Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2019, Vol. 13 Issue (1) : 1    https://doi.org/10.1007/s11783-019-1085-8
RESEARCH ARTICLE
Effect of chemical dose on phosphorus removal and membrane fouling control in a UCT-MBR
Guangrong Sun1, Chuanyi Zhang1(), Wei Li2, Limei Yuan1(), Shilong He1, Liping Wang1
1. School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
2. College of Environmental & Resource Science, Zhejiang University, Hangzhou 310000, China
 Download: PDF(1281 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Phosphorus removal was enhanced effectively by dosing aluminum sulfate and effluent phosphorus concentration was lower than 0.5 mg/L.

Sludge activity was not inhibited but improved slightly with addition of aluminum sulfate.

EPS concentrations both in mixed liquid and on membrane surface were decreased, contributing to the effective mitigation of membrane fouling.

To enhance phosphorus removal and make the effluent meet the strict discharge level of total phosphorus (TP, 0.5 mg/L), flocculant dosing is frequently applied. In this study, the performance of aluminum sulfate dosing in a University of Cape Town Membrane Bioreactor (UCT-MBR) was investigated, in terms of the nutrients removal performance, sludge characteristics and membrane fouling. The results indicated that the addition of aluminum sulfate into the aerobic reactor continuously had significantly enhanced phosphorus removal. Moreover, COD, NH4+-N and TN removal were not affected and effluent all met the first level A criteria of GB18918-2002. In addition, the addition of aluminum sulfate had improved the sludge activity slightly and reduced trans-membrane pressure (TMP) increase rate from 1.13 KPa/d to 0.57 KPa/d effectively. The membrane fouling was alleviated attributed to the increased average particle sizes and the decreased accumulation of the small sludge particles on membrane surface. Furthermore, the decline of extracellular polymeric substance (EPS) concentration in mixed sludge liquid decreased its accumulation on membrane surface, resulting in the mitigation of membrane fouling directly.

Keywords University of Cape Town Bioreactor (UCT-MBR)      enhanced nutrients removal      aluminum sulfate      sludge activity      membrane fouling     
Corresponding Author(s): Chuanyi Zhang,Limei Yuan   
Issue Date: 16 October 2018
 Cite this article:   
Guangrong Sun,Chuanyi Zhang,Wei Li, et al. Effect of chemical dose on phosphorus removal and membrane fouling control in a UCT-MBR[J]. Front. Environ. Sci. Eng., 2019, 13(1): 1.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1085-8
https://academic.hep.com.cn/fese/EN/Y2019/V13/I1/1
Fig.1  Schematic overview of the UCT-MBR setup: 1. Influent tank; 2. Pump; 3. Anaerobic reactor; 4. Anoxic reactor; 5. Aerobic reactor; 6. Mixer; 7. Air diffuser; 8. Blower; 9. Membrane unit; 10. Chemical dosing tank; 11. Wastewater tank; 12. Vacuum gauge; 13. Recycled pump (r); 14. Recycled pump (R).
Phase 1 2 3 4
Aluminum sulfate dose (mg/L) 0 10 0 50
COD (mg/L) 261.2?274.9 251.7.2?270.5 196.5?217.9 204.8?216.4
NH4+-N (mg/L) 34.4?42.8 36.2?41.3 36.9?39.4 37.2?39.4
TP (mg/L) 4.72?5.22 4.63?5.02 4.88?5.16 4.89?5.05
TN (mg/L) 36.9?43.8 38.6?45.3 37.4?41.6 38.2?42.6
Tab.1  Characteristics of influent wastewater and aluminum sulfate dose in different phases
Fig.2  The concentrations and removal efficiencies in UCT-MBR during the operational period.
Fig.3  Sludge Characteristics: Changes of MLSS, MLVSS and ratio of MLVSS/MLSS in aerobic reactor (a), phosphorus release rate (b), denitrification rate (c) and nitrification rate (d) in different reactors before/after the dose of aluminum sulfate.
Fig.4  Effect of aluminum sulfate dosing on the changes of TMP.
Fig.5  Distribution of sludge particle sizes before (a) and after (b) the dose of aluminum sulfate.
Parameter Anaerobic reactor Anoxic reactor Aerobic reactor
PN PS PN PS PN PS
Before dosing Concentration 73.15 8.99 73.67 9.15 71.85 9.30
Total EPS 82.14 82.82 81.15
After dosing Concentration 38.13 10.12 37.33 9.22 35.09 13.42
Total EPS 48.25 46.55 48.50
Tab.2  The content of EPS before and after the addition of aluminum sulfate (mg/gMLSS)
Fig.6  EPS concentration and distribution on membrane surface before and after the dose of aluminum sulfate.
1 APHA (2012)Standard Methods for the examination of Water and Wastewater 22nd America Public Health Association, Washington DC, USA
2 Arrojo B, Mosquera-Corra A, Garrido J M, Méndez R, Ficara E, Malpei F (2005). A membrane coupled to a sequencing batch reactor for water reuse and removal of coliform bacteria. Desalination, 179(1-3): 109–116
https://doi.org/10.1016/j.desal.2004.11.059
3 Azami H, Sarrafzadeh M H, Mehrnia M R (2011). Fouling in membrane bioreactors with various concentrations of dead cells. Desalination, 278(1-3): 373–380
https://doi.org/10.1016/j.desal.2011.05.052
4 Buisson H, Cote P, Praderie M, Paillard H (1998). The use of immersed membranes for upgrading wastewater treatment plants. Water Science and Technology, 37(9): 89–95
https://doi.org/10.2166/wst.1998.0344
5 Caravelli A H, Gregorio C D, Zaritzky N E (2012). Effect of operating conditions on the chemical phosphorus removal using ferric chloride by evaluating orthophosphate precipitation and sedimentation of formed precipitates in batch and continuous systems. Chemical Engineering Journal, 209: 469–477
https://doi.org/10.1016/j.cej.2012.08.039
6 Cosenza A, Bella G D, Mannina G, Torregrossa M, Viviani G (2013). Biological nutrient removal and fouling phenomena in a University of Cape Town Membrane Bioreactor treating high nitrogen loads. Journal of Environmental Engineering, 139(6): 773–780
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000667
7 Dalmau M, Rodriguez-Roda I, Ayesa E, Odriozola J, Sancho L, Comas J (2013). Development of a decision tree for the integrated operation of nutrient removal MBRs based on simulation studies and expert knowledge. Chemical Engineering Journal, 217: 174–184
https://doi.org/10.1016/j.cej.2012.11.060
8 Díez-Montero R, De Florio L, González-Viar M, Herrero M, Tejero I (2016). Performance evaluation of a novel anaerobic-anoxic sludge blanket reactor for biological nutrient removal treating municipal wastewater. Bioresource Technology, 209: 195–204
https://doi.org/10.1016/j.biortech.2016.02.084 pmid: 26970922
9 Drews A, Lee C H, Kraume M (2006). Membrane fouling—A review on the role of EPS. Desalination, 200(1-3): 186–188
https://doi.org/10.1016/j.desal.2006.03.290
10 Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3): 350–356
https://doi.org/10.1021/ac60111a017
11 Fan F, Zhou H, Husain H (2007). Use of chemical coagulants to control fouling potential for wastewater membrane bioreactor processes. Water Environment Research A Research Publication of the Water Environment Federation, 79: 952–957
12 Ferrero G, Monclús H, Buttiglieri G, Comas J, Rodriguez-Roda I (2011). Automatic control system for energy optimization in membrane bioreactors. Desalination, 268(1-3): 276–280
https://doi.org/10.1016/j.desal.2010.10.024
13 Ge S, Peng Y, Wang S, Guo J, Ma B, Zhang L, Cao X (2010). Enhanced nutrient removal in a modified step feed process treating municipal wastewater with different inflow distribution ratios and nutrient ratios. Bioresource Technology, 101(23): 9012–9019
https://doi.org/10.1016/j.biortech.2010.06.151 pmid: 20650632
14 Hu Y, Wang X C, Tian W R, Chen R (2014). Assessment of fouling potentials of extracellular polymeric sub-stances in a membrane bioreactor using modified fouling index (MFI). Journal of Water Sustainability, 4: 237–246
15 Huang X, Wu J (2008). Improvement of membrane filterability of the mixed liquor in a membrane bioreactor by ozonation. Journal of Membrane Science, 318(1-2): 210–216
https://doi.org/10.1016/j.memsci.2008.02.031
16 Hussain S, Leeuwen J V, Chow C W K, Aryal R, Beecham S, Duan J, Drikas M (2014). Comparison of the coagulation performance of tetravalent titanium and zirconium salts with alum. Chemical Engineering Journal, 254: 635–646
https://doi.org/10.1016/j.cej.2014.06.014
17 Leyva-Díaz J C, Muñío M M, González-López J, Poyatos J M (2016). Anaerobic/anoxic/oxic configuration in hybrid moving bed biofilm reactor-membrane bioreactor for nutrient removal from municipal wastewater. Ecological Engineering, 91: 449–458
https://doi.org/10.1016/j.ecoleng.2016.03.006
18 Li W, Cai Z Y, Duo Z J, Lu Y F, Gao K X, Abbas G, Zhang M, Zheng P (2017a). Heterotrophic ammonia and nitrate bio-removal over nitrite (Hanbon): Performance and microflora. Chemosphere, 182: 532–538
https://doi.org/10.1016/j.chemosphere.2017.05.068 pmid: 28521169
19 Li X, Liu Y, Liu F, Liu A, Feng Q (2017b). Comparison of ferric chloride and aluminum sulfate on phosphorus removal and membrane fouling in MBR treating BAF effluent of municipal wastewater. Journal of Water Reuse and Desalination, 7(4): 442–448
https://doi.org/10.2166/wrd.2016.151
20 Liu T, Lian Y, Graham N, Yu W, Rooney D, Sun K (2016). Application of polyacrylamide flocculation with and without alum coagulation for mitigating ultrafiltration membrane fouling: Role of floc structure and bacterial activity. Chemical Engineering Journal, 307: 41–48
https://doi.org/10.1016/j.cej.2016.08.063
21 Liu Y, Shi H, Li W, Hou Y, He M (2011). Inhibition of chemical dose in biological phosphorus and nitrogen removal in simultaneous chemical precipitation for phosphorus removal. Bioresource Technology, 102(5): 4008–4012
https://doi.org/10.1016/j.biortech.2010.11.107 pmid: 21215613
22 Lowry O H, Rosebrough N J, Farr A L, Randall R J (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1): 265–275
pmid: 14907713
23 Mannina G, Capodici M, Cosenza A, Trapani D D (2016). Carbon and nutrient biological removal in a University of Cape Town Membrane Bioreactor: Analysis of a pilot plant operated under two different C/N ratios. Chemical Engineering Journal, 296: 289–299
https://doi.org/10.1016/j.cej.2016.03.114
24 Monclús H, Sipma J, Ferrero G, Comas J, Rodriguezroda I (2010). Optimization of biological nutrient removal in a pilot plant UCT-MBR treating municipal wastewater during start-up. Desalination, 250(2): 592–597
https://doi.org/10.1016/j.desal.2009.09.030
25 Morgan J W, Forster C F, Evison L (1990). A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges. Water Research, 24(6): 743–750
https://doi.org/10.1016/0043-1354(90)90030-A
26 Rajesh Banu J, Uan D K, Yeom I T, Nair J (2009). Nutrient removal in an A2O-MBR reactor with sludge reduction. Bioresource Technology, 100(16): 3820–3824
https://doi.org/10.1016/j.biortech.2008.12.054 pmid: 19246191
27 Ramesh A, Lee D J, Lai J Y (2007). Membrane biofouling by extracellular polymeric substances or soluble microbial products from membrane bioreactor sludge. Applied Microbiology and Biotechnology, 74(3): 699–707
https://doi.org/10.1007/s00253-006-0706-x pmid: 17115206
28 Satyawali Y, Balakrishnan M (2009). Effect of PAC addition on sludge properties in an MBR treating high strength wastewater. Water Research, 43(6): 1577–1588
https://doi.org/10.1016/j.watres.2009.01.003 pmid: 19201006
29 Song K G, Kim Y, Ahn K H (2008). Effect of coagulant addition on membrane fouling and nutrient removal in a submerged membrane bioreactor. Desalination, 221(1-3): 467–474
https://doi.org/10.1016/j.desal.2007.01.107
30 Tang S, Wang Z, Wu Z, Zhou Q (2010). Role of dissolved organic matters (DOM) in membrane fouling of membrane bioreactors for municipal wastewater treatment. Journal of Hazardous Materials, 178(1-3): 377–384
https://doi.org/10.1016/j.jhazmat.2010.01.090 pmid: 20144501
31 Trapani D D, Capodici M, Cosenza A, Bella G D, Mannina G (2011). Evaluation of biomass activity and wastewater characterization in a UCT-MBR pilot plant by means of respirometric techniques. Desalination, 269(1-3): 190–197
https://doi.org/10.1016/j.desal.2010.10.061
32 Wang H, Dong W, Li T, Liu T (2014a). Enhanced synergistic denitrification and chemical precipitation in a modified BAF process by using Fe2+. Bioresource Technology, 151: 258–264
https://doi.org/10.1016/j.biortech.2013.10.066 pmid: 24246481
33 Wang Z, Wu Z, Tang S (2009). Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Research, 43(9): 2504–2512
https://doi.org/10.1016/j.watres.2009.02.026 pmid: 19285331
34 Wang Z Z, Jun L I, Gao J H, Jiang C, Ren J Z, Liu B (2014b). Effects of r(COD)/r(TN) on performance and membrane fouling in UCT-type Submerged Membrane Bioreactor. Journal of Beijing University of Technology, 40: 619–626 (in Chinese)
35 Wu C, Zhou Y, Wang Y, Guo M (2016). Innovative combination of Fe2+-BAF and ozonation for enhancing phosphorus and organic micropollutants removal treating petrochemical secondary effluent. Journal of Hazardous Materials, 323(Pt B): 654–662
https://doi.org/10.1016/j.jhazmat.2016.10.029 pmid: 27776874
36 Wu J, Chen F, Huang X, Geng W, Wen X (2006). Using inorganic coagulants to control membrane fouling in a submerged membrane bioreactor. Desalination, 197(1-3): 124–136
https://doi.org/10.1016/j.desal.2005.11.026
37 Wu M, Jiang X, Lv Y, Zhou J, Yuan L, Jia Y, Wang Y (2015). Long-term effect of Cu (II) on the phosphorous removal performance in enhanced biological phosphorous removal systems. Chemical Engineering Journal, 281: 164–173
https://doi.org/10.1016/j.cej.2015.06.070
38 Wvon M F S (1991). An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biology and Fertility of Soils, 11(3): 216–220
https://doi.org/10.1007/BF00335770
39 Xu G L, Fan Y B, Yan Y, Yang W J, Yuan D D, Wu G X (2010). Membrane fouling control in MBR achieved by dosing coagulants. Fresenius Environmental Bulletin, 19: 1591–1598
40 Xu R, Zhou Z, Meng F (2018). The mechanical scouring of bio-carriers improves phosphorous removal and mediates functional microbiome in membrane bioreactors. Environmental Science. Water Research & Technology, 4(2): 241–252
https://doi.org/10.1039/C7EW00385D
41 Yan M, Wang D, Ni J, Qu J, Chow C W K, Liu H (2008). Mechanism of natural organic matter removal by polyaluminum chloride: Effect of coagulant particle size and hydrolysis kinetics. Water Research, 42(13): 3361–3370
https://doi.org/10.1016/j.watres.2008.04.017 pmid: 18519148
42 Yao M, Zhang K, Li C (2010). Characterization of protein-polysaccharide ratios on membrane fouling. Desalination, 259(1-3): 11–16
https://doi.org/10.1016/j.desal.2010.04.049
43 Zhang H, Wang X, Xiao J, Yang F, Zhang J (2009). Enhanced biological nutrient removal using MUCT-MBR system. Bioresource Technology, 100(3): 1048–1054
https://doi.org/10.1016/j.biortech.2008.07.045 pmid: 18768308
[1] Danyang Liu, Johny Cabrera, Lijuan Zhong, Wenjing Wang, Dingyuan Duan, Xiaomao Wang, Shuming Liu, Yuefeng F. Xie. Using loose nanofiltration membrane for lake water treatment: A pilot study[J]. Front. Environ. Sci. Eng., 2021, 15(4): 69-.
[2] Shuo Wei, Lei Du, Shuo Chen, Hongtao Yu, Xie Quan. Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance[J]. Front. Environ. Sci. Eng., 2021, 15(1): 11-.
[3] An Ding, Yingxue Zhao, Huu Hao Ngo, Langming Bai, Guibai Li, Heng Liang, Nanqi Ren, Jun Nan. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor[J]. Front. Environ. Sci. Eng., 2020, 14(6): 96-.
[4] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[5] Caiyun Hou, Sen Qiao, Yue Yang, Jiti Zhou. A novel sequence batch membrane carbonation photobioreactor developed for microalgae cultivation[J]. Front. Environ. Sci. Eng., 2019, 13(6): 92-.
[6] Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion[J]. Front. Environ. Sci. Eng., 2019, 13(4): 55-.
[7] Chao Pang, Chunhua He, Zhenhu Hu, Shoujun Yuan, Wei Wang. Aggravation of membrane fouling and methane leakage by a three-phase separator in an external anaerobic ceramic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2019, 13(4): 50-.
[8] Nathalie Tanne, Rui Xu, Mingyue Zhou, Pan Zhang, Xiaomao Wang, Xianghua Wen. Influence of pore size and membrane surface properties on arsenic removal by nanofiltration membranes[J]. Front. Environ. Sci. Eng., 2019, 13(2): 19-.
[9] Lu Ao, Wenjun Liu, Yang Qiao, Cuiping Li, Xiaomao Wang. Comparison of membrane fouling in ultrafiltration of down-flow and up-flow biological activated carbon effluents[J]. Front. Environ. Sci. Eng., 2018, 12(6): 9-.
[10] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[11] Qingbin Guo, Sheng Chang. Tetra-detector size exclusion chromatography characterization of molecular and solution properties of soluble microbial polysaccharides from an anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(2): 16-.
[12] Xudong WANG,Miao ZHOU,Xiaorong MENG,Lei WANG,Danxi HUANG. Effect of protein on PVDF ultrafiltration membrane fouling behavior under different pH conditions: interface adhesion force and XDLVO theory analysis[J]. Front. Environ. Sci. Eng., 2016, 10(4): 12-.
[13] Haiqing CHANG,Baicang LIU,Wanshen LUO,Guibai LI. Fouling mechanisms in the early stage of an enhanced coagulation-ultrafiltration process[J]. Front. Environ. Sci. Eng., 2015, 9(1): 73-83.
[14] Xia HUANG, Kang XIAO, Yuexiao SHEN. Recent advances in membrane bioreactor technology for wastewater treatment in China[J]. Front.Environ.Sci.Eng., 2010, 4(3): 245-271.
[15] ZOU Haiyan, XI Danli. Performance of bioferric-submerged membrane bioreactor for dyeing wastewater treatment[J]. Front.Environ.Sci.Eng., 2007, 1(3): 374-380.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed