Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (2) : 273-282    https://doi.org/10.1007/s11705-017-1695-2
RESEARCH ARTICLE
Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate
Zhe Yang, Xiaoyu Huang, Jianqiang Wang, Chuyang Y. Tang()
Department of Civil Engineering, the University of Hong Kong, Hong Kong, China
 Download: PDF(490 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Most commercial NF membranes are negatively charged at the pH range of a typical feed solution. In order to enhance the removal of cations (such as Mg2+ or Ca2+), we utilized polyethyleneimine (PEI) and trimesoyl chloride (TMC) to perform interfacial polymerization reaction on a polydopamine coated hydrolyzed polyacrylonitrile substrate to obtain a positively charged nanofiltration membrane. Effects of polydopamine coating time, PEI concentration, TMC reaction time and concentration on the membrane physicochemical properties and separation performance were systematically investigated using scanning electron microscopy, streaming potential and water contact angle measurements. The optimal NF membrane showed high rejection for divalent ions (93.6±2.6% for MgSO4, 92.4±1.3% for MgCl2, and 90.4±2.1% for Na2SO4), accompanied with NaCl rejection of 27.8±2.5% with a permeation flux of 17.2±2.8 L·m2·h1 at an applied pressure of 8 bar (salt concentrations were all 1000 mg·L1). The synthesized membranes showed promising potentials for the applications of water softening.

Keywords nanofiltration      polyethyleneimine      trimesoyl chloride      polydopamine      positively charged rejection layer     
Corresponding Author(s): Chuyang Y. Tang   
Just Accepted Date: 30 October 2017   Online First Date: 26 December 2017    Issue Date: 09 May 2018
 Cite this article:   
Zhe Yang,Xiaoyu Huang,Jianqiang Wang, et al. Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate[J]. Front. Chem. Sci. Eng., 2018, 12(2): 273-282.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1695-2
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I2/273
Fig.1  A schematic diagram showing the synthesis of hPAN/PDA-NF membrane. A PAN substrate was first hydrolyzed and then coated with polydopamine layer, followed by interfacial polymerization of PEI and TMC to form the final NF membrane
Fig.2  SEM micrographs (plan view) of (a) hPAN substrate, (b) PDA coated hPAN substrate (coating time 2 h), (c) PEI treated hPAN/PDA substrate (PEI concentration of 2 g·L?1) and (d) hPAN/PDA-NF membrane (TMC concentration of 0.15 wt-%, reaction time of 5 min)
Fig.3  Water contact angle of PAN, hPAN, hPAN/PDA (PDA coating time 2 h), hPAN/PDA-PEI (PEI concentration of 2 g·L?1), and hPAN/PDA-NF membranes (TMC concentration 0.15 wt-%, reaction time 5 min)
Fig.4  Effects of (a) PDA coating time (PEI concentratoin, (b) PEI concentration, (c) TMC reaction time and (d) TMC concentration on the surface hydrophilicity of the TFC NF membranes
Fig.5  Effect of PEI concentration on the zeta potential of the hPAN/PDA-NF membranes (PDA coating time 2 h, TMC concentration 0.15 wt-%, reaction time 5 min)
Fig.6  Effect of PDA coating time on the transport behavior of the hPAN/PDA-NF membranes (PDA coating time 2 h, PEI concentration 2 g·L?1, TMC concentration 0.15 wt-% and TMC reaction time 5 min) at 8 bar and 1000 mg·L?1 salt concentration
Fig.7  Effect of PEI concentration on the transport behavior of the hPAN/PDA-NF membranes (PDA coating time 2 h, TMC concentration 0.15 wt-% and TMC reaction time 5 min) at 8 bars and 1000 mg·L?1 salt concentration
Fig.8  Effect of TMC reaction time on the transport behavior of the hPAN/PDA-NF membranes (PDA coating time 2 h, PEI concentration 2 g·L?1 TMC concentration 0.15 wt-%) at 8 bars and 1000 mg·L?1 salt concentration
Fig.9  Effect of TMC concentration on the transport behavior of the hPAN/PDA-NF membranes (PDA coating time 2 h, PEI concentration 2 g·L?1 TMC contacting time 5 min) at 8 bars and 1000 mg·L?1 salt concentration
Fig.10  Membrane stability test by immersing in absolute alchohol solution of hPAN-NF and hPAN/PDA-NF memrbanes (PDA coating time 2 h, PEI concentration 2 g·L?1, TMC contacting time 5 min and TMC concentration 0.15 wt-%) at 8 bars and 1000 mg·L?1 salt concentration
Fig.11  Schematic diagrams of (a) PEI networks and (b) the interaction between TMC and PEI
1 Hilal N, Al-Zoubi H, Darwish N A, Mohamma A W, Abu Arabi M. A comprehensive review of nanofiltration membranes:Treatment, pretreatment, modelling, and atomic force microscopy. Desalination, 2004, 170(3): 281–308
https://doi.org/10.1016/j.desal.2004.01.007
2 Mohammad A W, Teow Y H, Ang W L, Chung Y T, Oatley-Radcliffe D L, Hilal N. Nanofiltration membranes review: Recent advances and future prospects. Desalination, 2015, 356: 226–254
https://doi.org/10.1016/j.desal.2014.10.043
3 Ma X H, Yang Z, Yao Z K, Xu Z L, Tang C Y. A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes. Journal of Membrane Science, 2017, 525: 269–276
https://doi.org/10.1016/j.memsci.2016.11.015
4 Werber J R, Osuji C O, Elimelech M. Materials for next-generation desalination and water purification membranes. Nature Review Materials, 2016, 1(5): 16018
https://doi.org/10.1038/natrevmats.2016.18
5 Li D, Wang H. Recent developments in reverse osmosis desalination membranes. Journal of Materials Chemistry, 2010, 20(22): 4551–4566
https://doi.org/10.1039/b924553g
6 Luo J, Wan Y. Effects of pH and salt on nanofiltration—a critical review. Journal of Membrane Science, 2013, 438: 18–28
https://doi.org/10.1016/j.memsci.2013.03.029
7 Lau W J, Ismail A F. Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control—a review. Desalination, 2009, 245(1-3): 321–348
https://doi.org/10.1016/j.desal.2007.12.058
8 Liu T Y, Liu Z H, Zhang R X, Wang Y, Van der Bruggen B, Wang X L. Fabrication of a thin film nanocomposite hollow fiber nanofiltration membrane for wastewater treatment. Journal of Membrane Science, 2015, 488: 92–102
https://doi.org/10.1016/j.memsci.2015.04.020
9 Lin J, Tang C Y, Ye W, Sun S P, Hamdan S H, Volodin A, Van Haesendonck C, Sotto A, Luis P, Van der Bruggen B. Unraveling flux behavior of superhydrophilic loose nanofiltration membranes during textile wastewater treatment. Journal of Membrane Science, 2015, 493: 690–702
https://doi.org/10.1016/j.memsci.2015.07.018
10 Dong L X, Huang X C, Wang Z, Yang Z, Wang X M, Tang C Y. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles. Separation and Purification Technology, 2016, 166: 230–239
https://doi.org/10.1016/j.seppur.2016.04.043
11 Guo H, Deng Y, Yao Z K, Yang Z, Wang J Q, Lin C, Zhang T, Zhu B K, Tang C Y. A highly selective surface coating for enhanced membrane rejection of endocrine disrupting compounds: Mechanistic insights and implications. Water Research, 2017, 121: 197–203
https://doi.org/10.1016/j.watres.2017.05.037
12 Al-Amoudi A S, Farooque A M. Performance restoration and autopsy of NF membranes used in seawater pretreatment. Desalination, 2005, 178(1-3): 261–271
https://doi.org/10.1016/j.desal.2004.11.048
13 Song Y, Su B, Gao X, Gao C. The performance of polyamide nanofiltration membrane for long-term operation in an integrated membrane seawater pretreatment system. Desalination, 2012, 296: 30–36
https://doi.org/10.1016/j.desal.2012.03.024
14 Tang C Y, Zhao Y, Wang R, Hélix-Nielsen C, Fane A. Desalination by biomimetic aquaporin membranes: Review of status and prospects. Desalination, 2013, 308: 34–40
https://doi.org/10.1016/j.desal.2012.07.007
15 Daer S, Kharraz J, Giwa A, Hasan S W. Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Desalination, 2015, 367: 37–48
https://doi.org/10.1016/j.desal.2015.03.030
16 Fane A G, Tang C, Wang R. Membrane technology for water: Microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. Treatise Water Science: Elsevier Science, 2011, 301–335
17 Lee K P, Arnot T C, Mattia D. A review of reverse osmosis membrane materials for desalination—development to date and future potential. Journal of Membrane Science, 2011, 370(1): 1–22
https://doi.org/10.1016/j.memsci.2010.12.036
18 Schaep J, Van der Bruggen B, Vandecasteele C, Wilms D. Influence of ion size and charge in nanofiltration. Separation and Purification Technology, 1998, 14(1): 155–162
https://doi.org/10.1016/S1383-5866(98)00070-7
19 Li Y, Su Y, Li J, Zhao X, Zhang R, Fan X, Zhu J, Ma Y, Liu Y, Jiang Z. Preparation of thin film composite nanofiltration membrane with improved structural stability through the mediation of polydopamine. Journal of Membrane Science, 2015, 476: 10–19
https://doi.org/10.1016/j.memsci.2014.11.011
20 Deng H, Xu Y, Chen Q, Wei X, Zhu B. High flux positively charged nanofiltration membranes prepared by UV-initiated graft polymerization of methacrylatoethyl trimethyl ammonium chloride (DMC) onto polysulfone membranes. Journal of Membrane Science, 2011, 366(1-2): 363–372
https://doi.org/10.1016/j.memsci.2010.10.029
21 Bernstein R, Anton E, Ulbricht M. UV-photo graft functionalization of polyethersulfone membrane with strong polyelectrolyte hydrogel and its application for nanofiltration. ACS Applied Materials & Interfaces, 2012, 4(7): 3438–3446
https://doi.org/10.1021/am300426c
22 Wu D, Huang Y, Yu S, Lawless D, Feng X. Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride. Journal of Membrane Science, 2014, 472: 141–153
https://doi.org/10.1016/j.memsci.2014.08.055
23 Zhang R, Su Y, Zhao X, Li Y, Zhao J, Jiang Z. A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine). Journal of Membrane Science, 2014, 470: 9–17
https://doi.org/10.1016/j.memsci.2014.07.006
24 Lv Y, Yang H C, Liang H Q, Wan L S, Xu Z K. Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking. Journal of Membrane Science, 2015, 476: 50–58
https://doi.org/10.1016/j.memsci.2014.11.024
25 Qi S, Qiu C Q, Tang C Y. Synthesis and characterization of novel forward osmosis membranes based on layer-by-layer assembly. Environmental Science & Technology, 2011, 45(12): 5201–5208
https://doi.org/10.1021/es200115w
26 Yang Z, Wu Y, Wang J, Cao B, Tang C Y. In situ reduction of silver by polydopamine: A novel antimicrobial modification of a thin-film composite polyamide membrane. Environmental Science & Technology, 2016, 50(17): 9543–9550
https://doi.org/10.1021/acs.est.6b01867
27 Yang Z, Yin J, Deng B. Enhancing water flux of thin-film nanocomposite (TFN) membrane by incorporation of bimodal silica nanoparticles. Aims Press Envrionmental Science, 2016, 3(2): 185–198
https://doi.org/10.3934/environsci.2016.2.185
28 Li M, Xu J, Chang C Y, Feng C, Zhang L, Tang Y, Gao C. Bioinspired fabrication of composite nanofiltration membrane based on the formation of DA/PEI layer followed by cross-linking. Journal of Membrane Science, 2014, 459: 62–71
https://doi.org/10.1016/j.memsci.2014.01.038
29 Fang W, Shi L, Wang R. Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening. Journal of Membrane Science, 2013, 430: 129–139
https://doi.org/10.1016/j.memsci.2012.12.011
30 Zhang G, Yan H, Ji S, Liu Z. Self-assembly of polyelectrolyte multilayer pervaporation membranes by a dynamic layer-by-layer technique on a hydrolyzed polyacrylonitrile ultrafiltration membrane. Journal of Membrane Science, 2007, 292(1): 1–8
https://doi.org/10.1016/j.memsci.2006.11.023
31 Guo H, Deng Y, Tao Z, Yao Z, Wang J, Lin C, Zhang T, Zhu B, Tang C Y. Does hydrophilic polydopamine coating enhance membrane rejection of hydrophobic endocrine-disrupting compounds? Environmental Science & Technology Letters, 2016, 3(9): 332–338
https://doi.org/10.1021/acs.estlett.6b00263
32 Arena J T, McCloskey B, Freeman B D, McCutcheon J R. Surface modification of thin film composite membrane support layers with polydopamine: Enabling use of reverse osmosis membranes in pressure retarded osmosis. Journal of Membrane Science, 2011, 375(1): 55–62
https://doi.org/10.1016/j.memsci.2011.01.060
33 Li X L, Zhu L P, Jiang J H, Yi Z, Zhu B K, Xu Y Y. Hydrophilic nanofiltration membranes with self-polymerized and strongly-adhered polydopamine as separating layer. Chinese Journal of Polymer Science, 2012, 30(2): 152–163
https://doi.org/10.1007/s10118-012-1107-5
34 Zhao J, Su Y, He X, Zhao X, Li Y, Zhang R, Jiang Z. Dopamine composite nanofiltration membranes prepared by self-polymerization and interfacial polymerization. Journal of Membrane Science, 2014, 465: 41–48
https://doi.org/10.1016/j.memsci.2014.04.018
35 Wei J, Liu X, Qiu C, Wang R, Tang C Y. Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes. Journal of Membrane Science, 2011, 381(1): 110–117
https://doi.org/10.1016/j.memsci.2011.07.034
36 Freger V. Kinetics of film formation by interfacial polycondensation. Langmuir, 2005, 21(5): 1884–1894
https://doi.org/10.1021/la048085v
37 Shukla R, Cheryan M. Performance of ultrafiltration membranes in ethanol-water solutions: Effect of membrane conditioning. Journal of Membrane Science, 2002, 198(1): 75–85
https://doi.org/10.1016/S0376-7388(01)00638-X
38 Shukla R, Cheryan M. Stability and performance of ultrafiltration membranes in aqueous ethanol. Separation and Purification Technology, 2003, 38(7): 1533–1547
39 Lee H, Dellatore S M, Miller W M, Messersmith P B. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318(5849): 426–430
https://doi.org/10.1126/science.1147241
40 Cao Y, Zhang X, Tao L, Li K, Xue Z, Feng L, Wei Y. Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Applied Materials & Interfaces, 2013, 5(10): 4438–4442
https://doi.org/10.1021/am4008598
[1] Feng Sun, Jinren Lu, Yuhong Wang, Jie Xiong, Congjie Gao, Jia Xu. Reductant-assisted polydopamine-modified membranes for efficient water purification[J]. Front. Chem. Sci. Eng., 2021, 15(1): 109-117.
[2] Feichao Wu, Yanling Wang, Xiongfu Zhang. Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water[J]. Front. Chem. Sci. Eng., 2020, 14(4): 651-660.
[3] Meibo He, Zhuang Liu, Tong Li, Chen Chen, Baicang Liu, John C. Crittenden. Effect of adding a smart potassium ion-responsive copolymer into polysulfone support membrane on the performance of thin-film composite nanofiltration membrane[J]. Front. Chem. Sci. Eng., 2019, 13(2): 400-414.
[4] Parimal Pal, Ramesh Kumar, Subhamay Banerjee. Purification and concentration of gluconic acid from an integrated fermentation and membrane process using response surface optimized conditions[J]. Front. Chem. Sci. Eng., 2019, 13(1): 152-163.
[5] Li XU, Li-Shun DU, Jing HE. Effects of operating conditions on membrane charge property and nanofiltration[J]. Front Chem Sci Eng, 2011, 5(4): 492-499.
[6] WU Chunrui, ZHANG Shouhai, YANG Fajie, YAN Chun, JIAN Xigao. Preparation and performance of novel thermal stable composite nanofiltration membrane [J]. Front. Chem. Sci. Eng., 2008, 2(4): 402-406.
[7] SHANG Weijuan, WANG Daxin, WANG Xiaolin. Modeling of the separation performance of nanofiltration membranes and its role in the applications of nanofiltration technology in product separation processes[J]. Front. Chem. Sci. Eng., 2007, 1(2): 208-215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed