Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (1) : 65-75    https://doi.org/10.1007/s11783-010-0277-z
RESEARCH ARTICLE
Adsorption of humic acid from aqueous solution on bilayer hexadecyltrimethyl ammonium bromide-modified zeolite
Yanhui ZHAN1, Jianwei LIN2, Yanling QIU1, Naiyun GAO1, Zhiliang ZHU1()
1. State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; 2. College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
 Download: PDF(499 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Surfactant-modified natural zeolites (SMNZ) with different coverage types were prepared by loading hexadecyltrimethyl ammonium bromide (HTAB) onto the surface of a natural zeolite. The adsorption behavior of humic acid (HA) on SMNZ was investigated. Results indicate that the adsorbent SMNZ exhibited a higher affinity toward HA than the natural zeolite. HA removal efficiency by SMNZ increased with HTAB loading. Coexisting Ca2+ in solution favored HA adsorption onto SMNZ. Adsorption capacity decreased with an increasing solution pH. For typical SMNZ with bilayer HTAB coverage, HA adsorption process is well described by a pseudo-second-order kinetic model. The experimental isotherm data fitted well with the Langmuir model. Calculated maximum HA adsorption capacities for SMNZ with bilayer HTAB coverage at pH 5.5 and 7.5 were 63 and 41 mg·g-1, respectively. E2/E3 (absorbance at 250 nm to that at 365 nm) and E4/E6 (absorbance at 465 nm to that at 665 nm) ratios of the residual HA in solution were lower than that of the original HA solution. This indicates that the HA fractions with high polar functional groups, low molecular weight (MW), and aromaticity had a stronger tendency for adsorption onto SMNZ with bilayer HTAB coverage. Results show that HTAB-modified natural zeolite is a promising adsorbent for removal of HA from aqueous solution.

Keywords bilayer surfactant-modified zeolite      hexadecyltrimethyl ammonium bromide (HTAB)      adsorption      humic acid (HA)     
Corresponding Author(s): ZHU Zhiliang,Email:zzl@tongji.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Yanhui ZHAN,Jianwei LIN,Yanling QIU, et al. Adsorption of humic acid from aqueous solution on bilayer hexadecyltrimethyl ammonium bromide-modified zeolite[J]. Front Envir Sci Eng Chin, 2011, 5(1): 65-75.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0277-z
https://academic.hep.com.cn/fese/EN/Y2011/V5/I1/65
Fig.1  Loading of HTAB onto natural zeolites
Fig.2  Cations exchanged from natural zeolite after HTAB loading
Fig.3  XRD patterns of (a) natural zeolite and (b) SMNZ3
2θnatural zeoliteSMNZ3
d/?(I/Imax)/%d/?(I/Imax)/%
9.978.8776.18.9472.0
11.317.8319.67.8913.2
17.475.0815.05.1010.5
19.754.5014.54.518.4
20.984.2323.34.2619.1
22.463.9644.63.9841.5
22.873.8921.03.9016.9
25.763.4641.13.4733.2
26.753.331003.35100
27.733.2223.13.2226.8
30.192.9620.52.9718.4
Tab.1  Typical X-ray peaks of natural zeolites and SMNZ3
Fig.4  FTIR spectra of (a) natural zeolite, (b) SMNZ1, (c) SMNZ2, (d) SMNZ3, and (e) HTAB
Fig.5  SEM images of (a) natural zeolite, (b) SMNZ1, (c) SMNZ2, and (d) SMNZ3
Fig.6  Effect of Ca on HA adsorption onto SMNZ1, SMNZ2, and SMNZ3 (initial HA concentration, 20 mg·L; initial solution pH, 7.5; adsorbent concentration, 0.2 g·L; reaction time, 24 h; and temperature, 298 K)
Fig.7  Effect of initial solution pH on HA adsorption onto SMNZ1, SMNZ2, and SMNZ3 (initial HA concentration, 20 mg·L; initial solution pH, 7.5; adsorbent concentration, 0.2 g·L for SMNZ2 and SMNZ3 and 0.5 g·L for SMNZ1; reaction time, 24 h; and temperature, 298 K)
Fig.8  Effect of reaction time on HA adsorption onto SMNZ3 (initial solution pH, 7.5; adsorbent concentration, 0.5 g·L; and temperature, 298 K)
C0/(mg·L-1)qexp/(mg·g-1)pseudo-first-order modelpseudo-second-order modeldiffusion model
K1/(min-1)qe/(mg·g-1)R2k2/(g·(mg·min)-1)qe/(mg·g-1)R2kdR2
2024.10.010816.60.9470.0011525.40.9971.980.981
2531.30.0067824.30.8950.00046934.00.9872.060.979
3034.40.0089328.20.9480.00042338.60.9972.360.984
Tab.2  Comparison of the pseudo-first-order and pseudo-second-order kinetic models for the adsorption of HA onto SMNZ3 at different initial HA concentration
Fig.9  Plot of versus for HA adsorption onto SMNZ3
Fig.10  Effect of reaction time on E2/E3 (absorbance at 265 nm to that at 365 nm) and E4/E6 (absorbance at 465 nm to that at 665 nm) ratios (initial HA concentration, 30 mg·L; initial solution pH, 7.5; adsorbent concentration, 0.5 g·L; and temperature, 298 K)
Fig.11  Adsorption isotherm of HA onto SMNZ3 (adsorbent dosage, 0.5 g·L; reaction time, 24 h; and temperature, 298 K)
initial pHLangmuir isotherm modelFreundlich isotherm model
qm/(mg·g-1)KL/(L·mg-1)R2KF1/nR2
5.563.71.390.99933.20.3120.945
7.541.51.790.99824.00.2410.749
Tab.3  Isotherm constants for HA adsorption onto SMNZ3 at pH 5.5 and 7.5
1 Ghernaout D, Ghernaout B, Saiba A, Boucherit A, Kellil A. Removal of humic acids by continuous electromagnetic treatment followed by electrocoagulation in batch using aluminium electrodes. Desalination , 2009, 239(1-3): 295–308
doi: 10.1016/j.desal.2008.04.001
2 Park S J, Yoon T I. Effects of iron species and inert minerals on coagulation and direct filtration for humic acid removal. Desalination , 2009, 239(1-3): 146–158
doi: 10.1016/j.desal.2008.03.015
3 Seredyńskasobecka B, Tomaszewska M, Morawski A W. Removal of humic acids by the ozonation–biofiltration process. Desalination , 2006, 198(1-3): 265–273
doi: 10.1016/j.desal.2006.01.027
4 Lowe J, Hossain M M. Application of ultrafiltration membranes for removal of humic acid from drinking water. Desalination , 2008, 218(1-3): 343–354
doi: 10.1016/j.desal.2007.02.030
5 Selcuk H, Bekbolet M. Photocatalytic and photoelectrocatalytic humic acid removal and selectivity of TiO(2) coated photoanode. Chemosphere , 2008, 73(5): 854–858
doi: 10.1016/j.chemosphere.2008.05.069 pmid:18621411
6 Liu S, Lim M, Fabris R, Chow C, Chiang K, Drikas M, Amal R. Removal of humic acid using TiO2 photocatalytic process—fractionation and molecular weight characterisation studies. Chemosphere , 2008, 72(2): 263–271
doi: 10.1016/j.chemosphere.2008.01.061 pmid:18336863
7 Siéliéchi J M, Lartiges B S, Kayem G J, Hupont S, Frochot C, Thieme J, Ghanbaja J, d’Espinose de la Caillerie J B, Barrès O, Kamga R, Levitz P, Michot L J. Changes in humic acid conformation during coagulation with ferric chloride: implications for drinking water treatment. Water Research , 2008, 42(8-9): 2111–2123
doi: 10.1016/j.watres.2007.11.017 pmid:18155268
8 Zhao L, Luo F, Wasikiewicz J M, Mitomo H, Nagasawa N, Yagi T, Tamada M, Yoshii F. Adsorption of humic acid from aqueous solution onto irradiation-crosslinked carboxymethylchitosan. Bioresource Technology , 2008, 99(6): 1911–1917
doi: 10.1016/j.biortech.2007.03.030 pmid:17482457
9 Tao Q, Xu Z Y, Wang J H, Liu F L, Wan H Q, Zheng S R. Adsorption of humic acid to aminopropyl functionalized SBA-15. Microporous and Mesoporous Materials , 2010, 131(1-3): 177–185
doi: 10.1016/j.micromeso.2009.12.018
10 Wang J N, Zhou Y, Li A M, Xu L. Adsorption of humic acid by bi-functional resin JN-10 and the effect of alkali-earth metal ions on the adsorption. Journal of Hazardous Materials , 2010, 176(1-3): 1018–1026
doi: 10.1016/j.jhazmat.2009.11.142 pmid:20074851
11 Doulia D, Leodopoulos Ch, Gimouhopoulos K, Rigas F. Adsorption of humic acid on acid-activated Greek bentonite. Journal of Colloid and Interface Science , 2009, 340(2): 131–141
doi: 10.1016/j.jcis.2009.07.028 pmid:19800631
12 Wang J N, Li A M, Zhou Y, Xu L. Study on the influence of humic acid of different molecular weight on basic ion exchange resin’s adsorption capacity. Chinese Chemical Letters , 2009, 20(12): 1478–1482
doi: 10.1016/j.cclet.2009.07.013
13 Zhang X, Bai R B. Mechanisms and kinetics of humic acid adsorption onto chitosan-coated granules. Journal of Colloid and Interface Science , 2003, 264(1): 30–38
doi: 10.1016/S0021-9797(03)00393-X pmid:12885516
14 Gasser M S, Mohsen H T, Aly H F. Humic acid adsorption onto Mg/Fe layered double hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2008, 331(3): 195–201
doi: 10.1016/j.colsurfa.2008.08.002
15 Anirudhan T S, Suchithra P S, Rijith S. Amine-modified polyacrylamide-bentonite composite for the adsorption of humic acid in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2008, 326(3): 147–156
doi: 10.1016/j.colsurfa.2008.05.022
16 Wan Ngah W S, Hanafiah M A K M, Yong S S. Adsorption of humic acid from aqueous solutions on crosslinked chitosan-epichlorohydrin beads: kinetics and isotherm studies. Colloids and Surfaces. B, Biointerfaces , 2008, 65(1): 18–24
doi: 10.1016/j.colsurfb.2008.02.007 pmid:18359205
17 Vreysen S, Maes A. Adsorption mechanism of humic and fulvic acid onto Mg/Al layered double hydroxides. Applied Clay Science , 2008, 38(3-4): 237–249
doi: 10.1016/j.clay.2007.02.010
18 Wang S B, Zhu Z H. Humic acid adsorption on fly ash and its derived unburned carbon. Journal of Colloid and Interface Science , 2007, 315(1): 41–46
doi: 10.1016/j.jcis.2007.06.034 pmid:17628583
19 Yan W L, Bai R B. Adsorption of lead and humic acid on chitosan hydrogel beads. Water Research , 2005, 39(4): 688–698
doi: 10.1016/j.watres.2004.11.007 pmid:15707642
20 Hartono T, Wang S B, Ma Q, Zhu Z H. Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution. Journal of Colloid and Interface Science , 2009, 333(1): 114–119
doi: 10.1016/j.jcis.2009.02.005 pmid:19233379
21 Wang S B, Ma Q, Zhu Z H. Characteristics of unburned carbons and their application for humic acid removal from water. Fuel Processing Technology , 2009, 90(3): 375–380
doi: 10.1016/j.fuproc.2008.10.010
22 Anirudhan T S, Ramachandran M. Surfactant-modified bentonite as adsorbent for the removal of humic acid from wastewaters. Applied Clay Science , 2007, 35(3-4): 276–281
doi: 10.1016/j.clay.2006.09.009
23 Duan J, Wilson F, Graham N, Tay J H. Adsorption of humic acid by powdered activated carbon in saline water conditions. Desalination , 2003, 151(1): 53–66
doi: 10.1016/S0011-9164(02)00972-4
24 Deng S B, Bai R B. Adsorption and desorption of humic acid on aminated polyacrylonitrile fibers. Journal of Colloid and Interface Science , 2004, 280(1): 36–43
doi: 10.1016/j.jcis.2004.07.007 pmid:15476771
25 Chang M Y, Juang R S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. Journal of Colloid and Interface Science , 2004, 278(1): 18–25
doi: 10.1016/j.jcis.2004.05.029 pmid:15313633
26 Wang S B, Peng Y L. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal , 2010, 156(1): 11–24
doi: 10.1016/j.cej.2009.10.029
27 Leyvaramos R, Jacobo-Azuara A, Diaz-Flores P E, Guerrero-Coronado R M, Mendoza-Barron J, Berber-Mendoza M S. Adsorption of chromium (VI) from an aqueous solution on a surfactant-modified zeolite. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2008, 330(1): 35–41
doi: 10.1016/j.colsurfa.2008.07.025
28 Chutia P, Kato S, Kojima T, Satokawa S. Adsorption of As(V) on surfactant-modified natural zeolites. Journal of Hazardous Materials , 2009, 162(1): 204–211
doi: 10.1016/j.jhazmat.2008.05.024 pmid:18565654
29 Ionescu L G, Tokuhiro T, Czerniawski B J. Formation of micelles of hexadecyltrimethylammonium bromide in water-N,N-dimethylformamide solutions. Bulletin of the Chemical Society of Japan , 1979, 52(3): 922–924
doi: 10.1246/bcsj.52.922
30 Hrenovic J, Rozic M, Sekovanic L, Anic-Vucinic A. Interaction of surfactant-modified zeolites and phosphate accumulating bacteria. Journal of Hazardous Materials , 2008, 156(1-3): 576–582
doi: 10.1016/j.jhazmat.2007.12.060 pmid:18249067
31 Wingenfelder U, Furrer G, Schulin R. Sorption of antimonate by HDTMA-modified zeolite. Microporous and Mesoporous Materials , 2006, 95(1-3): 265–271
doi: 10.1016/j.micromeso.2006.06.001
32 Simpson J A, Bowman R S. Nonequilibrium sorption and transport of volatile petroleum hydrocarbons in surfactant-modified zeolite. Journal of Contaminant Hydrology , 2009, 108(1-2): 1–11
doi: 10.1016/j.jconhyd.2009.05.001 pmid:19487047
33 Li Z H, Burt T, Bowman R S. Sorption of ionizable organic solutes by surfactant-modified zeolite. Environmental Science & Technology , 2000, 34(17): 3756–3760
doi: 10.1021/es990743o
34 Li Z H, Bowman R S. Sorption of perchloroethylene by surfactant-modified zeolite as controlled by surfactant loading. Environmental Science & Technology , 1998, 32(15): 2278–2282
doi: 10.1021/es971118r
35 Wang S G, Gong W X, Liu X W, Gao B Y, Yue Q Y. Removal of fulvic acids using the surfactant modified zeolite in a fixed-bed reactor. Separation and Purification Technology , 2006, 51(3): 367–373
doi: 10.1016/j.seppur.2006.02.019
36 Fang J P, Zhang P Y, Zeng G M, Zou S, Yang L, Wu H, Gao Q. Research on humic acid adsorption by modified clinoptilolite. China Water & Wastewater , 2008, 24(23): 48–51 (in Chinese)
37 Rozi? M, Ivanec Sipusi? ?, Sekovani? L, Miljani? S, Curkovi? L, Hrenovi? J. Sorption phenomena of modification of clinoptilolite tuffs by surfactant cations. Journal of Colloid and Interface Science , 2009, 331(2): 295–301
doi: 10.1016/j.jcis.2008.11.043 pmid:19118839
38 Vaia R A, Teukolsky R K, Giannelis E P. Interlayer structure and molecular environment of alkylammonium layered silicates. Chemistry of Materials , 1994, 6(7): 1017–1022
doi: 10.1021/cm00043a025
39 Jones M N, Bryan N D. Colloidal properties of humic substances. Advances in Colloid and Interface Science , 1998, 78(1): 1–48
doi: 10.1016/S0001-8686(98)00058-X
40 Yang K, Xing B S. Adsorption of fulvic acid by carbon nanotubes from water. Environmental pollution , 2009, 157(4): 1095–1100
doi: 10.1016/j.envpol.2008.11.007 pmid:19084305
41 Peuravuori J, Pihlaja K. Molecular size distribution and spectroscopic properties of aquatic humic substances. Analytica Chimica Acta , 1997, 337(2): 133–149
doi: 10.1016/S0003-2670(96)00412-6
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[4] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[5] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[6] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[7] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[8] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[9] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[10] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[11] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[12] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[13] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[14] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
[15] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed