Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (2) : 16    https://doi.org/10.1007/s11783-017-0922-x
RESEARCH ARTICLE
Tetra-detector size exclusion chromatography characterization of molecular and solution properties of soluble microbial polysaccharides from an anaerobic membrane bioreactor
Qingbin Guo,Sheng Chang()
School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
 Download: PDF(604 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Tetra-detector HPSEC was evaluated for the SMP characterization

Molecular weight and intrinsic viscosity of the SMP were characterized

Specific viscosity and osmotic pressure of the SMP solution were studied

Approach to analyze the concentration polarization of the SMP was discussed

Characterization of the molecular properties of soluble microbial products (SMP) is critical for understanding the membrane filtration and fouling mechanisms in anaerobic and aerobic membrane bioreactors (AnMBR & MBR). In this study, the distributions of the absolute molecular weight and intrinsic viscosity of SMP polysaccharides from an AnMBR were effectively determined by a high performance size exclusion chromatography (HPSEC) that was coupled with the refractive index (RI), diode array UV (DAUV), right and low angle light scattering (LS), and viscometer (Vis) detectors. Based on the tetra-detector HPSEC determined absolute molecular weights and intrinsic viscosity, a universal calibration relationship for the SMP polysaccharides was developed and the molecular conformations, average molecular weights, and hydrodynamic sizes of the SMP polysaccharides were also explored. Two factors which can be derived from the tetra-detector HPSEC analysis were proposed for the characterization of the viscous and osmotic pressure properties of the SMP polysaccharides. In addition, it was also extrapolated how to analyze the resistance characteristics of the concentration polarization layers formed in membrane filtration based on the molecular properties determined by the tetra-detector HPSEC analysis.

Keywords Soluble microbial product      Extracellular polymeric substance      Membrane bioreactor      Membrane fouling      Molecular weight      Intrinsic viscosity     
Corresponding Author(s): Sheng Chang   
Issue Date: 07 April 2017
 Cite this article:   
Qingbin Guo,Sheng Chang. Tetra-detector size exclusion chromatography characterization of molecular and solution properties of soluble microbial polysaccharides from an anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(2): 16.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0922-x
https://academic.hep.com.cn/fese/EN/Y2017/V11/I2/16
sample
name
operation days reactor operation conditions
R1 0 before reactor start (10 kPa 100 kDa filtration)
R2 56 5 gCOD·L·d1, no sludge wasting (10 kPa 100 kDa filtration)
R3 71 7.5 gCOD·L·d1, no sludge wasting (10 kPa 100 kDa filtration)
R4 94 10 gCOD·L·d1, with sludge wasting (10 kPa 100 kDa filtration)
Tab.1  SMP samples prepared for the tetra-detector HPSEC analysis
Fig.1  Tetra-detector chromatograms of soluble microbial products (SMP) for the sample R4
Fig.2  (a) Universal calibration curves of SMP polysaccharides. (b) log(intrinsic viscosity)-log (molecular weight) relations of SMP polysaccharides
samples RI Peak EV /mL a values b values R2
R1 23.224 −0.58 19.2 0.9932
R2 23.036 −0.52 17.7 0.9982
R3 22.906 −0.58 19.2 0.9828
R4 22.58 −0.54 18.1 0.9897
average values ? −0.55 18.6 ?
standard deviations ? 0.03 0.77 ?
Tab.2  Linear fitting constants (a and b) of the Log (intrinsic viscosity x molecular weight) and elution volume (mL) relation: Log([h]M) = aEV+ b, where [h] is the intrinsic viscosity (dl·g1), M is the molecular weight (Da), and EV is the elution volume (mL).
MW<105.5 Da 105.5 <MW<106 Da MW>106 Da
sample Mw /KDa PDI [h]/(d·g 1) F/% α/logK Mw/KDa PDI [h]/(d·g 1) F/% α/logK Mw /KDa PDI [h]/(d·g1) F/% α/logK
R1 181.5 1.18 2.10 61.8 1.49/−7.75 562.3 1.11 5.83 20.2 0.45/-1.99 3266.4 1.62 21.04 17.9 0.67/-3.53
R2 143.5 1.18 1.48 68.2 1.56/−7.70 575.5 1.11 5.92 17.9 0.44/-1.78 2415.9 1.3 15.82 14.0 0.74/-3.58
R3 185.5 1.24 2.16 45.3 1.16/−5.89 549.4 1.11 5.75 27.4 0.62/-2.87 3159.8 1.36 20.39 27.2 0.85/-4.32
R4 181.2 1.2 2.09 55.5 1.78/−8.91 534.3 1.1 5.65 27.7 0.69/-3.06 2069.8 1.12 13.67 16.7 1.03/-5.12
mean 177.1 1.21 2.03 57.7 1.50/−7.56 545.5 1.11 5.73 23.3 0.55/-2.43 2690.0 1.31 17.49 18.9 0.82/-4.14
stdev 18.5 0.04 0.31 9.7 0.25/1.08 20.8 0.00 0.14 5.0 0.13/0.55 614.8 0.19 3.79 5.7 0.16/0.65
Tab.3  Weight average molecular weight (Mw), polydispersity index (PDI) values, intrinsic viscosity ([h]), mass fraction (F) and Mark-Houwink parameters (a and logK) of the SMP polysaccharides for different molecular weight ranges
MW<105.5 Da 105.5 <MW<106 Da MW>106 Da
sample Rg /nm Rh/nm ρ/(Rg/Rh) Rg /nm Rh/nm ρ/(Rg/Rh) Rg /nm Rh/nm ρ/(Rg/Rh)
R1 26.1 18.2 1.43 45.8 37.3 1.23 151.2 102.9 1.47
R2 21.5 15.0 1.43 46.4 37.8 1.23 124.3 84.6 1.47
R3 26.6 18.5 1.44 45.2 36.9 1.22 148.0 100.7 1.47
R4 26.1 18.2 1.43 44.6 36.3 1.23 112.5 76.6 1.47
mean 25.1 17.5 1.43 45.5 37.1 1.23 134.0 91.2 1.47
stdev 2.1 1.4 0.00 0.7 0.5 0.00 16.2 11.0 0.00
Tab.4  Average radius of gyration (Rg), viscometric radius (Rh) and conformational parameter (r) of the SMP polysaccharides for different molecular weight ranges
Fig.3  (a) SFi[h]i values of the SMP polysaccharides. (b) Relationships between osmotic pressure and concentration for the SMP polysaccharides
Fig.4  Approach to solve the concentration polarization problem (K is the permeability, Rg is the radius of gyration, f is the volume fraction of polymer, f* is the overlap concentration of polymer, D is the diffusivity of polymer molecule, η0 is the solvent viscosity, p is the osmotic pressure, c is the polymer mass concentration, J is the flux, Rc is the resistance of concentration layer, Dx is the thickness of the concentration polarization layer, and sub index i represents a thin concentration polarization layer i)
1 Lin H, Zhang M, Wang F, Meng F, Liao B Q, Hong H, Chen J, Gao W. A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies. Journal of Membrane Science, 2014, 460(9): 110–125
https://doi.org/10.1016/j.memsci.2014.02.034
2 Gao W J, Qu X, Leung K T, Liao B Q. Influence of temperature and temperature shock on sludge properties, cake layer structure, and membrane fouling in a submerged anaerobic membrane bioreactor. Journal of Membrane Science, 2012, (421–422): 131–144
https://doi.org/10.1016/j.memsci.2012.07.003
3 Lyko S, Al-Halbouni D, Wintgens T, Janot A, Hollender J, Dott W, Melin T. Polymeric compounds in activated sludge supernatant—Characterisation and retention mechanisms at a full-scale municipal membrane bioreactor. Water Research, 2007, 41(17): 3894–3902
https://doi.org/10.1016/j.watres.2007.06.012 pmid: 17645906
4 Shen Y X, Zhao W, Xiao K, Huang X. A systematic insight into fouling propensity of soluble microbial products in membrane bioreactors based on hydrophobic interaction and size exclusion. Journal of Membrane Science, 2010, 346(1): 187–193
https://doi.org/10.1016/j.memsci.2009.09.040
5 Shen Y X, Xiao K, Liang P, Sun J, Sai S, Huang X. Characterization of soluble microbial products in 10 large-scale membrane bioreactors for municipal wastewater treatment in China. Journal of Membrane Science, 2012, 415: 336–345
https://doi.org/10.1016/j.memsci.2012.05.017
6 Wu Z, Wang Q, Wang Z, Ma Y, Zhou Q, Yang D. Membrane fouling properties under different filtration modes in a submerged membrane bioreactor. Process Biochemistry, 2010, 45(10): 1699–1706
https://doi.org/10.1016/j.procbio.2010.07.002
7 Zhu X, Wang Z, Wu Z. Characterization of membrane foulants in a full-scale membrane bioreactor for supermarket wastewater treatment. Process Biochemistry, 2011, 46(4): 1001–1009
https://doi.org/10.1016/j.procbio.2011.01.020
8 Sun F Y, Wang X, Li X Y. Effect of biopolymer clusters on the fouling property of sludge from a membrane bioreactor (MBR) and its control by ozonation. Process Biochemistry, 2011, 46(1): 162–167
https://doi.org/10.1016/j.procbio.2010.08.003
9 Yang Z, Juang Y C, Lee D J, Duan Y Y. Pore blockage of organic fouling layer with highly heterogeneous structure in membrane filtration: role of minor organic foulants. Journal of Membrane Science, 2012, 411–412: 30–34
https://doi.org/10.1016/j.memsci.2012.04.010
10 Guo Q, Wang Q, Cui S W, Kang J, Hu X, Xing X, Yada R Y. Conformational properties of high molecular weight heteropolysaccharide isolated from seeds of Artemisia sphaerocephala Krasch. Food Hydrocolloids, 2013, 32(1): 155–161
https://doi.org/10.1016/j.foodhyd.2012.12.014
11 Frølund B, Griebe T, Nielsen P H. Enzymatic activity in the activated-sludge floc matrix. Applied Microbiology and Biotechnology, 1995, 43(4): 755–761
https://doi.org/10.1007/s002530050481 pmid: 7546613
12 Bourven I, Simon S, Bhatia D, van Hullebusch E D, Guibaud G. Effect of various size exclusion chromatography (SEC) columns on the fingerprints of extracellular polymeric substances (EPS) extracted from biological sludge. Journal of the Taiwan Institute of Chemical Engineers, 2015, 49: 148–155
https://doi.org/10.1016/j.jtice.2014.11.025
13 Hufnagel D. Anaerobic membrane bioreactor for high strength wastewater treatment: batch and continuous operation comparison.Journal of Water Reuse & Desalination,   2014, 5(2):95
14 Chen R. Application of Anaerobic Membrane Bioreactor for Brewery Wastewater Treatment. New Orleans, Louisiana: Weftec, 2014
15 Arabi S, Nakhla G. Impact of molecular weight distribution of soluble microbial products on fouling in membrane bioreactors. Separation and Purification Technology, 2010, 73(3): 391–396
https://doi.org/10.1016/j.seppur.2010.04.028
16 Alasonati E, Slaveykova V I. Composition and molar mass characterisation of bacterial extracellular polymeric substances by using chemical, spectroscopic and fractionation techniques. Environmental Chemistry, 2011, 8(2): 155–162
https://doi.org/10.1071/EN10119
17 Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Analytical Biochemistry, 1973, 54(2): 484–489
https://doi.org/10.1016/0003-2697(73)90377-1 pmid: 4269305
18 DuBois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956, 28(3): 350–356
https://doi.org/10.1021/ac60111a017
19 Lowry O H, Rosebrough N J, Farr A L, Randall R J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 1951, 193(1): 265–275
pmid: 14907713
20 Grubisic Z, Rempp P, Benoit H. A universal calibration for gel permeation chromatography. Journal of Polymer Science. Part B: Polymer Letters, 1967, 5(9): 753–759
https://doi.org/10.1002/pol.1967.110050903
21 Teraoka I. Polymer Solutions: An Introduction to Physical Properties.London: John Wiley & Sons, 2002
22 Matsuoka S, Cowman M K. Equation of state for polymer solution. Polymer, 2002, 43(12): 3447–3453
https://doi.org/10.1016/S0032-3861(02)00157-X
23 Kwaambwa H M, Goodwin J W, Hughes R W, Reynolds P A. Viscosity, molecular weight and concentration relationships at 298 K of low molecular weight cis-polyisoprene in a good solvent. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 294(1–3): 14–19
https://doi.org/10.1016/j.colsurfa.2006.07.041
24 Striegel A M.Modern Size-exclusion Liquid Chromatography, 2nd ed.  New York: John Wiley & Son, Inc., 2009
25 Pamies R, Hernández Cifre J G, del Carmen López Martínez M, García de la Torre J. Determination of intrinsic viscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures. Colloid & Polymer Science, 2008, 286(11): 1223–1231
https://doi.org/10.1007/s00396-008-1902-2
26 Johnson M, Kamm R. Scaling laws and the effects of concentration polarization on the permeability of hyalurronic acid. PhysicChemical Hydrodynamics, 1987, 9(34) 427–441
27 Wijmans J G, Nakao S, Van Den Berg J W A, Troelstra F R, Smolders C A. Hydrodynamic resistance of concentration polarization boundary layers in ultrafiltration. Journal of Membrane Science, 1985, 22(1): 117–135
https://doi.org/10.1016/S0376-7388(00)80534-7
[1] Danyang Liu, Johny Cabrera, Lijuan Zhong, Wenjing Wang, Dingyuan Duan, Xiaomao Wang, Shuming Liu, Yuefeng F. Xie. Using loose nanofiltration membrane for lake water treatment: A pilot study[J]. Front. Environ. Sci. Eng., 2021, 15(4): 69-.
[2] Shuo Wei, Lei Du, Shuo Chen, Hongtao Yu, Xie Quan. Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance[J]. Front. Environ. Sci. Eng., 2021, 15(1): 11-.
[3] Dawei Yu, Jianxing Wang, Libin Zheng, Qianwen Sui, Hui Zhong, Meixue Cheng, Yuansong Wei. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(6): 101-.
[4] An Ding, Yingxue Zhao, Huu Hao Ngo, Langming Bai, Guibai Li, Heng Liang, Nanqi Ren, Jun Nan. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor[J]. Front. Environ. Sci. Eng., 2020, 14(6): 96-.
[5] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[6] Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications[J]. Front. Environ. Sci. Eng., 2020, 14(2): 31-.
[7] Lanhe Zhang, Jing Zheng, Jingbo Guo, Xiaohui Guan, Suiyi Zhu, Yanping Jia, Jian Zhang, Xiaoyu Zhang, Haifeng Zhang. Effects of Al3+ on pollutant removal and extracellular polymeric substances (EPS) under anaerobic, anoxic and oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(6): 85-.
[8] Caiyun Hou, Sen Qiao, Yue Yang, Jiti Zhou. A novel sequence batch membrane carbonation photobioreactor developed for microalgae cultivation[J]. Front. Environ. Sci. Eng., 2019, 13(6): 92-.
[9] Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion[J]. Front. Environ. Sci. Eng., 2019, 13(4): 55-.
[10] Chao Pang, Chunhua He, Zhenhu Hu, Shoujun Yuan, Wei Wang. Aggravation of membrane fouling and methane leakage by a three-phase separator in an external anaerobic ceramic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2019, 13(4): 50-.
[11] Nathalie Tanne, Rui Xu, Mingyue Zhou, Pan Zhang, Xiaomao Wang, Xianghua Wen. Influence of pore size and membrane surface properties on arsenic removal by nanofiltration membranes[J]. Front. Environ. Sci. Eng., 2019, 13(2): 19-.
[12] Xue Shen, Lei Lu, Baoyu Gao, Xing Xu, Qinyan Yue. Development of combined coagulation-hydrolysis acidification-dynamic membrane bioreactor system for treatment of oilfield polymer-flooding wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(1): 9-.
[13] Guangrong Sun, Chuanyi Zhang, Wei Li, Limei Yuan, Shilong He, Liping Wang. Effect of chemical dose on phosphorus removal and membrane fouling control in a UCT-MBR[J]. Front. Environ. Sci. Eng., 2019, 13(1): 1-.
[14] Lu Ao, Wenjun Liu, Yang Qiao, Cuiping Li, Xiaomao Wang. Comparison of membrane fouling in ultrafiltration of down-flow and up-flow biological activated carbon effluents[J]. Front. Environ. Sci. Eng., 2018, 12(6): 9-.
[15] Guangqing Song, Hongbo Xi, Xiumei Sun, Yudong Song, Yuexi Zhou. Effect of 2-butenal manufacture wastewater to methanogenic activity and microbial community[J]. Front. Environ. Sci. Eng., 2018, 12(5): 10-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed