Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2009, Vol. 3 Issue (4) : 387-392    https://doi.org/10.1007/s11783-009-0154-9
Research articles
Enhanced biohydrogen generation from organic wastewater containing N H 4 + by phototrophic bacteria Rhodobacter sphaeroides AR-3
Guanghong ZHENG,Zhuhui KANG,Yifan QIAN,Lei WANG,
State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
 Download: PDF(136 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract "Graphic" is typically an inhibitor to hydrogen production from organic wastewater by photo-bacteria. In this experiment, biohydrogen generation with wild-typeanoxygenic phototrophic bacterium Rhodobacter sphaeroideswas found to be sensitive to "Graphic" due to the significant inhibition of "Graphic" to its nitrogenase. In order to avoid the inhibition of "Graphic" to biohydrogen generation by R. sphaeroides, a glutamine auxotrophic mutant R. sphaeroides AR-3 was obtained by mutagenizing with ethyl methane sulfonate. The AR-3 mutant could generate biohydrogen efficiently in the hydrogen production medium with a higher "Graphic" concentration, because the inhibition of "Graphic" to nitrogenase of AR-3 was released. Under suitable conditions, AR-3 effectively produced biohydrogen from tofu wastewater with an average generation rate of 14.2 mL/L·h. This generation rate was increased by more than 100% compared with that from wild-type R. sphaeroides.
Keywords ammonium      anoxygenic phototrophic bacterium      biohydrogen      glutamine auxotrophic      tofu wastewater      
Issue Date: 05 December 2009
 Cite this article:   
Guanghong ZHENG,Zhuhui KANG,Yifan QIAN, et al. Enhanced biohydrogen generation from organic wastewater containing N H 4 + by phototrophic bacteria Rhodobacter sphaeroides AR-3[J]. Front.Environ.Sci.Eng., 2009, 3(4): 387-392.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0154-9
https://academic.hep.com.cn/fese/EN/Y2009/V3/I4/387
Weaver P F, Lien S, Senber M. Photo-biological production of hydrogen. Solar Energy, 1980, 24: 3―45

doi: 10.1016/0038-092X(80)90018-3
Zhu H G, Shunsaku U, Yasio A, Jun M. Hydrogen productionas a novel process of wastewater treatment-studies on tofu wastewaterwith entrapped R. sphaeroides andmutagenesis. Int J Hydrogen Energy, 2002, 27: 1349―1357

doi: 10.1016/S0360-3199(02)00118-0
Ren N Q, Li J Z, Li B K, Wang Y, Liu S R. Biohydrogen production from molassesby anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrogen Energy, 2006, 31: 2147―2157

doi: 10.1016/j.ijhydene.2006.02.011
Benemann J R. Hydrogen production by microalgae. J ApplPsychol, 2000, 12: 291―300
Ghirardi M L, King P W, Posewitz M C, Maness P C, Fedorov A, Kim K, Cohen J, Schulten K, Seibert M. Approachesto developing biological H2 photoproducing organisms and processes. Biochem Soc Trans Part 1, 2005, 33: 70―72
Rosen M A, Scott D S. Comparative efficiency assessmentsfor a range of hydrogen production process. Int J Hydrogen Energy, 1998, 23: 653―659

doi: 10.1016/S0360-3199(97)00080-3
Koku H. Aspectsof the metabolism of hydrogen production by Rhodobacter sphaeroides. IntJ Hydrogen Energy, 2002, 27: 1315―1329

doi: 10.1016/S0360-3199(02)00127-1
Zumft W G, Castillo F. Regulatory properties ofthe nitrogenase from Rhodopseudomonas palustris. Arch Microbiol, 1978, 117: 53―60

doi: 10.1007/BF00689351
Sweet W J, Burris R H. Inhibition of nitrogenaseactivity by NH4+ in Rhodospirillumrubrum. J Bacterial, 1981, 145: 824―831
Zhu H G, Suzuki T, Tsygankov A A, Asada Y, Miyake J. Hydrogen production from tofu wastewaterby Rhodobacter sphaeroides immobilizedin agar gels. Int J Hydrogen Energy, 1999, 24: 305―310

doi: 10.1016/S0360-3199(98)00081-0
Liu B F, Ren N Q, Xing D F, Ding J, Zheng G X, Guo W Q, Xu J F, Xie G J. Hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanolfermentation bacteria E. harbinense B49. Bioresour Technol, 2009, 100: 2719―2723

doi: 10.1016/j.biortech.2008.12.020
Yagi K, Meada I, Idehara K, Miura Y, Akano T, Fukatu K, Ikuta Y, Nakamura H K. Removal of inhibition by ammonium ion in nitrogenase-dependenthydrogen evolution of a marine photosynthetic bacterium Rhodopseudomonas sp. Strain W-1S. Appl Biochem Biotechnol, 1994, 45: 429―436

doi: 10.1007/BF02941817
Qian Y F, Zheng G H, Kang Z H, Wang L. Influence offactors on hydrogen production capability of Rhodobacter sphaeroides. IndMicrobiol, 2007, 37(5): 6―12 (in Chinese)
Li F D, Yu N. Experimental Technology forAgricultural Microbiology. Beijing: Agricultural Press of China. 1996, 93―95 (in Chinese)
Eroglu I, Aslan K. Continuous hydrogen productionby Rhodobacter sphaeroides O.U.001. In: Zaborsky O R, ed. BioHydrogen. New York: Plenum press, 2000, 143―149
Ren N Q, Wang B, Huang J. Ethanol-type fermentation of carbohydrate wastewaterin a high rate acidogenic reactor. BiotechnolBioeng, 1997, 54: 428―433

doi: 10.1002/(SICI)1097-0290(19970605)54:5<428::AID-BIT3>3.0.CO;2-G
[1] Jing Ding, Wanyi Seow, Jizhong Zhou, Raymond Jianxiong Zeng, Jun Gu, Yan Zhou. Effects of Fe(II) on anammox community activity and physiologic response[J]. Front. Environ. Sci. Eng., 2021, 15(1): 7-.
[2] Zhen Bi, Deqing Wanyan, Xiang Li, Yong Huang. Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia[J]. Front. Environ. Sci. Eng., 2020, 14(3): 38-.
[3] Quanming Liang, Jian Li, Hong He, Wenjun Liang, Tiejun Zhang, Xing Fan. Effects of SO2 on the low temperature selective catalytic reduction of NO by NH3 over CeO2-V2O5-WO3/TiO2 catalysts[J]. Front. Environ. Sci. Eng., 2017, 11(4): 4-.
[4] Haifa RAJHI,Daniel PUYOL,Mirna C. MARTÍNEZ,Emiliano E. DÍAZ,José L. SANZ. Vacuum promotes metabolic shifts and increases biogenic hydrogen production in dark fermentation systems[J]. Front. Environ. Sci. Eng., 2016, 10(3): 513-521.
[5] Yongtao LV,Xuan CHEN,Lei WANG,Kai JU,Xiaoqiang CHEN,Rui MIAO,Xudong WANG. Microprofiles of activated sludge aggregates using microelectrodes in completely autotrophic nitrogen removal over nitrite (CANON) reactor[J]. Front. Environ. Sci. Eng., 2016, 10(2): 390-398.
[6] Zulkifly JEMAAT,Josep Anton TORA,Albert BARTROLI,Julián CARRERA,Julio PEREZ. Achievement of high rate nitritation with aerobic granular sludge reactors enhanced by sludge recirculation events[J]. Front. Environ. Sci. Eng., 2015, 9(3): 528-533.
[7] Wei LI, Xiaowen DING, Min LIU, Yuewen GUO, Lei LIU. Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation[J]. Front Envir Sci Eng, 2012, 6(6): 892-900.
[8] Guochen ZHENG, Jianzheng LI, Feng ZHAO, Liguo ZHANG, Li WEI, Qiaoying BAN, Yongsheng ZHAO. Effect of illumination on the hydrogen-production capability of anaerobic activated sludge[J]. Front Envir Sci Eng, 2012, 6(1): 125-130.
[9] Hailong LIN, Weiguang LI, Changhong GUO, Sihang QU, Nanqi REN. Advances in the study of directed evolution for cellulases[J]. Front Envir Sci Eng Chin, 2011, 5(4): 519-525.
[10] Daijun ZHANG, Cui BAI, Ting TANG, Qing YANG. Influence of influent on anaerobic ammonium oxidation in an Expanded Granular Sludge Bed-Biological Aerated Filter integrated system[J]. Front Envir Sci Eng Chin, 2011, 5(2): 291-297.
[11] Yanhui ZHAN, Jianwei LIN, Yanling QIU, Naiyun GAO, Zhiliang ZHU. Adsorption of humic acid from aqueous solution on bilayer hexadecyltrimethyl ammonium bromide-modified zeolite[J]. Front Envir Sci Eng Chin, 2011, 5(1): 65-75.
[12] Rongchang WANG, Xinmin ZHAN, Yalei ZHANG, Jianfu ZHAO. Nitrifying population dynamics in a redox stratified membrane biofilm reactor (RSMBR) for treating ammonium-rich wastewater[J]. Front Envir Sci Eng Chin, 2011, 5(1): 48-56.
[13] Bo WANG, Wei WAN, Jianlong WANG, . Effects of nitrate concentration on biological hydrogen production by mixed cultures[J]. Front.Environ.Sci.Eng., 2009, 3(4): 380-386.
[14] GUO Jinsong, YANG Guohong, FANG Fang, QIN Yu. Performance of completely autotrophic nitrogen removal over nitrite process under different aeration modes and dissolved oxygen[J]. Front.Environ.Sci.Eng., 2008, 2(4): 439-445.
[15] GENG Bing, ZHU Yanfang, JIN Zhaohui, LI Tielong, KANG Haiyan, WANG Shuaima. Studies on catalytic reduction of nitrate in groundwater[J]. Front.Environ.Sci.Eng., 2007, 1(3): 357-361.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed