L; (d) 12 mmol/L; (e) 20 mmol/L)
Fig.6  Effect of the Al3+ concentration on the calcium sulfate morphology ((a) average length and average diameter; (b) average aspect ratio) and SEM photos (Al3+: (c) 1 mmol/L; (d) 6 mmol/L; (e) 10 mmol/L)
Fig.7  Effect of the Fe3+ concentration on the calcium sulfate morphology ((a) average length and average diameter; (b) average aspect ratio) and SEM photos (Fe3+: (c) 2 mmol/L; (d) 6 mmol/L; (e) 10 mmol/L)
Fig.8  EDS analysis of the products prepared with different metal ion concentrations
Fig.9  Influence of Mg2+ and Al3+ on the XPS spectra of calcium sulfate HH whiskers ((a) Mg 1s peaks; (b) S 2p peaks; (c) Al 2p peaks; (d) S 2p peaks)
Fig.10  Effect of ion concentration on impurity ion uptake by the calcium sulfate products
Fig.11  Stereoscopic microscope photos of the calcium sulfate whiskers prepared with and without Fe3+ ((a) 0 mmol/L Fe3+; (b) 10 mmol/L Fe3+) and SEM photo ((c) pH= 1, 10 mmol/L Fe3+)
1 Wang H, Mu  B, Ren J ,  Jian L, Zhang  J, Yang S . Mechanical and tribological behaviors of PA66/PVDF blends filled with calcium sulphate whiskers. Polymer Composites, 2009, 30(9): 1326–1332
2 Wang J, Yang  K, Lu S . Preparation and characteristic of novel silicone rubber composites based on organophilic calcium sulfate whisker. High Performance Polymers, 2011, 23(2): 141–150
3 Zhang Y, Wang  G, Miao M ,  Shi L. Dual-surface modification of calcium sulfate whisker with sodium hexametaphosphate/silica and use as new water-resistant reinforcing fillers in papermaking. Powder Technology, 2015, 271: 1–6
4 Yuan W, Cui  J, Cai Y ,  Xu S. A novel surface modification for calcium sulfate whisker used for reinforcement of poly (vinyl chloride). Journal of Polymer Research, 2015, 22(9): 173
5 Luo K B, Li  H P, Tan  Y X. Study on the preparation of calcium sulfate whisker by hydrothermal method. Advanced Materials Research, 2013, 602: 1369–1372
6 He H, Dong  F, He P ,  Xu L. Effect of glycerol on the preparation of phosphogypsum-based CaSO4·0.5H2O whiskers. Journal of Materials Science, 2014, 49(5): 1957–1963
7 Zhao W, Wu  Y, Xu J ,  Gao C. Effect of ethylene glycol on hydrothermal formation of calcium sulfate hemihydrate whiskers with high aspect ratios. RSC Advances, 2015, 5(62): 50544–50548
8 Mao X, Song  X, Lu G ,  Sun Y, Xu  Y, Yu J . Control of crystal morphology and size of calcium sulfate whiskers in aqueous HCl solutions by additives: Experimental and molecular dynamics simulation studies. Industrial & Engineering Chemistry Research, 2015, 54(17): 4781–4787
9 Xu A Y, Li  H P, Luo  K B, Xiang  L. Formation of calcium sulfate whiskers from CaCO3-bearing desulfurization gypsum. Research on Chemical Intermediates, 2011, 37(2): 449–455
10 Wang X, Jin  B, Yang L ,  Zhu X. Effect of CuCl2 on hydrothermal crystallization of calcium sulfate whiskers prepared from FGD gypsum. Crystal Research and Technology, 2015, 50(8): 633–640
11 Wang Y, Li  Y, Yuan A ,  Yuan B, Lei  X, Ma Q ,  Han J, Wang  J. Preparation of calcium sulfate whiskers by carbide slag through hydrothermal method. Crystal Research and Technology, 2014, 49(10): 800–807
12 Yang L, Wu  Z, Guan B ,  Fu H, Ye  Q. Growth rate of  a-calcium sulfate hemihydrate in K-Ca-Mg-Cl-H2O systems at elevated temperature. Journal of Crystal Growth, 2009, 311(20): 4518–4524
13 Guan B, Yang  L, Wu Z . Effect of Mg2+ ions on the nucleation kinetics of calcium sulfate in concentrated calcium chloride solutions. Industrial & Engineering Chemistry Research, 2010, 49(12): 5569–5574
14 Li Z, Demopoulos  G P. Effect of NaCl, MgCl2, FeCl2, FeCl3, and AlCl3 on solubility of CaSO4 phases in aqueous HCl or HCl+CaCl2 solutions at 298 to 353 K. Journal of Chemical & Engineering Data, 2006, 51(2): 569–576
15 Song X, Sun  S, Zhang D ,  Wang J, Yu  J. Synthesis and characterization of magnesium hydroxide by batch reaction crystallization. Frontiers of Chemical Science and Engineering, 2011, 5(4): 416–421
16 Li F, Liu  J, Yang G ,  Pan Z, Ni  X, Xu H ,  Huang Q . Effect of pH and succinic acid on the morphology of α-calcium sulfate hemihydrate synthesized by a salt solution method. Journal of Crystal Growth, 2013, 374: 31–36
17 Song X, Tong  K, Sun S ,  Sun Z, Yu  J. Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer. Frontiers of Chemical Science and Engineering, 2013, 7(2): 130–138
18 Wang X, Yang  L, Zhu X ,  Yang J. Preparation of calcium sulfate whiskers from FGD gypsum via hydrothermal crystallization in the H2SO4-NaCl-H2O system. Particuology, 2014, 17(6): 42–48
19 Hou S, Wang  J, Wang X ,  Chen H, Xiang  L. Effect of Mg2+ on Hydrothermal Formation of α-CaSO4·0.5H2O Whiskers with High Aspect Ratios. Langmuir, 2014, 30(32): 9804–9810
20 Xin Y, Hou  S C, Xiang  L, Yu Y . Adsorption and substitution effects of Mg on the growth of calcium sulfate hemihydrate: An ab initio DFT study. Applied Surface Science, 2015, 357: 1552–1557
21 Feldmann T, Demopoulos  G P. Influence of impurities on crystallization kinetics of calcium sulfate dihydrate and hemihydrate in strong HCl-CaCl2 solutions. Industrial & Engineering Chemistry Research, 2013, 52(19): 6540–6549
22 Mao X, Song  X, Lu G ,  Sun Y, Xu  Y, Yu J . Effects of metal ions on crystal morphology and size of calcium sulfate whiskers in aqueous HCl solutions. Industrial & Engineering Chemistry Research, 2014, 53(45): 17625–17635
23 Miao M, Feng  X, Wang G ,  Cao S, Shi  W, Shi L . Direct transformation of FGD gypsum to calcium sulfate hemihydrate whiskers: Preparation, simulations, and process analysis. Particuology, 2015, 19(2): 53–59
24 Zhao W, Gao  C, Zhang G ,  Xu J, Wang  C, Wu Y . Controlling the morphology of calcium sulfate hemihydrate using aluminum chloride as a habit modifier. New Journal of Chemistry, 2016, 40(4): 3104–3108
25 Rashad M M, Mahmoud  M H H, Ibrahim  I A, Abdel-Aal  E A. Crystallization of calcium sulfate dihydrate under simulated conditions of phosphoric acid production in the presence of aluminum and magnesium ions. Journal of Crystal Growth, 2004, 267(1): 372–379
26 Kruger A, Focke  W W, Kwela  Z, Fowles R . Effect of ionic impurities on the crystallization of gypsum in wet-process phosphoric acid. Industrial & Engineering Chemistry Research, 2001, 40(5): 1364–1369
27 Lü P, Fei  D, Dang Y . Effects of calcium monohydrogenphosphate on the morphology of calcium sulfate whisker by hydrothermal synthesis. Canadian Journal of Chemical Engineering, 2014, 92(10): 1709–1713
28 Guan B, Yang  L, Wu Z ,  Shen Z, Ma  X, Ye Q . Preparation of α-calcium sulfate hemihydrate from FGD gypsum in K, Mg-containing concentrated CaCl2 solution under mild conditions. Fuel, 2009, 88(7): 1286–1293
29 Singh N B, Middendorf  B. Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in Crystal Growth and Characterization of Materials, 2007, 53(1): 57–77
30 Dumazer G, Narayan  V, Smith A ,  Lemarchand A A . Modeling gypsum crystallization on a submicrometric scale. Journal of Physical Chemistry C, 2009, 113(4): 1189–1195
31 Seyama H, Soma  M. X-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent cations. Journal of the Chemical Society, Faraday Transactions 1. Physical Chemistry in Condensed Phases, 1984, 80(1): 237–248
32 Arata K, Hino  M. Solid catalyst treated with anion: XVIII. Benzoylation of toluene with benzoyl chloride and benzoic anhydride catalysed by solid superacid of sulfate-supported alumina. Applied Catalysis, 1990, 59(1): 197–204
33 Bourcier W L, Knauss  K G, Jackson  K J. Aluminum hydrolysis constants to 250 °C from boehmite solubility measurements. Geochimica et Cosmochimica Acta, 1993, 57(4): 747–762
34 Bottero J Y, Cases  J M, Fiessinger  F, Poirier J E . Studies of hydrolyzed aluminum chloride solutions. 1. Nature of aluminum species and composition of aqueous solutions. Journal of Physical Chemistry, 1980, 84(22): 2933–2939
35 Subrt J, Bohácek  J, Stengl V ,  Grygar T ,  Bezdicka P . Uniform particles with a large surface area formed by hydrolysis of Fe2(SO4)3 with urea. Materials Research Bulletin, 1999, 34(6): 905–914
36 Musić S, Orehovec  Z, Popović S ,  Czakó-Nagy I . Structural properties of precipitates formed by hydrolysis of Fe3+ ions in Fe2(SO4)3 solutions. Journal of Materials Science, 1994, 29(8): 1991–1998
[1] Njud S. Alharbi, Baowei Hu, Tasawar Hayat, Samar Omar Rabah, Ahmed Alsaedi, Li Zhuang, Xiangke Wang. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1124-1135.
[2] Tongzhou Lu, Yongzheng Zhang, Chun Cheng, Yanbin Wang, Yongming Zhu. One-step synthesis of recoverable CuCo2S4 anode material for high-performance Li-ion batteries[J]. Front. Chem. Sci. Eng., 2020, 14(4): 595-604.
[3] Bastian Reiprich, Tobias Weissenberger, Wilhelm Schwieger, Alexandra Inayat. Layer-like FAU-type zeolites: A comparative view on different preparation routes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 127-142.
[4] Shewei Hu, Qian Gao, Xin Wang, Jianming Yang, Nana Xu, Kequan Chen, Sheng Xu, Pingkai Ouyang. Efficient production of D-1,2,4-butanetriol from D-xylose by engineered Escherichia coli whole-cell biocatalysts[J]. Front. Chem. Sci. Eng., 2018, 12(4): 772-779.
[5] C. SCHMIDT, J. ULRICH. Molecular level simulations on multi-component systems —a morphology prediction method[J]. Front Chem Sci Eng, 2013, 7(1): 49-54.
[6] Jinquan SUN, Zifeng YAN, Hongzhi CUI. Salt-assisted synthesis of tree-like oriented SnO2 nanodendrite[J]. Front Chem Sci Eng, 2011, 5(2): 227-230.
[7] Yakai FENG, Fanru MENG, Ruofang XIAO, Haiyang ZHAO, Jintang GUO. Electrospinning of polycarbonate urethane biomaterials[J]. Front Chem Sci Eng, 2011, 5(1): 11-18.
[8] Motoi YAMASHITA. Kinetic roughening transition and missing regime transition of melt crystallized polybutene-1 tetragonal phase: growth kinetics analysis[J]. Front Chem Eng Chin, 2009, 3(2): 125-134.
[9] Ying ZHANG, Shili ZHENG, Yifei ZHANG, Hongbin XU, Yi ZHANG. Additives effects on crystallization and morphology in a novel caustic aluminate solution decomposition process[J]. Front Chem Eng Chin, 2009, 3(1): 88-92.
[10] WANG Shoulian, HE Jie, ZENG Yu, YAN Bin, WANG Yinghan. Effect of polymer structures on electro-optical properties of polymer stabilized liquid crystal films[J]. Front. Chem. Sci. Eng., 2008, 2(3): 265-268.
[11] LU Yangcheng, WU Yingxin. Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method[J]. Front. Chem. Sci. Eng., 2008, 2(2): 204-208.
[12] RUN Mingtao, SONG Hongzan, WANG Yingjin, YAO Chenguang, GAO Jungang. Studies on the rheological, phase morphologic, thermal and mechanical properties of poly(trimethylene terephthalate)/ethylene propylene diene monomer copolymer grafted with maleic anhydride/metallocene polyethylene blends[J]. Front. Chem. Sci. Eng., 2007, 1(3): 238-245.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed