Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2010, Vol. 4 Issue (3) : 245-271    https://doi.org/10.1007/s11783-010-0240-z
Research articles
Recent advances in membrane bioreactor technology for wastewater treatment in China
Xia HUANG1,Kang XIAO1,Yuexiao SHEN1, 2,
1.State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China; 2.2010-10-22 15:22:46;
 Download: PDF(907 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Since the introduction of the membrane bioreactor (MBR) in China in the early 1990s, remarkable progress has been achieved on the research and application of this technology. China has now become one of the most active fields in the world in this regard. This review outlines the development of MBR-based processes in China and their performance of treating municipal and industrial wastewaters. Since membrane fouling is a critical operational problem with MBR processes, this paper also proposes updated understanding of fouling mechanisms and strategies of fouling control, which are mainly compiled from publications of Chinese researchers. As for the commercial application of MBR in the country, the latest statistics of large-scale MBR plants (>10000 m3·d−1) are provided, and the growth trend of total treatment capacity as well as its driving force is analyzed.
Keywords membrane bioreactor (MBR)      municipal wastewater treatment      industrial wastewater treatment      membrane fouling      commercial application      China      
Issue Date: 05 September 2010
 Cite this article:   
Xia HUANG,Yuexiao SHEN,Kang XIAO, et al. Recent advances in membrane bioreactor technology for wastewater treatment in China[J]. Front.Environ.Sci.Eng., 2010, 4(3): 245-271.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0240-z
https://academic.hep.com.cn/fese/EN/Y2010/V4/I3/245
Huang X, Gui P, Fan X J, Wang C W, Qian Y. Study on the progress ofmembrane bioreactor technology for wastewater treatment. Research of Environmental Sciences, 1998, 11: 40–44 (in Chinese)
Yamamoto K, Hiasa M, Mahmood T, Matsuo T. Direct solid-liquid separation using hollow fiber membrane in an activatedsludge aeration tank. Water Science andTechnology, 1989, 21: 43–54
He Y L, Xu P, Li C J, Zhang B. High-concentration food wastewater treatment by an anaerobic membrane bioreactor. Water Research, 2005, 39: 4110–4118

doi: 10.1016/j.watres.2005.07.030
Xu M, Wen X, Huang X, Li Y. Membrane fouling control in an anaerobic membrane bioreactor coupled with onlineultrasound equipment for digestion of waste activated sludge. Separation Science and Technology, 2010, 45: 941–947

doi: 10.1080/01496391003659903
Zhang F, Jing W H, Xing W H, Xu N P. Experiment and calculation of filtration processes in an external-loopairlift ceramic membrane bioreactor. Chemical Engineering Science, 2009, 64: 2859–2865

doi: 10.1016/j.ces.2009.02.046
Tian K J, Liu X A, Jiang T, Kennedy M D, Schippers J C, Vanrolleghem P A. Modelling the biological performanceof a side-stream membrane bioreactor using ASM1. Journal of Environmental Sciences, 2004, 16: 1020–1023
Yang Q, Huang X, Shang H T, Wen X H, Qian Y. Resistance analyses for recirculatedmembrane bioreactor. Environmental Science, 2006, 27: 2344–2349 (in Chinese)
Fan B, Huang X. Characteristics of a self-forming dynamic membrane coupled with a bioreactor for municipalwastewater treatment. Environmental Science& Technology, 2002, 36: 5245–5251

doi: 10.1021/es025789n
Fan B, Huang X, Wen X, Yu Y. Filtration capability of the bio-dynamic membrane. Environmental Science, 2003, 24: 91–97 (in Chinese)
Wu Y, Huang X, Wen X, Chen F. Function of dynamic membrane in self-forming dynamic membrane coupled bioreactor. Water Science and Technology, 2005, 51: 107–114
Wu Y X, Cai Q, Zhou X H, Huang X, Shi H C. Characteristics of dynamicmembrane based on oxygen microelectrode. Environmental Science, 2005, 26: 113–116 (in Chinese)
Chu H Q, Cao D W, Jin W, Dong B Z. Characteristics of bio-diatomite dynamic membrane process for municipalwastewater treatment. Journal of MembraneScience, 2008, 325: 271–276

doi: 10.1016/j.memsci.2008.07.040
Ye M S, Zhang H M, Yang F L. Experimental study on application ofthe boundary layer theory for estimating steady aeration intensityof precoated dynamic membrane bioreactors. Desalination, 2008, 230: 100–112

doi: 10.1016/j.desal.2007.11.019
Yang Q, Shang H T, Wang J L. Treatment of municipal wastewater bymembrane bioreactor: a pilot study. International Journal of Environment and Pollution, 2009, 38: 280–288

doi: 10.1504/IJEP.2009.027228
Liu H B, Yang C Z, Pu W H, Zhang J D. Removal of nitrogen from wastewater for reusing to boiler feed-waterby an anaerobic/aerobic/membrane bioreactor. Chemical Engineering Journal, 2008, 140: 122–129

doi: 10.1016/j.cej.2007.09.048
Wei C H, Huang X, Wen X H. Pilot study on municipal wastewater treatmentby a modified submerged membrane bioreactor. Water Science and Technology, 2006, 53: 103–110

doi: 10.2166/wst.2006.271
Wang Z W, Wu Z C. Distribution and transformation of molecular weight of organic matters in membranebioreactor and conventional activated sludge process. Chemical Engineering Journal, 2009, 150: 396–402

doi: 10.1016/j.cej.2009.01.018
Du C, Wu Z B, Xiao E R, Zhou Q H, Cheng S P, Liang W, He F. Bacterial diversity in activated sludge from a consecutively aerated submerged membranebioreactor treating domestic wastewater. Journal of Environmental Sciences, 2008, 20: 1210–1217

doi: 10.1016/S1001-0742(08)62211-1
Liu R, Huang X, Chen L J, Wang C W, Qian Y. A pilot study on a submergedmembrane bioreactor for domestic wastewater treatment. Journal of Environmental Science and Health Part A, 2000, 35: 1761–1772

doi: 10.1080/10934520009377071
Wang X M, Waite T D. Role of gelling soluble and colloidal microbial products in membrane fouling. Environmental Science & Technology, 2009, 43: 9341–9347

doi: 10.1021/es9013129
Yang L, Wei C H, Huang X, Wang B Q. Pilot study on simultaneous nitrogen and phosphorus removal in submergedmembrane bioreactor treating municipal wastewater. China Water and Wastewater, 2006, 22: 13–17 (in Chinese)
Cao B, Huang X, Kitanaka A, Yang Y F, Yang D L. Pilot test on enhanced biologicalnitrogen and phosphorus removal by using A2/O-MBR. China Water and Wastewater, 2007, 23: 22–26 (in Chinese)
An Y Y, Yang F L, Chua H C, Wong F S, Wu B. The integration of methanogenesiswith shortcut nitrification and denitrification in a combined UASBwith MBR. Bioresource Technology, 2008, 99: 3714–3720

doi: 10.1016/j.biortech.2007.07.020
Zhang H M, Xiao J N, Cheng Y J, Liu L F, Zhang X W, Yang F L. Comparison between a sequencing batch membrane bioreactorand a conventional membrane bioreactor. Process Biochemistry, 2006, 41: 87–95

doi: 10.1016/j.procbio.2005.03.072
He S B, Xue G, Wang B Z. Factors affecting simultaneous nitrificationand de-nitrification (SND) and its kinetics model in membrane bioreactor. Journal of Hazardous Materials, 2009, 168: 704–710

doi: 10.1016/j.jhazmat.2009.02.099
Meng Q J, Yang F L, Liu L F, Meng F G. Effects of COD/N ratio and DO concentration on simultaneous nitrificationand denitrification in an airlift internal circulation membrane bioreactor. Journal of Environmental Sciences, 2008, 20: 933–939

doi: 10.1016/S1001-0742(08)62189-0
Yang S, Yang F L, Fu Z M, Lei R B. Comparison between a moving bed membrane bioreactor and a conventionalmembrane bioreactor on organic carbon and nitrogen removal. Bioresource Technology, 2009, 100: 2369–2374

doi: 10.1016/j.biortech.2008.11.022
Wang J F, Wang X, Zhao Z G, Li J W. Organics and nitrogen removal and sludge stability in aerobic granularsludge membrane bioreactor. Applied Microbiology and Biotechnology, 2008, 79: 679–685

doi: 10.1007/s00253-008-1466-6
Xia S B, Jiang L J, Wang H W, Zhang Z J. Enhanced biological phosphorus removal in a novel sequencing membranebioreactor with gravitational filtration (GFS-MBR). Desalination and Water Treatment, 2009, 9: 259–262

doi: 10.5004/dwt.2009.811
Wang Y L, Yu S L, Shi W X, Bao R L, Zhao Q, Zuo X T. Comparative performance between intermittently cyclicactivated sludge-membrane bioreactor and anoxic/aerobic-membrane bioreactor. Bioresource Technology, 2009, 100: 3877–3881

doi: 10.1016/j.biortech.2009.02.054
Zhang Z, Huang X, Xiao K, Li H, Zhao X, Sha H, Zhang Y. Enhanced phosphorusremoval in biological nitrogen and phosphorus removal process usingmembrane bioreactor. Journal of TsinghuaUniversity, 2008, 48: 1472–1474+1478 (in Chinese)
Zhang Z C, Huang X, Xiao K, Li H T, Xue T. Impact of sludge retentiontime on enhanced biological phosphorus removal using membrane bioreactor. In: 2nd IWA-ASPIRE conference & exhibition2007, Perth
Lu X J, Li S J, Liu L X, Li Y S, Zhang B P. Experimental study on enhancedremoval of nitrogen and phosphorus by integrated membrane bioreactor. China Water and Wastewater, 2008, 24: 7–10 (in Chinese)
Dai W C, Zhang H M, Xiao J N, Yang F L, Zhang X W, Zhang X Y. Enrichment of denitrifying phosphate accumulating organismsin sequencing batch membrane bioreactors. Environmental Science, 2007, 28: 517–521 (in Chinese)
Zhang H M, Xiao J N, Cheng Y J, Zhang X W, Yang F L. Comparing experiments onenhancing nitrogen and phosphorus removal in membrane bioreactor. Acta Scientiae Circumstantiae, 2005, 25: 242–248 (in Chinese)
Zhang Z C, Huang X, Yang H J, Xiao K, Luo X, Shang H, Chen Y M. Study on P forms in extracellular polymeric substances in enhanced biologicalphosphorus removal sludge by 31P-NMR spectroscopy. Spectroscopy and Spectral Analysis, 2009, 29: 236–239 (in Chinese)
Hens M, Merckx R. The role of colloidal particles in the speciation and analysis of “dissolved”phosphorus. Water Research, 2002, 36: 1483–1492

doi: 10.1016/S0043-1354(01)00349-9
Zhang Z C. Characteristics of biological phosphorus removel processusing membrane bioreactor. Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 2008 (in Chinese)
Yuan L M, Zhang C Y, Zhang Y Q, Ding Y, Xi D L. Biological nutrient removal using an alternating of anoxic and anaerobic membrane bioreactor (AAAM)process. Desalination, 2008, 221: 566–575

doi: 10.1016/j.desal.2007.01.118
Cui Z G, Li S Y, Xia J L, Xue T, Huang X. Enhanced phosphorus removal in membrane bioreactor combined with electrocoagulation. China Water and Wastewater, 2009, 25: 1–4 (in Chinese)
Wu J, Li H, Huang X. Indigenous somatic coliphage removalfrom a real municipal wastewater by a submerged membrane bioreactor. Water Research, 2010, 44: 1853–1862

doi: 10.1016/j.watres.2009.12.013
Lv W, Zheng X, Yang M, Zhang Y, Liu Y, Liu J X. Virus removal performance and mechanism of a submergedmembrane bioreactor. Process Biochemistry, 2006, 41: 299–304

doi: 10.1016/j.procbio.2005.06.005
Zheng X, Lu W Z, Yang M, Liu J X. Evaluation of virus removal in MBR using coliphages T4. Chinese Science Bulletin, 2005, 50: 862–867

doi: 10.1360/04wb0087
Zheng X, Liu J X. Virus rejection with two model human enteric viruses in membrane bioreactor system. Science in China Series B, 2007, 50: 397–404

doi: 10.1007/s11426-007-0047-3
Wang X M, Waite T D. Impact of gel layer formation on colloid retention in membrane filtration processes. Journal of Membrane Science, 2008, 325: 486–494

doi: 10.1016/j.memsci.2008.08.016
Wang X M, Waite T D. Gel layer formation and hollow fiber membrane filterability of polysaccharidedispersions. Journal of Membrane Science, 2008, 322: 204–213

doi: 10.1016/j.memsci.2008.05.033
Zhou H, Huang X, Gao M, Wang X, Wen X. Distribution and elimination of polycyclic musks in three sewage treatment plants of Beijing, China. Journal of Environmental Sciences, 2009, 21: 561–567

doi: 10.1016/S1001-0742(08)62308-6
Zhou H, Huang X, Wang X, Zhi X, Yang C, Wen X, Wang Q, Tsuno H, Tanaka H. Behaviour of selected endocrine-disrupting chemicals in three sewage treatmentplants of Beijing, China. Environmental Monitoring and Assessment, 2010, 161: 107–121

doi: 10.1007/s10661-008-0731-6
Routledge E J, Sheahan D, Desbrow C, Brighty G C, Waldock M, Sumpter J P. Identification of estrogenicchemicals in STW effluent. 2. In vivo responses in trout and roach. Environmental Science & Technology, 1998, 32: 1559–1565

doi: 10.1021/es970796a
Chen J H, Huang X, Lee D J. Bisphenol A removal by a membrane bioreactor. Process Biochemistry, 2008, 43: 451–456

doi: 10.1016/j.procbio.2008.01.001
Chen J H, Huang X, Li S Y, Wen X H, Qiao D L. Comparison of bisphenol A(BPA) and nonylphenol ethoxylate (NPnEO) removal with a membrane bioreactor versus a conventional activatedsludge reactor. Acta Scientiae Circumstantiae, 2008, 28: 433–439 (in Chinese)
Zhou Y J, Huang X, Zhou H D, Chen J H, Xue W C. Removal of typical endocrinedisrupting chemicals by membrane bioreactor: In comparison with sequencingbatch reactor. Water Science and Technology (in press)
Zhou H D, Huang X, Wang X L, Wen X H. Evaluation of estrogenicity of sewage samples from Beijing, China. Environmental Science, 2009, 30: 3590–3595 (in Chinese)
Wu C Y, Xue W C, Zhou H D, Huang X, Wen X H. Removal of endocrine disruptingchemicals (EDCs) in a large scale membrane bioreactor plant combinedwith anaerobic-anoxic-oxic process for municipal wastewater reclamation. Water Science and Technology (in press)
Burkhard L P. Estimating dissolved organic carbon partition coefficientsfor nonionic organic chemicals. Environmental Science & Technology, 2000, 34: 4663–4668

doi: 10.1021/es001269l
Chen J H, Zhou Y J, Huang X, Tsuno H. The behavior of nonylphenol ethoxylate in MBR and CASR. China Environmental Science, 2008, 28: 501–506 (in Chinese)
Zhao W T, Huang X, Lee D J. Enhanced treatment of coke plant wastewaterusing an anaerobic-anoxic-oxic membrane bioreactor system. Separation and Purification Technology, 2009, 66: 279–286

doi: 10.1016/j.seppur.2008.12.028
Zhang Y Z, Ma C M, Ye F, Kong Y, Li H. The treatment of wastewater of paper mill with integratedmembrane process. Desalination, 2009, 236: 349–356

doi: 10.1016/j.desal.2007.10.086
Zheng X, Liu J X. Dyeing and printing wastewater treatment using a membrane bioreactor with a gravitydrain. Desalination, 2006, 190: 277–286

doi: 10.1016/j.desal.2005.09.008
Wang Y, Huang X, Yuan Q. Nitrogen and carbon removals from foodprocessing wastewater by an anoxic/aerobic membrane bioreactor. Process Biochemistry, 2005, 40: 1733–1739

doi: 10.1016/j.procbio.2004.06.039
Zhang S T, Yang F L, Liu Y H, Zhang X W, Yamada Y, Furukawa K. Performance of a metallic membrane bioreactor treatingsimulated distillery wastewater at temperatures of 30 to 45 degreesC. Desalination, 2006, 194: 146–155

doi: 10.1016/j.desal.2005.10.029
Chen Z B, Hu D X, Ren N Q, Zhang Z P. Simultaneous removal of organic substances and nitrogen in pilot-scalesubmerged membrane bioreactors treating digested traditional Chinesemedicine wastewater. International Biodeteriorationand Biodegradation, 2008, 62: 250–256

doi: 10.1016/j.ibiod.2008.01.010
Chen Z, Ren N, Wang A, Zhang Z P, Shi Y. A novel application of TPAD-MBRsystem to the pilot treatment of chemical synthesis-based pharmaceuticalwastewater. Water Research, 2008, 42: 3385–3392

doi: 10.1016/j.watres.2008.04.020
Han W Q, Wang L J, Sun X Y, Li J S. Treatment of bactericide wastewater by combined process chemicalcoagulation, electrochemical oxidation and membrane bioreactor. Journal of Hazardous Materials, 2008, 151: 306–315

doi: 10.1016/j.jhazmat.2007.05.088
Shen J Y, He R, Han W Q, Sun X Y, Li J S, Wang L J. Biological denitrification of high-nitrate wastewaterin a modified anoxic/oxic-membrane bioreactor (A/O-MBR). Journal of Hazardous Materials, 2009, 172: 595–600

doi: 10.1016/j.jhazmat.2009.07.045
Fu Z M, Yang F L, Zhou F F, Xue Y. Control of COD/N ratio for nutrient removal in a modified membrane bioreactor(MBR) treating high strength wastewater. Bioresource Technology, 2009, 100: 136–141

doi: 10.1016/j.biortech.2008.06.006
Zhang Y X, Zhou J T, Zhang J S, Yuan S Z. An innovative membrane bioreactor and packed-bed biofilm reactorcombined system for shortcut nitrification-denitrification. Journal of Environmental Sciences, 2009, 21: 568–574

doi: 10.1016/S1001-0742(08)62309-8
Xu Y, Zhou Y, Wang D, Chen S, Liu J, Wang Z. Occurrence and removal of organic micropollutants inthe treatment of landfill leachate by combined anaerobic-membranebioreactor technology. Journal of EnvironmentalSciences, 2008, 20: 1281–1287

doi: 10.1016/S1001-0742(08)62222-6
Wen X H, Ding H J, Huang X, Liu R P. Treatment of hospital wastewater using a submerged membrane bioreactor. Process Biochemistry, 2004, 39: 1427–1431

doi: 10.1016/S0032-9592(03)00277-2
Liu R, Huang X, Chen L, Wen X, Qian Y. Operational performance of a submerged membrane bioreactor for reclamation of bath wastewater. Process Biochemistry, 2005, 40: 125–130

doi: 10.1016/j.procbio.2003.11.038
Liu C, Huang X. Enhanced atrazine removal using membrane bioreactor bioaugmented with genetically engineeredmicroorganism. Frontiers of EnvironmentalScience & Engineering in China, 2008, 2: 452–460

doi: 10.1007/s11783-008-0050-8
Liu C, Huang X, Wang H. Start-up of a membrane bioreactor bioaugmentedwith genetically engineered microorganism for enhanced treatment ofatrazine containing wastewater. Desalination, 2008, 231: 12–19

doi: 10.1016/j.desal.2007.11.034
Liu C, Huang X, Yang J-L. Leakage and survival of genetically engineeredmicroorganism in the environment applied for wastewater bioaugmentationtreatment. Environmental Science, 2008, 29: 2571–2575 (in Chinese)
Le Clech P, Chen V, Fane T A G. Fouling in membrane bioreactors usedin wastewater treatment. Journal of Membrane Science, 2006, 284: 17–53

doi: 10.1016/j.memsci.2006.08.019
Yu H Y, Liu L Q, Tang Z Q, Yan M G, Gu J S, Wei X W. Mitigated membrane fouling in an SMBR by surface modification. Journal of Membrane Science, 2008, 310: 409–417

doi: 10.1016/j.memsci.2007.11.017
Yu H Y, Xu Z K, Lei H, Hu M X, Yang Q. Photoinduced graft polymerizationof acrylamide on polypropylene microporous membranes for the improvementof antifouling characteristics in a submerged membrane-bioreactor. Separation and Purification Technology, 2007, 53: 119–125

doi: 10.1016/j.seppur.2006.07.002
Judd S. The MBR book: Principles and applications of membranebioreactors in water and wastewater treatment. 1st ed. London: Elsevier, 2006
Yu H Y, Xu Z K, Yang Q, Hu M X, Wang S Y. Improvement of the antifoulingcharacteristics for polypropylene microporous membranes by the sequentialphotoinduced graft polymerization of acrylic acid. Journal of Membrane Science, 2006, 281: 658–665

doi: 10.1016/j.memsci.2006.04.036
Zhan J, Liu Z, Wang B, Ding F. Modification of a membrane surface charge by a low temperature plasma induced graftingreaction and its application to reduce membrane fouling. Separation Science and Technology, 2004, 39: 2977–2995

doi: 10.1081/SS-200035950
Meng F G, Zhang H M, Yang F L, Liu L F. Characterization of cake layer in submerged membrane bioreactor. Environmental Science & Technology, 2007, 41: 4065–4070

doi: 10.1021/es062208b
Liang S, Liu C, Song L F. Soluble microbial products in membranebioreactor operation: Behaviors, characteristics, and fouling potential. Water Research, 2007, 41: 95–101

doi: 10.1016/j.watres.2006.10.008
Shen Y X, Zhao W T, Xiao K, Huang X. A systematic insight into fouling propensity of soluble microbial productsin membrane bioreactors based on hydrophobic interaction and sizeexclusion. Journal of Membrane Science, 2010, 346: 187–193

doi: 10.1016/j.memsci.2009.09.040
Rosenberg M, Gutnick D, Rosenberg E. Adherence of bacteria tohydrocarbons: A simple method for measuring cell-surface hydrophobicity. FEMS Microbiology Letters, 1980, 9: 29–33

doi: 10.1111/j.1574-6968.1980.tb05599.x
Ji J, Qiu J, Wai N, Wong F-S, Li Y. Influence of organic andinorganic flocculants on physical-chemical properties of biomass andmembrane-fouling rate. Water Research, 2010, 44: 1627–1635

doi: 10.1016/j.watres.2009.11.013
Wu J, Huang X. Effect of mixed liquor properties on fouling propensity in membrane bioreactors. Journal of Membrane Science, 2009, 342: 88–96

doi: 10.1016/j.memsci.2009.06.024
Hunter R J. Zeta potential in colloid science: Principles and applications. London: Academic Press, 1981
Zhang H F. Impact of Soluble Microbial Products and ExtracellularPolymeric Substances on Filtration Resistance in a Membrane Bioreactor. Environmental Engineering Science, 2009, 26: 1115–1122

doi: 10.1089/ees.2008.0312
Zhao W T, Shen Y X, Xiao K, Huang X. Fouling characteristics in a membrane bioreactor coupled with anaerobic–anoxic–oxicprocess for coke wastewater treatment. Bioresource Technology, 2010, 101: 3876–3883

doi: 10.1016/j.biortech.2009.12.141
Xiao K, Wang X, Huang X, Waite T D, Wen X. Analysis of polysaccharide,protein and humic acid retention by microfiltration membranes usingThomas’ dynamic adsorption model. Journal of Membrane Science, 2009, 342: 22–34

doi: 10.1016/j.memsci.2009.06.016
Liu R, Huang X, Sun Y F, Qian Y. Hydrodynamic effect on sludge accumulation over membrane surfaces in a submergedmembrane bioreactor. Process Biochemistry, 2003, 39: 157–163

doi: 10.1016/S0032-9592(03)00022-0
Gui P, Huang X, Chen Y, Qian Y. Effect of operational parameters on sludge accumulation on membrane surfacesin a submerged membrane bioreactor. Desalination, 2003, 151: 185–194

doi: 10.1016/S0011-9164(02)00997-9
Wen C, Huang X, Qian Y. Domestic wastewater treatment using ananaerobic bioreactor coupled with membrane filtration. Process Biochemistry, 1999, 35: 335–340

doi: 10.1016/S0032-9592(99)00076-X
Wei C H, Huang X, Zhao S G, Wen X H. Operating characteristics of submerged membrane bioreactor at sub-criticalFlux. China Water and Wastewater, 2004, 20: 10–13 (in Chinese)
Lu Y, Ding Z, Liu L, Wang Z, Ma R. The influence of bubble characteristics on the performance of submerged hollow fiber membrane module usedin microfiltration. Separation and PurificationTechnology, 2008, 61: 89–95

doi: 10.1016/j.seppur.2007.09.019
Huang X, Wei C H, Yu K C. Mechanism of membrane fouling controlby suspended carriers in a submerged membrane bioreactor. Journal of Membrane Science, 2008, 309: 7–16

doi: 10.1016/j.memsci.2007.09.069
Gui P, Huang X, Chen Y, Wen X H, Qian Y. Influence of the operationparameters on membrane filtration. Environmental Science, 1999, 20: 38–41 (in Chinese)
Zheng X, Fan Y B, Wei Y S. A pilot scale anoxic/oxic membrane bioreactor(A/O MBR) for woolen mill dyeing wastewater treatment. Journal of Environmental Sciences, 2003, 15: 449–455
Jiang T, Kennedy M D, Guinzbourg B F, Vanrolleghem P A, Schippers J C. Optimising the operation of a MBR pilot plant by quantitative analysisof the membrane fouling mechanism. Water Science and Technology, 2005, 51: 19–25
Lei S, Lin W, Xinyan Y. Low temperature influence on packagemembrane bioreactor (MBR) operation in remote mountain areas. In: 3rd International Conference on Bioinformaticsand Biomedical Engineering 2009, Beijing
Dong B Z, Chen Y, Gao N Y, Fan J C. Effect of pH on UF membrane fouling. Desalination, 2006, 195: 201–208

doi: 10.1016/j.desal.2005.11.012
Meng F, Shi B, Yang F, Zhang H. Effect of hydraulic retention time on membrane fouling and biomass characteristicsin submerged membrane bioreactors. Bioprocess and Biosystems Engineering, 2007, 30: 359–367

doi: 10.1007/s00449-007-0132-1
Zhang J S, Chuan C H, Zhou J T, Fane A G. Effect of sludge retention time on membrane bio-fouling intensityin a submerged membrane bioreactor. Separation Science and Technology, 2006, 41: 1313–1329

doi: 10.1080/01496390600683647
Bu Q J, Zhu H T, Wen X H, Huang X. Study on effect of membrane fiber length on critical flux in a novel membranebioreactor. Acta Scientiae Circumstantiae, 2008, 28: 446–451 (in Chinese)
Yu K C, Wen X H, Bu Q J, Huang X. Critical flux enhancements with air sparging in axial hollow fibers cross-flowmicrofiltration of biologically treated wastewater. Journal of Membrane Science, 2003, 224: 69–79

doi: 10.1016/j.memsci.2003.07.001
Wu J, Chen F, Huang X, Geng W, Wen X. Using inorganic coagulants to control membrane fouling in a submerged membrane bioreactor. Desalination, 2006, 197: 124–136

doi: 10.1016/j.desal.2005.11.026
Wu J, Huang X. Effect of dosing polymeric ferric sulfate on fouling characteristics, mixed liquorproperties and performance in a long-term running membrane bioreactor. Separation and Purification Technology, 2008, 63: 45–52

doi: 10.1016/j.seppur.2008.03.033
Cao X X, Wei C H, Huang X. Study on effect of powdered activatedcarbon on the fouling in a submerged membrane bioreactor. Acta Scientiae Circumstantiae, 2005, 25: 1443–1447 (in Chinese)
Wei C H, Huang X, Wang C W, Wen X H. Effect of a suspended carrier on membrane fouling in a submergedmembrane bioreactor. Water Science andTechnology, 2006, 53: 211–220

doi: 10.2166/wst.2006.199
Yang Q Y, Yang T, Wang H J, Liu K Q. Filtration characteristics of activated sludge in hybrid membranebioreactor with porous suspended carriers (HMBR). Desalination, 2009, 249: 507–514

doi: 10.1016/j.desal.2008.08.013
Yang Q Y, Chen J H, Zhang F. Membrane fouling control in a submergedmembrane bioreactor with porous, flexible suspended carriers. Desalination, 2006, 189: 292–302

doi: 10.1016/j.desal.2005.07.011
Meng F G, Chae S R, Drews A, Kraume M, Shin H S, Yang F L. Recent advances in membrane bioreactors (MBRs): Membranefouling and membrane material. Water Research, 2009, 43: 1489–1512

doi: 10.1016/j.watres.2008.12.044
Wang X M, Li X Y, Huang X. Membrane fouling in a submerged membranebioreactor (SMBR): Characterisation of the sludge cake and its highfiltration resistance. Separation and PurificationTechnology, 2007, 52: 439–445

doi: 10.1016/j.seppur.2006.05.025
Meng F, Drews A, Mehrez R, Iversen V, Ernst M, Yang F, Jekel M, Kraume M. Occurrence, source, and fate of dissolvedorganic matter (DOM) in a pilot-scale membrane bioreactor. Environmental Science & Technology, 2009, 43: 8821–8826

doi: 10.1021/es9019996
Ni B J, Zeng R J, Fang F, Xie W M, Sheng G-P, Yu H-Q. Fractionating soluble microbial products in the activatedsludge process. Water Research, 2010, 44: 2292–2302

doi: 10.1016/j.watres.2009.12.025
Wang Z W, Wu Z C, Tang S J. Extracellular polymeric substances (EPS)properties and their effects on membrane fouling in a submerged membranebioreactor. Water Research, 2009, 43: 2504–2512

doi: 10.1016/j.watres.2009.02.026
Meng F, Zhang H, Yang F, Zhang S, Li Y, Zhang X. Identification of activated sludge properties affectingmembrane fouling in submerged membrane bioreactors. Separation and Purification Technology, 2006, 51: 95–103

doi: 10.1016/j.seppur.2006.01.002
Yang F L, Shi B Q, Meng F G, Zhang H M. Membrane fouling behavior during filtration of sludge supernatant. Environmental Progress, 2007, 26: 86–93

doi: 10.1002/ep.10184
Wang Z W, Wu Z C, Tang S J. Characterization of dissolved organicmatter in a submerged membrane bioreactor by using three-dimensionalexcitation and emission matrix fluorescence spectroscopy. Water Research, 2009, 43: 1533–1540

doi: 10.1016/j.watres.2008.12.033
Wang Z W, Wu Z C, Yin X, Tian L M. Membrane fouling in a submerged membrane bioreactor (MBR) under sub-criticalflux operation: Membrane foulant and gel layer characterization. Journal of Membrane Science, 2008, 325: 238–244

doi: 10.1016/j.memsci.2008.07.035
Huang X, Liu R, Qian Y. Behaviour of soluble microbial productsin a membrane bioreactor. Process Biochemistry, 2000, 36: 401–406

doi: 10.1016/S0032-9592(00)00206-5
Belfort G, Davis R H, Zydney A L. The behavior of suspensions and macromolecularsolutions in crossflow microfiltration. Journal of Membrane Science, 1994, 96: 1–58

doi: 10.1016/0376-7388(94)00119-7
Hermia J. Constant pressure blocking filtration laws - Applicationto power-law non-newtonian fluids. Transactions of the Institution of Chemical Engineers, 1982, 60: 183–187
Hermans P H, Bredée H L. Principles of the mathematical treatment of constant-pressure filtration. Journal of the Society of Chemical Industry, 1936, 55: 1T–4T
Hlavacek M, Bouchet F. Constant flowrate blocking laws and an example of their application to dead-endmicrofiltration of protein solutions. Journal of Membrane Science, 1993, 82: 285–295

doi: 10.1016/0376-7388(93)85193-Z
Tang C Y, Leckie J O. Membrane independent limiting flux for RO and NF membranes fouledby humic acid. Environmental Science &Technology, 2007, 41: 4767–4773

doi: 10.1021/es063105w
Thomas H C. Heterogeneous ion exchange in a flowing system. Journal of the American Chemical Society 1944, 66: 1664–1666

doi: 10.1021/ja01238a017
Thomas H C. Chromatography: A problem in kinetics. Annals New York Academy of Sciences, 1948, 49: 161–182

doi: 10.1111/j.1749-6632.1948.tb35248.x
van Oss C J. Interfacial forces in aqueous media. 2nd ed. Boca Raton: Taylor & Francis, 2006
Yu H Y, Liu L Q, Tang Z Q, Yan M G, Gu J S, Wei X W. Surface modification of polypropylene microporous membraneto improve its antifouling characteristics in an SMBR: Air plasmatreatment. Journal of Membrane Science, 2008, 311: 216–224

doi: 10.1016/j.memsci.2007.12.016
Yu H Y, He X C, Liu L Q, Gu J S, Wei X W. Surface modification of poly(propylene)microporous membrane to improve its antifouling characteristics inan SMBR: O2 plasma treatment. Plasma Processes and Polymers, 2008, 5: 84–91

doi: 10.1002/ppap.200700051
Yu H Y, He X C, Liu L Q, Gu J S, Wei X W. Surface modification of polypropylenemicroporous membrane to improve its antifouling characteristics inan SMBR: N2 plasma treatment. Water Research, 2007, 41: 4703–4709

doi: 10.1016/j.watres.2007.06.039
Yu H Y, Xie Y, Hu M X, Wang J L, Wang S Y, Xu Z K. Surface modification of polypropylene microporous membraneto improve its antifouling property in MBR: CO2 plasma treatment. Journal of Membrane Science, 2005, 254: 219–227

doi: 10.1016/j.memsci.2005.01.010
Yu H Y, Tang Z Q, Huang L, Cheng G, Li W, Zhou J, Yan M G, Gu J S, Wei X W. Surface modification of polypropylene macroporous membrane to improveits antifouling characteristics in a submerged membrane-bioreactor:H2O plasma treatment. Water Research, 2008, 42: 4341–4347

doi: 10.1016/j.watres.2008.05.028
Yu H Y, Hu M X, Xu Z K, Wang J L, Wang S Y. Surface modification of polypropylenemicroporous membranes to improve their antifouling property in MBR:NH3 plasma treatment. Separation and Purification Technology, 2005, 45: 8–15

doi: 10.1016/j.seppur.2005.01.012
Xie Y J, Yu H Y, Wang S Y, Xu Z K. Improvement of antifouling characteristics in a bioreactor of polypropylenemicroporous membrane by the adsorption of Tween 20. Journal of Environmental Sciences, 2007, 19: 1461–1465

doi: 10.1016/S1001-0742(07)60238-1
Li L, Yin Z, Li F, Xiang T, Chen Y, Zhao C. Preparation and characterization of poly(acrylonitrile-acrylic acid-N-vinyl pyrrolidinone)terpolymer blended polyethersulfone membranes. Journal of Membrane Science, 2010, 349: 56–64

doi: 10.1016/j.memsci.2009.11.018
Zhao Y H, Qian Y L, Pang D X, Zhu B K, Xu Y Y. Porous membranes modifiedby hyperbranched polymers II. Effect of the arm length of amphiphilichyperbranched-star polymers on the hydrophilicity and protein resistanceof poly(vinylidene fluoride) membranes. Journal of Membrane Science, 2007, 304: 138–147

doi: 10.1016/j.memsci.2007.07.029
Liu F, Du C H, Zhu B K, Xu Y Y. Surface immobilization of polymer brushes onto porous poly(vinylidenefluoride) membrane by electron beam to improve the hydrophilicityand fouling resistance. Polymer, 2007, 48: 2910–2918

doi: 10.1016/j.polymer.2007.03.033
Zhu L P, Dong H B, Wei X Z, Yi Z, Zhu B K, Xu Y Y. Tethering hydrophilic polymer brushes onto PPESK membranesvia surface-initiated atom transfer radical polymerization. Journal of Membrane Science, 2008, 320: 407–415

doi: 10.1016/j.memsci.2008.04.029
Liu F, Xu Y Y, Zhu B K, Zhang F, Zhu L P. Preparation of hydrophilicand fouling resistant poly(vinylidene fluoride) hollow fiber membranes. Journal of Membrane Science, 2009, 345: 331–339

doi: 10.1016/j.memsci.2009.09.020
Ma X, Su Y, Sun Q, Wang Y, Jiang Z. Preparation of protein-adsorption-resistant polyethersulfone ultrafiltration membranes through surface segregationof amphiphilic comb copolymer. Journal of Membrane Science, 2007, 292: 116–124

doi: 10.1016/j.memsci.2007.01.024
Li J H, Xu Y Y, Zhu L P, Wang J H, Du C H. Fabrication and characterizationof a novel TiO2 nanoparticle self-assemblymembrane with improved fouling resistance. Journal of Membrane Science, 2009, 326: 659–666

doi: 10.1016/j.memsci.2008.10.049
Luo M L, Zhao J Q, Tang W, Pu C S. Hydrophilic modification of poly(ether sulfone) ultrafiltration membranesurface by self-assembly of TiO2 nanoparticles. Applied Surface Science, 2005, 249: 76–84

doi: 10.1016/j.apsusc.2004.11.054
Wu G, Gan S, Cui L, Xu Y. Preparation and characterization of PES/TiO2 composite membranes. Applied Surface Science, 2008, 254: 7080–7086

doi: 10.1016/j.apsusc.2008.05.221
Shi Q, Su Y, Zhao W, Li C, Hu Y, Jiang Z, Zhu S. Zwitterionic polyethersulfone ultrafiltration membrane with superior antifoulingproperty. Journal of Membrane Science, 2008, 319: 271–278

doi: 10.1016/j.memsci.2008.03.047
Zhang Q, Zhang S, Dai L, Chen X. Novel zwitterionic poly(arylene ether sulfone)s as antifouling membranematerial. Journal of Membrane Science, 2010, 349: 217–224

doi: 10.1016/j.memsci.2009.11.048
Wang T, Wang Y Q, Su Y L, Jiang Z Y. Antifouling ultrafiltration membrane composed of polyethersulfoneand sulfobetaine copolymer. Journal of Membrane Science, 2006, 280: 343–350

doi: 10.1016/j.memsci.2006.01.038
He S B, Xue G, Kong H N. Zeolite powder addition to improve theperformance of submerged gravitation-filtration membrane bioreactor. Journal of Environmental Sciences, 2006, 18: 242–247
Dong B Z, Xia L H, Chen Y, Gao N Y, Fan J C. Improvement of ultrafiltrationmembrane performance by powdered zeolite. Technology of Water Treatment, 2006, 32: 8–11 (in Chinese)
Li Y Y, Zhao Y H, Yang J, Wang C Y, Xing L, Dong R J. Influence of adding zeolite on membrane filtration resistancein MBR and its decolorizing effect. China Water and Wastewater, 2008, 24: 49–51 (in Chinese)
Huang X, Wu J L. Improvement of membrane filterability of the mixed liquor in a membrane bioreactorby ozonation. Journal of Membrane Science, 2008, 318: 210–216

doi: 10.1016/j.memsci.2008.02.031
Liu X, Chen F T, Huang X, Zhu S Q. On-line ultrasound on fouling control of membrane bioreactor. China Environmental Science, 2008, 28: 517–521 (in Chinese)
Sui P, Wen X, Huang X. Feasibility of employing ultrasound foron-line membrane fouling control in an anaerobic membrane bioreactor. Desalination, 2008, 219: 203–213

doi: 10.1016/j.desal.2007.02.034
Chen F T, Fan Z H, Wu J L, Huang X. Effects of online ultrasonic cleaning on fouling control and mixed liquorproperties in membrane bioreactor. China Water and Wastewater, 2008, 24: 40–44 (in Chinese)
Liu X, Chen F T, Huang X. Effect of on-line ultrasound on the propertiesof activated sludge mixed liquor in a membrane bioreactor. Acta Scientiae Circumstantiae, 2008, 28: 440–445 (in Chinese)
Wen X, Sui P, Huang X. Exerting ultrasound to control the membranefouling in filtration of anaerobic activated sludge - Mechanism andmembrane damage. Water Science and Technology, 2008, 57: 773–779

doi: 10.2166/wst.2008.120
Mo L, Huang X. Fouling characteristics and cleaning strategies in a coagulation-microfiltration combinationprocess for water purification. Desalination, 2003, 159: 1–9

doi: 10.1016/S0011-9164(03)90040-3
Yamamura H, Kimura K, Watanabe Y. Mechanism involved in theevolution of physically irreversible fouling in microfiltration andultrafiltration membranes used for drinking water treatment. Environmental Science & Technology, 2007, 41: 6789–6794

doi: 10.1021/es0629054
Zhang G, Liu Z. Membrane fouling and cleaning in ultrafiltration of wastewater from banknote printingworks. Journal of Membrane Science, 2003, 211: 235–249

doi: 10.1016/S0376-7388(02)00422-2
Chen J H, Huang X. Fouling reasons and cleaning methods of nanofiltration membrane filtrated with theeffluent of membrane bioreactor. Environmental Science, 2008, 29: 2481–2487 (in Chinese)
Morel F M M, Hering J G. Principles and applications of aquatic chemistry. New York: John Wiley & Sons, Inc., 1993
[1] Fengping Hu, Yongming Guo. Health impacts of air pollution in China[J]. Front. Environ. Sci. Eng., 2021, 15(4): 74-.
[2] Danyang Liu, Johny Cabrera, Lijuan Zhong, Wenjing Wang, Dingyuan Duan, Xiaomao Wang, Shuming Liu, Yuefeng F. Xie. Using loose nanofiltration membrane for lake water treatment: A pilot study[J]. Front. Environ. Sci. Eng., 2021, 15(4): 69-.
[3] Chi Zhang, Wenhui Kuang, Jianguo Wu, Jiyuan Liu, Hanqin Tian. Industrial land expansion in rural China threatens environmental securities[J]. Front. Environ. Sci. Eng., 2021, 15(2): 29-.
[4] Shuo Wei, Lei Du, Shuo Chen, Hongtao Yu, Xie Quan. Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance[J]. Front. Environ. Sci. Eng., 2021, 15(1): 11-.
[5] An Ding, Yingxue Zhao, Huu Hao Ngo, Langming Bai, Guibai Li, Heng Liang, Nanqi Ren, Jun Nan. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor[J]. Front. Environ. Sci. Eng., 2020, 14(6): 96-.
[6] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[7] Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications[J]. Front. Environ. Sci. Eng., 2020, 14(2): 31-.
[8] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[9] Caiyun Hou, Sen Qiao, Yue Yang, Jiti Zhou. A novel sequence batch membrane carbonation photobioreactor developed for microalgae cultivation[J]. Front. Environ. Sci. Eng., 2019, 13(6): 92-.
[10] Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion[J]. Front. Environ. Sci. Eng., 2019, 13(4): 55-.
[11] Chao Pang, Chunhua He, Zhenhu Hu, Shoujun Yuan, Wei Wang. Aggravation of membrane fouling and methane leakage by a three-phase separator in an external anaerobic ceramic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2019, 13(4): 50-.
[12] Nathalie Tanne, Rui Xu, Mingyue Zhou, Pan Zhang, Xiaomao Wang, Xianghua Wen. Influence of pore size and membrane surface properties on arsenic removal by nanofiltration membranes[J]. Front. Environ. Sci. Eng., 2019, 13(2): 19-.
[13] Guangrong Sun, Chuanyi Zhang, Wei Li, Limei Yuan, Shilong He, Liping Wang. Effect of chemical dose on phosphorus removal and membrane fouling control in a UCT-MBR[J]. Front. Environ. Sci. Eng., 2019, 13(1): 1-.
[14] Lu Ao, Wenjun Liu, Yang Qiao, Cuiping Li, Xiaomao Wang. Comparison of membrane fouling in ultrafiltration of down-flow and up-flow biological activated carbon effluents[J]. Front. Environ. Sci. Eng., 2018, 12(6): 9-.
[15] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed