Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (1) : 109-117    https://doi.org/10.1007/s11705-020-1987-9
RESEARCH ARTICLE
Reductant-assisted polydopamine-modified membranes for efficient water purification
Feng Sun1, Jinren Lu1, Yuhong Wang2, Jie Xiong1, Congjie Gao1, Jia Xu1()
1. Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2. National Center of Ocean Standards and Metrology, Tianjin 300112, China
 Download: PDF(1222 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Surface engineering with polydopamine coatings has been considered a promising surface functionalisation tool. However, it is difficult to control the self-polymerisation for polydopamine formation, which usually causes severe interparticle aggregation. In this study, polydopamine self-polymerisation was controlled by adjusting its reducing environment using a reductant (NaBH4) to fabricate mixed cellulose ester (MCE)/polydopamine membranes. An oxidising environment using NaIO4 was additionally tested as the control. The results showed that a thin polydopamine coating with small polydopamine particles was formed on the skeleton frameworks of the MCE membrane with NaBH4, and the self-polymerisation rate was suppressed. The polydopamine coating formed in the reducing environment facilitated excellent water transport performance with a water permeance of approximately 400 L·m−2·h−1·bar−1 as well as efficient organic foulant removal with a bovine serum albumin rejection of approximately 90%. In addition, the polydopamine coating with NaBH4 exhibited both excellent chemical stability and anti-microbial activity, demonstrating the contribution of the reducing environment to the performance of the MCE/polydopamine membranes. It shows significant potential for use in water purification.

Keywords membrane      water purification      polydopamine      reducing environment      self-polymerization control     
Corresponding Author(s): Jia Xu   
Just Accepted Date: 18 September 2020   Online First Date: 29 October 2020    Issue Date: 12 January 2021
 Cite this article:   
Feng Sun,Jinren Lu,Yuhong Wang, et al. Reductant-assisted polydopamine-modified membranes for efficient water purification[J]. Front. Chem. Sci. Eng., 2021, 15(1): 109-117.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1987-9
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I1/109
Fig.1  Illustration of fabrication and structure of MCE/polydopamine membranes via controlling the oxidating/reducing environment.
Fig.2  SEM images and photos of MCE/polydopamine membranes.
Fig.3  Surface properties characterization of MCE/polydopamine membranes: (a) FTIR spectra; (b) water contact angle.
Fig.4  Separation performance of MCE/polydopamine membranes: (a) pure water permeance and the ratio of water flux to pressure with 200 mg·L−1 BSA solution as feed; (b) BSA rejection with 200 mg·L−1 BSA solution as feed.
Fig.5  Stability evaluation of MCE/polydopamine membranes in acid (pH= 4) and base (pH= 11) solution: (a) photos; (b) separation performance.
Fig.6  Petri dish results of E. coli growth inhibition: (a) photos; (b) colony number and anti-microbial efficiency.
1 A Lee, J W Elam, S B Darling. Membrane materials for water purification: design, development, and application. Environmental Science. Water Research & Technology, 2016, 2(1): 17–42
https://doi.org/10.1039/C5EW00159E
2 A G Fane, R Wang, M X Hu. Synthetic membranes for water purification: status and future. Angewandte Chemie International Edition, 2015, 54(11): 3368–3386
https://doi.org/10.1002/anie.201409783
3 H Yu, X Qiu, N Moreno, Z Ma, V M Calo, S P Nunes, K V Peinemann. Self-assembled asymmetric block copolymer membranes: bridging the gap from ultra to nanofiltration. Angewandte Chemie International Edition, 2015, 54(47): 13937–13941
https://doi.org/10.1002/anie.201505663
4 S Sorribas, P Gorgojo, C Téllez, J Coronas, A G Livingston. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. Journal of the American Chemical Society, 2013, 135(40): 15201–15208
https://doi.org/10.1021/ja407665w
5 W J Lau, A F Ismail. Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control—a review. Desalination, 2009, 245(1): 321–348
https://doi.org/10.1016/j.desal.2007.12.058
6 J Xu, X Feng, J Hou, X Wang, B T Shan, L M Yu, C J Gao. Preparation and characterization of a novel polysulfone ultrafiltration membrane using a copolymer with capsaicin-mimic moieties for improved anti-fouling properties. Journal of Membrane Science, 2013, 446: 171–180
https://doi.org/10.1016/j.memsci.2013.06.041
7 J Xu, X S Feng, P P Chen, C J Gao.  Development of an antibacterial copper (II)-chelated polyacrylonitrile ultrafiltration membrane.  Journal of Membrane Science,  2012, 431–414: 62–69
8 M Li, J Xu, C Y Chang, C Feng, L Zhang, Y Tang, C Gao. Bioinspired fabrication of composite nano-filtration membrane based on the formation of 3,4-dihydroxyphenethylamine/PEI layer followed by cross-linking. Journal of Membrane Science, 2014, 459: 62–71
https://doi.org/10.1016/j.memsci.2014.01.038
9 K Wang, Y Dong, Y Yan, S Zhang, J Li. Mussel-inspired chemistry for preparation of super-hydrophobic surfaces on porous substrates. RSC Advances, 2017, 7(46): 29149–29158
https://doi.org/10.1039/C7RA04790H
10 A Postma, Y Yan, Y Wang, A N Zelikin, E Tjipto, F Caruso. Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules. Chemistry of Materials, 2009, 21(14): 3042–3044
https://doi.org/10.1021/cm901293e
11 M H Ryou, Y M Lee, J K Park, J W Choi. Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Advanced Materials, 2011, 23(27): 3066–3070
https://doi.org/10.1002/adma.201100303
12 H P Peng, R P Liang, L Zhang, J D Qiu. Facile preparation of novel core-shell enzyme-Au-polydopamine-Fe3O4 magnetic bio-nanoparticles for glucosesensor. Biosensors & Bioelectronics, 2013, 42: 293–299
https://doi.org/10.1016/j.bios.2012.10.074
13 Y Cao, X Zhang, L Tao, K Li, Z Xue, L Feng, Y Wei. Mussel-inspired chemistry and Michael addition reaction for efficient oil/water separation. ACS Applied Materials & Interfaces, 2013, 5(10): 4438–4442
https://doi.org/10.1021/am4008598
14 M Liu, G Zeng, K Wang, Q Wan, L Tao, X Zhang, Y Wei. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale, 2016, 8(38): 16819–16840
https://doi.org/10.1039/C5NR09078D
15 H Lee, S M Dellatore, W M Miller, P B Messersmith. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318(5849): 426–430
https://doi.org/10.1126/science.1147241
16 G M Shi, T S Chung. Thin film composite membranes on ceramic for pervaporation dehydration of isopropanol. Journal of Membrane Science, 2013, 448: 34–43
https://doi.org/10.1016/j.memsci.2013.07.049
17 J H Jiang, L P Zhu, X L Li, Y Y Xu, B K Zhu. Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin. Journal of Membrane Science, 2010, 364(1-2): 194–202
https://doi.org/10.1016/j.memsci.2010.08.017
18 Z Yang, Y Wu, H Guo, X H Ma, C E Lin, Y Zhou, B Cao, B K Zhu, K Shi, C Y Tang. A novel thin-film nano-templated composite membrane with in situ silver nanoparticles loading: separation performance enhancement and implications. Journal of Membrane Science, 2017, 544: 351–358
https://doi.org/10.1016/j.memsci.2017.09.046
19 J Zhu, A Uliana, J Wang, S Yuan, J Li, M Tian, K Simoens, A Volodin, J Lin, K Bernaerts, Y Zhang, B Van der Bruggen. Elevated salt transport of antimicrobial loose nanofiltration membranes enabled by copper nanoparticles via fast bioinspired deposition. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(34): 13211–13222
https://doi.org/10.1039/C6TA05661J
20 J Zhu, J Wang, A Uliana, M Tian, Y Zhang, Y Zhang, A Volodin, K Simoens, S Yuan, J Li, J Lin, K Bernaerts, B Van der Bruggen. Mussel-inspired architecture of high-flux loose nanofiltration membrane functionalized with antibacterial reduced graphene oxide-copper nanocomposites. ACS Applied Materials & Interfaces, 2017, 9(34): 28990–29001
https://doi.org/10.1021/acsami.7b05930
21 H Shen, N Wang, K Ma, L Wang, G Chen, S Ji. Tuning inter-layer spacing of graphene oxide laminates with solvent green to enhance its nanofiltration performance. Journal of Membrane Science, 2017, 527: 43–50
https://doi.org/10.1016/j.memsci.2017.01.003
22 L Shao, Z X Wang, Y L Zhang, Z X Jiang, Y Y Liu. A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate. Journal of Membrane Science, 2014, 461: 10–21
https://doi.org/10.1016/j.memsci.2014.03.006
23 H C Yang, J K Pi, K J Liao, H Huang, Q Y Wu, X J Huang, Z K Xu. Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation. ACS Applied Materials & Interfaces, 2014, 6(15): 12566–12572
https://doi.org/10.1021/am502490j
24 R Zeng, Z Luo, D Zhou, F Cao, Y Wang. A novel PEG coating immobilized onto capillary through polydopamine coating for separation of proteins in CE. Electrophoresis, 2010, 31(19): 3334–3341
https://doi.org/10.1002/elps.201000228
25 T Zeng, X L Zhang, H Y Niu, Y R Ma, W H Li, Y Q Cai. In situ growth of gold nanoparticles onto polydopamine-encapsulated magnetic microspheres for catalytic reduction of nitrobenzene. Applied Catalysis B: Environmental, 2013, 134-135: 26–33
https://doi.org/10.1016/j.apcatb.2012.12.037
26 H Lee, J Rho, P B Messersmith. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Advanced Materials, 2009, 21(4): 431–434
https://doi.org/10.1002/adma.200801222
27 C Hou, Z Qi, H Zhu. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization. Colloids and Surfaces. B, Biointerfaces, 2015, 128: 544–551
https://doi.org/10.1016/j.colsurfb.2015.03.007
28 K Yang, J S Lee, J Kim, Y B Lee, H Shin, S H Um, J B Kim, K I Park, H Lee, S W Cho. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials, 2012, 33(29): 6952–6964
https://doi.org/10.1016/j.biomaterials.2012.06.067
29 R Zhou, P F Ren, H C Yang, Z K Xu. Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition. Journal of Membrane Science, 2014, 466: 18–25
https://doi.org/10.1016/j.memsci.2014.04.032
30 R Shevate, M Kumar, M Karunakaran, M N Hedhili, K V Peinemann. Polydopamine/cysteine surface modified isoporous membranes with selfcleaning properties. Journal of Membrane Science, 2017, 529: 185–194
https://doi.org/10.1016/j.memsci.2017.01.058
31 P G Ingole, W Choi, K H Kim, C H Park, W K Choi, H K Lee. Synthesis, characterization and surface modification of PES hollow fiber membrane support with polydopamine and thin film composite for energy generation. Chemical Engineering Journal, 2014, 243: 137–146
https://doi.org/10.1016/j.cej.2013.12.094
32 J T Arena, S S Manickam, K K Reimund, B D Freeman, J R McCutcheon. Solute and water transport in forward osmosis using polydopamine modified thin film composite membranes. Desalination, 2014, 343: 8–16
https://doi.org/10.1016/j.desal.2014.01.009
33 F Li, J Meng, J Ye, B Yang, Q Tian, C Deng. Surface modification of PES ultrafiltration membrane by polydopamine coating and poly(ethyleneglycol) grafting: morphology, stability, and anti-fouling. Desalination, 2014, 344: 422–430
https://doi.org/10.1016/j.desal.2014.04.011
34 B P Tripathi, N C Dubey, R Subair, S Choudhury, M Stamm. Enhanced hydrophilic and antifouling polyacrylonitrile membrane with polydopamine modified silica nanoparticles. RSC Advances, 2016, 6(6): 4448–4457
https://doi.org/10.1039/C5RA22160A
35 Y Chen, C He. High salt permeation nanofiltration membranes based on NMG assisted polydopamine coating for dye/salt fractionation. Desalination, 2017, 413: 29–39
https://doi.org/10.1016/j.desal.2017.03.008
36 L N Xu, J Xu, B T Shan, X L Wang, C J Gao. Novel thin-film composite membranes via manipulating the synergistic interaction of dopamine and m-phenylenediamine for highly efficient forward osmosis desalination. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(17): 7920–7932
https://doi.org/10.1039/C7TA00492C
37 J H Jiang, L P Zhu, H T Zhang, B K Zhu, Y Y Xu. Improved hydrodynamic permeability and antifouling properties of poly(vinylidene fluoride) membranes using polydopamine nanoparticles as additives. Journal of Membrane Science, 2014, 457: 73–81
https://doi.org/10.1016/j.memsci.2014.01.043
38 C Cheng, S Li, W Zhao, Q Wei, S Nie, S Sun, C Zhao. The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings. Journal of Membrane Science, 2012, 417-418: 228–236
https://doi.org/10.1016/j.memsci.2012.06.045
39 H Guo, Z Yao, J Wang, Z Yang, X Ma, C Y Tang. Polydopamine coating on a thin film composite forward osmosis membrane for enhanced mass transport and antifouling performance. Journal of Membrane Science, 2018, 551: 234–242
https://doi.org/10.1016/j.memsci.2018.01.043
40 J Ryu, S H Ku, H Lee, C B Park. Mussel-inspired polydopamine coating as a universal route to hydroxyapatite crystallization. Advanced Functional Materials, 2010, 20(13): 2132–2139
https://doi.org/10.1002/adfm.200902347
41 X Liu, J Cao, H Li, J Li, Q Jin, K Ren, J Ji. Mussel-inspired polydopamine: a biocompatible and ultrastable coating for nanoparticles in vivo. ACS Nano, 2013, 7(10): 9384–9395
https://doi.org/10.1021/nn404117j
42 J H Ryu, P B Messersmith, H Lee. Polydopamine surface chemistry: a decade of discovery. ACS Applied Materials & Interfaces, 2018, 10(9): 7523–7540
https://doi.org/10.1021/acsami.7b19865
43 B Fei, B Qian, Z Yang, R Wang, W C Liu, C L Mak, J H Xin. Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon, 2008, 46(13): 1795–1797
https://doi.org/10.1016/j.carbon.2008.06.049
44 G Han, S Zhang, X Li, N Widjojo, T S Chung. Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection. Chemical Engineering Science, 2012, 80: 219–231
https://doi.org/10.1016/j.ces.2012.05.033
45 H C Yang, K J Liao, H Huang, Q Y Wu, L S Wan, Z K Xu. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(26): 10225–10230
https://doi.org/10.1039/C4TA00143E
46 X Yang, Y Du, X Zhang, A He, Z K Xu. Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance. Langmuir, 2017, 33(9): 2318–2324
https://doi.org/10.1021/acs.langmuir.6b04465
47 H Wei, J Ren, B Han, L Xu, L Han, L Jia. Stability of polydopamine and poly(DOPA) melanin-like films on the surface of polymer membranes under strongly acidic and alkaline conditions. Colloids and Surfaces. B, Biointerfaces, 2013, 110: 22–28
https://doi.org/10.1016/j.colsurfb.2013.04.008
48 J Jiang, L Zhu, L Zhu, H Zhang, B Zhu, Y Xu. Zhu, Xu B Y. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). ACS Applied Materials & Interfaces, 2013, 5(24): 12895–12904
https://doi.org/10.1021/am403405c
49 F Bernsmann, V Ball, F Addiego, A Ponche, M Michel, J J Gracio, V Toniazzo, D Ruch. Dopamine-melanin film deposition depends on the used oxidant and buffer solution. Langmuir, 2011, 27(6): 2819–2825
https://doi.org/10.1021/la104981s
50 J Xu, Y Y Tang, Y H Wang, B T Shan, L M Yu, C J Gao. Effect of coagulation bath conditions on the morphology and performance of PSf membrane blended with a capsaicin-mimic copolymer. Journal of Membrane Science, 2014, 455: 121–130
https://doi.org/10.1016/j.memsci.2013.12.076
51 J Xu, S Feng, C J Gao. Surface modification of thin-film-composite poly-amide membranes for improved reverse osmosis performance. Journal of Membrane Science, 2011, 370(1-2): 116–123
https://doi.org/10.1016/j.memsci.2011.01.001
[1] FCE-20047-OF-SF_suppl_1 Download
[1] Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian. Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1018-1028.
[2] Edward Mohamed Hadji, Bo Fu, Ayob Abebe, Hafiz Muhammad Bilal, Jingtao Wang. Sponge-based materials for oil spill cleanups: A review[J]. Front. Chem. Sci. Eng., 2020, 14(5): 749-762.
[3] Ye Zhang, Jian Song, Josue Quispe Mayta, Fusheng Pan, Xue Gao, Mei Li, Yimeng Song, Meidi Wang, Xingzhong Cao, Zhongyi Jiang. Enhanced desulfurization performance of hybrid membranes using embedded hierarchical porous SBA-15[J]. Front. Chem. Sci. Eng., 2020, 14(4): 661-672.
[4] Feichao Wu, Yanling Wang, Xiongfu Zhang. Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water[J]. Front. Chem. Sci. Eng., 2020, 14(4): 651-660.
[5] Majid Peyravi. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies[J]. Front. Chem. Sci. Eng., 2020, 14(4): 673-687.
[6] Colin A. Scholes. Pilot plants of membrane technology in industry: Challenges and key learnings[J]. Front. Chem. Sci. Eng., 2020, 14(3): 305-316.
[7] Guoxing Chen, Marc Widenmeyer, Binjie Tang, Louise Kaeswurm, Ling Wang, Armin Feldhoff, Anke Weidenkaff. A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+d Ruddlesden-Popper membrane for oxygen separation[J]. Front. Chem. Sci. Eng., 2020, 14(3): 405-414.
[8] Shinji Kanehashi, Colin A. Scholes. Perspective of mixed matrix membranes for carbon capture[J]. Front. Chem. Sci. Eng., 2020, 14(3): 460-469.
[9] Xinlei Liu. Metal-organic framework UiO-66 membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 216-232.
[10] Yujie Ban, Meng Zhao, Weishen Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 188-215.
[11] Ying Yan, Peng Huang, Huiping Zhang. Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis method for toluene adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(4): 772-783.
[12] Yimeng Song, Fusheng Pan, Ying Li, Kaidong Quan, Zhongyi Jiang. Mass transport mechanisms within pervaporation membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 458-474.
[13] Navid Azizi, Mojgan Isanejad, Toraj Mohammadi, Reza M. Behbahani. Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 517-530.
[14] Meibo He, Zhuang Liu, Tong Li, Chen Chen, Baicang Liu, John C. Crittenden. Effect of adding a smart potassium ion-responsive copolymer into polysulfone support membrane on the performance of thin-film composite nanofiltration membrane[J]. Front. Chem. Sci. Eng., 2019, 13(2): 400-414.
[15] Annemie Bogaerts, Maksudbek Yusupov, Jamoliddin Razzokov, Jonas Van der Paal. Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling[J]. Front. Chem. Sci. Eng., 2019, 13(2): 253-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed